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Supplementary Materials

S1

We shall first describe the general procedure to derive the prior probability density f(⇠) for a generic nonlinear SDE model,

hence examine the specific case of the model used in this study (Eq. 2).

Let us consider a SDE model in the form,

⇠̇ = F (⇠, t)+G(⇠, t)⌘(t) , (S1.1)5

interpreted according to the Itô convention, where ⌘ indicates white noise, with h⌘(t)⌘(t0)i= �(t�t
0), and F and G are generic,

possibly nonlinear, functions. The probability density for a full model realization can be written as the probability density for

the corresponding noise realization ⌘, that is,
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where [0,T ] is the observation time interval. Then, the probability density f(⇠) is easily obtained by changing coordinates10

from the noise ⌘ to the state variable of interest ⇠, using the model of Eq. S1.1, that is,

⌘(t) =
⇠̇(t)�F (⇠, t)

G(⇠, t)
. (S1.3)

Depending on the SDE convention, this transformation might generate additional terms stemming from the Jacobian d⇠/d⌘ (Lau

and Lubensky, 2007). Finally, it is convenient to write the probability density f(⇠) in terms of an action S(⇠, ⇠̇) as,

f(⇠)/ exp
h
�S(⇠, ⇠̇)

i
. (S1.4)15

Let us consider now the specific case of the stochastic process of Eq. 2. Using the procedure described above, the action S

can be written in its continuous form (Lau and Lubensky, 2007) as,

S(⇠, ⇠̇) =
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where T is the total measurement time. Following Albert et al. (2016), we rewrite Eq. S1.5 in the form,
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with U(⇠, t) = ⇠
2(t)/4. Using ⇠̇
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= 0, it is straightforward to obtain,
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which yields the discretized expression of Eq. 16.
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S2

The first harmonic term of the discretized action (Eq. 16) can be written in the form,25
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with ⇠
⇤
(s�1)jP+k

defined by Eq. 19. Using the coordinate transformations of Eqs. 17 and 18, it is straightforward to rewrite S2.1

as,
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Moreover, using Eqs. 17 and 20 one obtains,30
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Finally, using S2.2 and S2.3, the action S(⇠) (Eq. 16) can be formulated in the space of u-coordinates as in Eq.21.

S3

The runoff observation model f (Qobs | ⇠,✓,�z) of Eq. 8 needs to be formulated in the u- rather than ⇠-space. The only term

affected by this coordinate transformation is obviously the ⇠-dependent term Q
(⇠)
M,(s�1)jQ+1 in the model predicted discharge35

QM,(s�1)jQ+1(⇠,✓), with s= 1, ...,nQ+1 (see Eqs. 6 and 7). Using the definition of Eq. 7, straightforward calculations yield

the recursive form,
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and then with the transformations of Eqs. 17 and 20, after replacing the number of discretization bins for the precipitation data

jP with that for the discharge data jQ,40
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with s= 2, ...,nQ +1 and Q
(u)
M,1 = 0. Finally, one has,
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