Articles | Volume 27, issue 14
https://doi.org/10.5194/hess-27-2661-2023
https://doi.org/10.5194/hess-27-2661-2023
Research article
 | 
19 Jul 2023
Research article |  | 19 Jul 2023

Data worth analysis within a model-free data assimilation framework for soil moisture flow

Yakun Wang, Xiaolong Hu, Lijun Wang, Jinmin Li, Lin Lin, Kai Huang, and Liangsheng Shi

Related authors

Growth in Agricultural Water Demand Aggravates Water Supply-Demand Risk in Arid Northwest China: More a result of Anthropogenic Activities than Climate Change
Yang You, Pingan Jiang, Yakun Wang, Wene Wang, Dianyu Chen, and Xiaotao Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3089,https://doi.org/10.5194/egusphere-2025-3089, 2025
Short summary

Cited articles

Akhtar, K., Wang, W., Khan, A., Ren, G., Afridi, M. Z., Feng, Y., and Yang, G.: Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean, Agric. Water Manage., 211, 16–25, https://doi.org/10.1016/j.agwat.2018.09.031, 2019. 
Amro, A., Al-Akhras, M., Hindi, K. E., Habib, M., and Shawar, B. A.: Instance Reduction for Avoiding Overfitting in Decision Trees, J. Intell. Syst., 30, 438–459, https://doi.org/10.1515/jisys-2020-0061, 2021. 
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci., 44, 101171, https://doi.org/10.1016/j.jocs.2020.101171, 2020. 
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to infer unresolved scale parametrization, Philos. T. Roy. Soc. A, 379, 20200086, https://doi.org/10.1098/rsta.2020.0086, 2021. 
Bresler, E., Heller, J., Diner, N., Ben-Asher, I., Brandt, A., and Goldberg, D.: Infiltration from a Trickle Source: II. Experimental Data and Theoretical Predictions, Soil Sci. Soc. Am. J., 35, 683–689, https://doi.org/10.2136/sssaj1971.03615995003500050019x, 1971.  
Download
Short summary
To avoid overloaded monitoring cost from redundant measurements, this study proposed a non-parametric data worth analysis framework to assess the worth of future soil moisture data regarding the model-free unsaturated flow models before data gathering. Results indicated that (1) the method can quantify the data worth of alternative monitoring schemes to obtain the optimal one, and (2) high-quality and representative small data could be a better choice than unfiltered big data.
Share