Articles | Volume 27, issue 20
https://doi.org/10.5194/hess-27-3687-2023
https://doi.org/10.5194/hess-27-3687-2023
Research article
 | 
20 Oct 2023
Research article |  | 20 Oct 2023

The Wetland Intrinsic Potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators

Meghan Halabisky, Dan Miller, Anthony J. Stewart, Amy Yahnke, Daniel Lorigan, Tate Brasel, and Ludmila Monika Moskal

Related authors

Lidar-based approaches for estimating solar insolation in heavily forested streams
Jeffrey J. Richardson, Christian E. Torgersen, and L. Monika Moskal
Hydrol. Earth Syst. Sci., 23, 2813–2822, https://doi.org/10.5194/hess-23-2813-2019,https://doi.org/10.5194/hess-23-2813-2019, 2019
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Remote Sensing and GIS
The development of an operational system for estimating irrigation water use reveals socio-political dynamics in Ukraine
Jacopo Dari, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 28, 2651–2659, https://doi.org/10.5194/hess-28-2651-2024,https://doi.org/10.5194/hess-28-2651-2024, 2024
Short summary
An inter-comparison of approaches and frameworks to quantify irrigation from satellite data
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024,https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Technical note: NASAaccess – a tool for access, reformatting, and visualization of remotely sensed earth observation and climate data
Ibrahim Nourein Mohammed, Elkin Giovanni Romero Bustamante, John Dennis Bolten, and Everett James Nelson
Hydrol. Earth Syst. Sci., 27, 3621–3642, https://doi.org/10.5194/hess-27-3621-2023,https://doi.org/10.5194/hess-27-3621-2023, 2023
Short summary
Monitoring the combined effects of drought and salinity stress on crops using remote sensing in the Netherlands
Wen Wen, Joris Timmermans, Qi Chen, and Peter M. van Bodegom
Hydrol. Earth Syst. Sci., 26, 4537–4552, https://doi.org/10.5194/hess-26-4537-2022,https://doi.org/10.5194/hess-26-4537-2022, 2022
Short summary
A framework for irrigation performance assessment using WaPOR data: the case of a sugarcane estate in Mozambique
Abebe D. Chukalla, Marloes L. Mul, Pieter van der Zaag, Gerardo van Halsema, Evaristo Mubaya, Esperança Muchanga, Nadja den Besten, and Poolad Karimi
Hydrol. Earth Syst. Sci., 26, 2759–2778, https://doi.org/10.5194/hess-26-2759-2022,https://doi.org/10.5194/hess-26-2759-2022, 2022
Short summary

Cited articles

Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., and Lidberg, W.: Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape, Geoderma, 404, 115280, https://doi.org/10.1016/j.geoderma.2021.115280, 2021. 
Bertassello, L. E., Rao, P. S. C., Jawitz, J. W., Botter, G., Le, P. V. V., Kumar, P., and Aubeneau, A. F.: Wetlandscape Fractal Topography, Geophys. Res. Lett., 45, 6983–6991, https://doi.org/10.1029/2018GL079094, 2018. 
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrolog. Sci. J., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 
Branton, C. and Robinson, D. T.: Quantifying Topographic Characteristics of Wetlandscapes, Wetlands, 40, 433–449, https://doi.org/10.1007/s13157-019-01187-2, 2020. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.  
Download
Short summary
Accurate wetland inventories are critical to monitor and protect wetlands. However, in many areas a large proportion of wetlands are unmapped because they are hard to detect in imagery. We developed a machine learning approach using spatially mapped variables of wetland indicators (i.e., vegetation, hydrology, soils), including novel multi-scale topographic indicators, to predict wetland probability. Our approach can be adapted to diverse landscapes to improve wetland detection.