Supplement of

Data worth analysis within a model-free data assimilation framework for soil moisture flow

Yakun Wang et al.
Correspondence to: Liangsheng Shi (liangshs@whu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. The expected data-worth of potential soil moisture observations in the surface, middle, and deep layers in the form of trace $\left(T_{r}\right)$, Shannon entropy difference (SED), and relative entropy $(R E)$, respectively, regarding the retrieval of average soil moisture in the top $0.30 \mathrm{~m}, 0.60 \mathrm{~m}$, and 1.00 m at three sites, when EnKF is replaced by particle filtering (PF) in the proposed NP-DWA framework

Figure S2. The expected data-worth of potential soil moisture observations in the surface, middle, and deep layers in the form of T_{r}, SED, and $R E$ regarding the retrieval of average soil moisture in the top $0.30 \mathrm{~m}, 0.60 \mathrm{~m}$, and 1.00 m at DAHRA site, when GP is replaced by support vector machine (SVM) and random forest (RF) in the proposed NP-DWA framework, respectively

