Articles | Volume 27, issue 14
https://doi.org/10.5194/hess-27-2661-2023
https://doi.org/10.5194/hess-27-2661-2023
Research article
 | 
19 Jul 2023
Research article |  | 19 Jul 2023

Data worth analysis within a model-free data assimilation framework for soil moisture flow

Yakun Wang, Xiaolong Hu, Lijun Wang, Jinmin Li, Lin Lin, Kai Huang, and Liangsheng Shi

Related authors

A comprehensive study of deep learning for soil moisture prediction
Yanling Wang, Liangsheng Shi, Yaan Hu, Xiaolong Hu, Wenxiang Song, and Lijun Wang
Hydrol. Earth Syst. Sci., 28, 917–943, https://doi.org/10.5194/hess-28-917-2024,https://doi.org/10.5194/hess-28-917-2024, 2024
Short summary
Impacts of a revised surface roughness parameterization in the Community Land Model 5.1
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022,https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
On the uncertainty of initial condition and initialization approaches in variably saturated flow modeling
Danyang Yu, Jinzhong Yang, Liangsheng Shi, Qiuru Zhang, Kai Huang, Yuanhao Fang, and Yuanyuan Zha
Hydrol. Earth Syst. Sci., 23, 2897–2914, https://doi.org/10.5194/hess-23-2897-2019,https://doi.org/10.5194/hess-23-2897-2019, 2019
Capturing soil-water and groundwater interactions with an iterative feedback coupling scheme: new HYDRUS package for MODFLOW
Jicai Zeng, Jinzhong Yang, Yuanyuan Zha, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 23, 637–655, https://doi.org/10.5194/hess-23-637-2019,https://doi.org/10.5194/hess-23-637-2019, 2019
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Uncertainty analysis
Evaluation of root zone soil moisture products over the Huai River basin
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024,https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Impact of parameter updates on soil moisture assimilation in a 3D heterogeneous hillslope model
Natascha Brandhorst and Insa Neuweiler
Hydrol. Earth Syst. Sci., 27, 1301–1323, https://doi.org/10.5194/hess-27-1301-2023,https://doi.org/10.5194/hess-27-1301-2023, 2023
Short summary
Technical Note: Sequential ensemble data assimilation in convergent and divergent systems
Hannes Helmut Bauser, Daniel Berg, and Kurt Roth
Hydrol. Earth Syst. Sci., 25, 3319–3329, https://doi.org/10.5194/hess-25-3319-2021,https://doi.org/10.5194/hess-25-3319-2021, 2021
Short summary
On the uncertainty of initial condition and initialization approaches in variably saturated flow modeling
Danyang Yu, Jinzhong Yang, Liangsheng Shi, Qiuru Zhang, Kai Huang, Yuanhao Fang, and Yuanyuan Zha
Hydrol. Earth Syst. Sci., 23, 2897–2914, https://doi.org/10.5194/hess-23-2897-2019,https://doi.org/10.5194/hess-23-2897-2019, 2019
Inflation method for ensemble Kalman filter in soil hydrology
Hannes H. Bauser, Daniel Berg, Ole Klein, and Kurt Roth
Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018,https://doi.org/10.5194/hess-22-4921-2018, 2018
Short summary

Cited articles

Akhtar, K., Wang, W., Khan, A., Ren, G., Afridi, M. Z., Feng, Y., and Yang, G.: Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean, Agric. Water Manage., 211, 16–25, https://doi.org/10.1016/j.agwat.2018.09.031, 2019. 
Amro, A., Al-Akhras, M., Hindi, K. E., Habib, M., and Shawar, B. A.: Instance Reduction for Avoiding Overfitting in Decision Trees, J. Intell. Syst., 30, 438–459, https://doi.org/10.1515/jisys-2020-0061, 2021. 
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci., 44, 101171, https://doi.org/10.1016/j.jocs.2020.101171, 2020. 
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to infer unresolved scale parametrization, Philos. T. Roy. Soc. A, 379, 20200086, https://doi.org/10.1098/rsta.2020.0086, 2021. 
Bresler, E., Heller, J., Diner, N., Ben-Asher, I., Brandt, A., and Goldberg, D.: Infiltration from a Trickle Source: II. Experimental Data and Theoretical Predictions, Soil Sci. Soc. Am. J., 35, 683–689, https://doi.org/10.2136/sssaj1971.03615995003500050019x, 1971.  
Download
Short summary
To avoid overloaded monitoring cost from redundant measurements, this study proposed a non-parametric data worth analysis framework to assess the worth of future soil moisture data regarding the model-free unsaturated flow models before data gathering. Results indicated that (1) the method can quantify the data worth of alternative monitoring schemes to obtain the optimal one, and (2) high-quality and representative small data could be a better choice than unfiltered big data.