Supplement of

Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model

Simone Ulzega and Carlo Albert
Correspondence to: Simone Ulzega (simone.ulzega@zhaw.ch)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Materials

S1
We shall first describe the general procedure to derive the prior probability density $f(\xi)$ for a generic nonlinear SDE model, hence examine the specific case of the model used in this study (Eq. 2).

Let us consider a SDE model in the form,
$5 \dot{\xi}=F(\xi, t)+G(\xi, t) \eta(t)$,
interpreted according to the Itô convention, where η indicates white noise, with $\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)$, and F and G are generic, possibly nonlinear, functions. The probability density for a full model realization can be written as the probability density for the corresponding noise realization η, that is,
$f(\eta) \propto \exp \left[-\frac{1}{2} \int_{0}^{T} \eta^{2}(t) d t\right]$,
where $[0, T]$ is the observation time interval. Then, the probability density $f(\xi)$ is easily obtained by changing coordinates from the noise η to the state variable of interest ξ, using the model of Eq. S1.1, that is,
$\eta(t)=\frac{\dot{\xi}(t)-F(\xi, t)}{G(\xi, t)}$.
Depending on the SDE convention, this transformation might generate additional terms stemming from the Jacobian $d \xi / d \eta$ (Lau and Lubensky, 2007). Finally, it is convenient to write the probability density $f(\xi)$ in terms of an action $\mathcal{S}(\xi, \dot{\xi})$ as,
$f(\xi) \propto \exp [-\mathcal{S}(\xi, \dot{\xi})]$.
Let us consider now the specific case of the stochastic process of Eq. 2. Using the procedure described above, the action \mathcal{S} can be written in its continuous form (Lau and Lubensky, 2007) as,
$\mathcal{S}(\xi, \dot{\xi})=\int_{0}^{T} \frac{\tau}{4}\left(\dot{\xi}(t)+\frac{\xi(t)}{\tau}\right)^{2} d t$,
where T is the total measurement time. Following Albert et al. (2016), we rewrite Eq. S1.5 in the form,
$20 \mathcal{S}(\xi, \dot{\xi})=\int_{0}^{T}\left(\frac{\tau}{4} \dot{\xi}^{2}+\frac{\xi^{2}}{4 \tau}+\dot{\xi} \frac{\partial U(\xi, t)}{\partial \xi}\right) d t$,
with $U(\xi, t)=\xi^{2}(t) / 4$. Using $\dot{\xi} \frac{\partial U}{\partial \xi}=\frac{d U}{d t}-\frac{\partial U}{\partial t}$ and $\frac{\partial U}{\partial t}=0$, it is straightforward to obtain,
$\mathcal{S}(\xi, \dot{\xi})=\frac{\xi^{2}(T)}{4}-\frac{\xi^{2}(0)}{4}+\int_{0}^{T}\left(\frac{\tau}{4} \dot{\xi}^{2}+\frac{\xi^{2}}{4 \tau}\right) d t$,
which yields the discretized expression of Eq. 16.

