Articles | Volume 27, issue 15
https://doi.org/10.5194/hess-27-2935-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model
Related authors
Related subject area
Subject: Urban Hydrology | Techniques and Approaches: Uncertainty analysis
All models are wrong, but are they useful? Assessing reliability across multiple sites to build trust in urban drainage modelling
Multivariate autoregressive modelling and conditional simulation for temporal uncertainty analysis of an urban water system in Luxembourg
Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models
Improving uncertainty estimation in urban hydrological modeling by statistically describing bias
Hydrol. Earth Syst. Sci., 26, 5879–5898,
2022Hydrol. Earth Syst. Sci., 25, 193–216,
2021Hydrol. Earth Syst. Sci., 21, 1077–1091,
2017Hydrol. Earth Syst. Sci., 17, 4209–4225,
2013Cited articles
Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather
generators: An overview of weather type models, J. Soc. Fr. Stat., 156,
101–113, 2015. a
Albert, C., Künsch, H. R., and Scheidegger, A.: A Simulated Annealing
Approach to Approximate Bayes Computations, Stat. Comput., 25, 1217–1232,
https://doi.org/10.1007/s11222-014-9507-8, 2015. a
Andrieu, C., Doucet, A., and Holenstein, R.: Particle Markov chain Monte Carlo methods, J. Roy. Stat. Soc. B, 72, 269–342,
https://doi.org/10.1111/j.1467-9868.2009.00736.x, 2010. a
Bacci, M., Dal Molin, M., Fenicia, F., Reichert, P., and Šukys, J.:
Application of stochastic time dependent parameters to improve the
characterization of uncertainty in conceptual hydrological models, J. Hydrol., 612, 128057, https://doi.org/10.1016/j.jhydrol.2022.128057, 2022. a