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Supplementary Materials

S1

We shall first describe the general procedure to derive the prior probability density f (&) for a generic nonlinear SDE model,
hence examine the specific case of the model used in this study (Eq. 2).

Let us consider a SDE model in the form,

E=F(&1)+G(E (), (S1.1)

interpreted according to the Itd convention, where 7 indicates white noise, with (n(¢)n(¢')) = §(t—t’), and F and G are generic,
possibly nonlinear, functions. The probability density for a full model realization can be written as the probability density for
the corresponding noise realization 7, that is,

T

1
f(n) o exp fi/nz(t)dt , (S1.2)

0
where [0,77] is the observation time interval. Then, the probability density f(&) is easily obtained by changing coordinates
from the noise 7 to the state variable of interest £, using the model of Eq. S1.1, that is,
£t) — F(&,1)

G(&1)

Depending on the SDE convention, this transformation might generate additional terms stemming from the Jacobian d¢ /dn (Lau

n(t) = (S1.3)

and Lubensky, 2007). Finally, it is convenient to write the probability density f (&) in terms of an action S(&,€) as,

f(€) xexp [—S(f,é)] : (S1.4)

Let us consider now the specific case of the stochastic process of Eq. 2. Using the procedure described above, the action S

can be written in its continuous form (Lau and Lubensky, 2007) as,

T 2
3@@:/1@@+§?>ﬁ, (SL.5)

0
where T is the total measurement time. Following Albert et al. (2016), we rewrite Eq. S1.5 in the form,

[ & LU

. ) 't
= -— dt 1.

sed)= [ (Fe+ 5+ ar (516

0
with U (€,t) = €2(t) /4. Using % =du W and a—U = 0, it is straightforward to obtain,

2 T 2 0 1z 2
&&azgi)fgi) /(52 5>ﬁ (SL7)

0

which yields the discretized expression of Eq. 16.



S2

25 The first harmonic term of the discretized action (Eq. 16) can be written in the form,

30

35

40

N np

T 2 T (g(s—l)‘ +1_£s' +1

Ay :gz ]Pjpdt = +Z Dt (Es—1grtk = Els—1)jpsr) | (S2.1)
=2 s=1

with £ 25571)3‘;3 4, defined by Eq. 19. Using the coordinate transformations of Eqs. 17 and 18, it is straightforward to rewrite S2.1

as,
al T 2 T = np jp
2
4dt SN Ty s=1)jp+1 ~ Usj S2.2
;46& (5 g 1) 4]Pdt ;(U( Djip+1 u]P"Fl) dt ézlkzz s—1)jp+k - ( )

Moreover, using Eqgs. 17 and 20 one obtains,

2

N np jp [ip+1 E—1 ]P E+1
D &= wa(Z 727 U=+t F T s 1>7p+1> : (52.3)

i—2 s=1 k=2 \ =k Jp

Finally, using S2.2 and S2.3, the action S(&) (Eq. 16) can be formulated in the space of u-coordinates as in Eq.21.

S3

The runoff observation model f (Qons | €,0,0.) of Eq. 8 needs to be formulated in the u- rather than ¢-space. The only term

affected by this coordinate transformation is obviously the £-dependent term QS\Z) (s—1) in the model predicted discharge

Jjo+1
QM (s—1)jo+1 (£,0), with s =1,...,ng + 1 (see Eqs. 6 and 7). Using the definition of Eq. 7, straightforward calculations yield

the recursive form,

. ) —
© _ dt\’? ) dt\’?” e
Q]\/I,(s—l)jQ+1 = (1 - K) Q]\/I,(s—Q)jQ+1 +(1- K ( (s—2) JQH + Z I=— r (5(872)jq+k) ; (83.1)

and then with the transformations of Eqs. 17 and 20, after replacing the number of discretization bins for the precipitation data

jp with that for the discharge data jq,

, —
(w) diN"® o AN
M,(s—1)jo+1 — (1 - K) M(s=2)jo+1 T {1~ K r (“(sz)jQH)

Jjo jo—Fk Jjo+1
dt —1 jp—k+1
+ E (1 - K) E I U(s jo+l T Tu(s 2)jo+1 | » (83.2)

with s =2,...,ng + 1 and Qg\’/})l = 0. Finally, one has,

Sl dt (G 1)]Q dt
QM,(sfl)jQ+1(u70) K (1 - K) + A QM (s—1)jo+1 +

(s—1)jq
1— (1 — dt) ] Qgw - (S3.3)