25 The first harmonic term of the discretized action (Eq. 16) can be written in the form,
$\sum_{i=2}^{N} \frac{\tau}{4 d t}\left(\xi_{i}-\xi_{i-1}\right)^{2}=\frac{\tau}{4} \sum_{s=1}^{n_{P}}\left[\frac{\left(\xi_{(s-1) j_{P}+1}-\xi_{s j_{P}+1}\right)^{2}}{j_{P} d t}+\sum_{k=2}^{j_{P}} \frac{k}{(k-1) d t}\left(\xi_{(s-1) j_{P}+k}-\xi_{(s-1) j_{P}+k}^{*}\right)^{2}\right]$,
with $\xi_{(s-1) j_{P}+k}^{*}$ defined by Eq. 19. Using the coordinate transformations of Eqs. 17 and 18, it is straightforward to rewrite S 2.1 as,
$\sum_{i=2}^{N} \frac{\tau}{4 d t}\left(\xi_{i}-\xi_{i-1}\right)^{2}=\frac{\tau}{4 j_{P} d t} \sum_{s=1}^{n_{P}}\left(u_{(s-1) j_{P}+1}-u_{s j_{P}+1}\right)^{2}+\frac{k \tau}{4(k-1) d t} \sum_{s=1}^{n_{P}} \sum_{k=2}^{j_{P}} u_{(s-1) j_{P}+k}^{2}$.
30 Moreover, using Eqs. 17 and 20 one obtains,
$\sum_{i=2}^{N} \xi_{i}^{2}=\sum_{s=1}^{n_{P}}\left[u_{s j_{P}+1}^{2}+\sum_{k=2}^{j_{P}}\left(\sum_{l=k}^{j_{P}+1} \frac{k-1}{l-1} u_{(s-1) j_{P}+l}+\frac{j_{P}-k+1}{j_{P}} u_{(s-1) j_{P}+1}\right)^{2}\right]$.
Finally, using S2.2 and S2.3, the action $\mathcal{S}(\boldsymbol{\xi})$ (Eq. 16) can be formulated in the space of u-coordinates as in Eq.21.

S3

The runoff observation model $f\left(\boldsymbol{Q}_{\text {obs }} \mid \boldsymbol{\xi}, \boldsymbol{\theta}, \sigma_{z}\right)$ of Eq. 8 needs to be formulated in the u - rather than ξ-space. The only term
affected by this coordinate transformation is obviously the ξ-dependent term $Q_{M,(s-1) j_{Q}+1}^{(\xi)}$ in the model predicted discharge $Q_{M,(s-1) j_{Q}+1}(\boldsymbol{\xi}, \boldsymbol{\theta})$, with $s=1, \ldots, n_{Q}+1$ (see Eqs. 6 and 7). Using the definition of Eq. 7, straightforward calculations yield the recursive form,
$Q_{M,(s-1) j_{Q}+1}^{(\xi)}=\left(1-\frac{d t}{K}\right)^{j_{Q}} Q_{M,(s-2) j_{Q}+1}^{(\xi)}+\left(1-\frac{d t}{K}\right)^{j_{Q}-1} r\left(\xi_{(s-2) j_{Q}+1}\right)+\sum_{k=2}^{j_{Q}}\left(1-\frac{d t}{K}\right)^{j_{Q}-k} r\left(\xi_{(s-2) j_{Q}+k}\right)$,
and then with the transformations of Eqs. 17 and 20, after replacing the number of discretization bins for the precipitation data 40 j_{P} with that for the discharge data j_{Q},

$$
\begin{align*}
Q_{M,(s-1) j_{Q}+1}^{(u)} & =\left(1-\frac{d t}{K}\right)^{j_{Q}} Q_{M,(s-2) j_{Q}+1}^{(u)}+\left(1-\frac{d t}{K}\right)^{j_{Q}-1} r\left(u_{(s-2) j_{Q}+1}\right) \\
& +\sum_{k=2}^{j_{Q}}\left(1-\frac{d t}{K}\right)^{j_{Q}-k} r\left(\sum_{l=k}^{j_{Q}+1} \frac{k-1}{l-1} u_{(s-2) j_{Q}+l}+\frac{j_{P}-k+1}{j_{P}} u_{(s-2) j_{Q}+1}\right), \tag{S3.2}
\end{align*}
$$

with $s=2, \ldots, n_{Q}+1$ and $Q_{M, 1}^{(u)}=0$. Finally, one has,
$Q_{M,(s-1) j_{Q}+1}(\boldsymbol{u}, \boldsymbol{\theta})=\frac{S_{1}}{K}\left(1-\frac{d t}{K}\right)^{(s-1) j_{Q}}+A \frac{d t}{K} Q_{M,(s-1) j_{Q}+1}^{(u)}+\left[1-\left(1-\frac{d t}{K}\right)^{(s-1) j_{Q}}\right] Q_{\mathrm{gw}}$.

