Articles | Volume 27, issue 15
https://doi.org/10.5194/hess-27-2935-2023
https://doi.org/10.5194/hess-27-2935-2023
Research article
 | 
09 Aug 2023
Research article |  | 09 Aug 2023

Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model

Simone Ulzega and Carlo Albert

Related authors

Learning Landscape Features from Streamflow with Autoencoders
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-47,https://doi.org/10.5194/hess-2024-47, 2024
Preprint under review for HESS
Short summary
Improving hydrologic models for predictions and process understanding using neural ODEs
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022,https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Improving uncertainty estimation in urban hydrological modeling by statistically describing bias
D. Del Giudice, M. Honti, A. Scheidegger, C. Albert, P. Reichert, and J. Rieckermann
Hydrol. Earth Syst. Sci., 17, 4209–4225, https://doi.org/10.5194/hess-17-4209-2013,https://doi.org/10.5194/hess-17-4209-2013, 2013

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Uncertainty analysis
All models are wrong, but are they useful? Assessing reliability across multiple sites to build trust in urban drainage modelling
Agnethe Nedergaard Pedersen, Annette Brink-Kjær, and Peter Steen Mikkelsen
Hydrol. Earth Syst. Sci., 26, 5879–5898, https://doi.org/10.5194/hess-26-5879-2022,https://doi.org/10.5194/hess-26-5879-2022, 2022
Short summary
Multivariate autoregressive modelling and conditional simulation for temporal uncertainty analysis of an urban water system in Luxembourg
Jairo Arturo Torres-Matallana, Ulrich Leopold, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 25, 193–216, https://doi.org/10.5194/hess-25-193-2021,https://doi.org/10.5194/hess-25-193-2021, 2021
Short summary
The potential of historical hydrology in Switzerland
Oliver Wetter
Hydrol. Earth Syst. Sci., 21, 5781–5803, https://doi.org/10.5194/hess-21-5781-2017,https://doi.org/10.5194/hess-21-5781-2017, 2017
Short summary
Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models
Manoranjan Muthusamy, Alma Schellart, Simon Tait, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 21, 1077–1091, https://doi.org/10.5194/hess-21-1077-2017,https://doi.org/10.5194/hess-21-1077-2017, 2017
Short summary
Improving uncertainty estimation in urban hydrological modeling by statistically describing bias
D. Del Giudice, M. Honti, A. Scheidegger, C. Albert, P. Reichert, and J. Rieckermann
Hydrol. Earth Syst. Sci., 17, 4209–4225, https://doi.org/10.5194/hess-17-4209-2013,https://doi.org/10.5194/hess-17-4209-2013, 2013

Cited articles

Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather generators: An overview of weather type models, J. Soc. Fr. Stat., 156, 101–113, 2015. a
Albert, C., Künsch, H. R., and Scheidegger, A.: A Simulated Annealing Approach to Approximate Bayes Computations, Stat. Comput., 25, 1217–1232, https://doi.org/10.1007/s11222-014-9507-8, 2015. a
Albert, C., Ulzega, S., and Stoop, R.: Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation, Phys. Rev. E, 93, 043313, https://doi.org/10.1103/PhysRevE.93.043313, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Andrieu, C., Doucet, A., and Holenstein, R.: Particle Markov chain Monte Carlo methods, J. Roy. Stat. Soc. B, 72, 269–342, https://doi.org/10.1111/j.1467-9868.2009.00736.x, 2010. a
Bacci, M., Dal Molin, M., Fenicia, F., Reichert, P., and Šukys, J.: Application of stochastic time dependent parameters to improve the characterization of uncertainty in conceptual hydrological models, J. Hydrol., 612, 128057, https://doi.org/10.1016/j.jhydrol.2022.128057, 2022. a
Download
Short summary
Embedding input uncertainties in hydrological modelling naturally leads to stochastic models, which render parameter calibration an often computationally intractable problem. We use a case study from urban hydrology based on a stochastic rain model, and we employ a highly efficient Hamiltonian Monte Carlo inference algorithm with a timescale separation to demonstrate that fully fledged Bayesian inference with stochastic models is no longer off-limits for hydrological applications.