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Abstract. Conventional data worth (DW) analysis for soil
water problems depends on physical dynamic models. The
widespread occurrence of model structural errors and the
strong nonlinearity of soil water flow may lead to biased or
wrong worth assessment. By introducing the nonparametric
data worth analysis (NP-DWA) framework coupled with the
ensemble Kalman filter (EnKF), this real-world case study
attempts to assess the worth of potential soil moisture ob-
servations regarding the reconstruction of fully data-driven
soil water flow models prior to data gathering. The DW of
real-time soil moisture observations after Gaussian process
training and Kalman update was quantified with three rep-
resentative information metrics, including the trace, Shan-
non entropy difference and relative entropy. The sequential
NP-DWA framework was examined by a number of cases
in terms of the variable of interest, spatial location, observa-
tion error, and prior data content. Our results indicated that,
similarly to the traditional DW analysis based on physical
models, the overall increasing trend of the DW from the se-
quential augmentation of additional observations within the
NP-DWA framework was also susceptible to interruptions by
localized surges due to never-experienced atmospheric con-
ditions (i.e., rainfall events). The difference is that this bi-
ased DW in the former is caused by model structural errors
triggered by contrasting scenarios, which is difficult to be
compensated for by assimilating more prior data, while this
performance degradation in the NP-DWA can be effectively
alleviated by enriching training scenarios or the appropriate

amplification of observational noise under extreme meteoro-
logical conditions. Nevertheless, a substantial expansion of
the prior data content may cause an unexpected increase in
the DW of future potential observations due to the possi-
ble introduction of ensuing observation noises. Hence, high-
quality and representative small data may be a better choice
than unfiltered big data. Compared with the observations in
the surface layer with the strongest time variability, the soil
water content in the middle layer robustly exhibited remark-
able superiority in the construction of model-free soil mois-
ture models. We also demonstrated that the DW assessment
performance was jointly determined by 3C, i.e., the capac-
ity of potential observation realizations to capture actual ob-
servations, the correlation of potential observations with the
variables of interest and the choice of DW indicators. Di-
rect mapping from regular meteorological data to soil water
content within the NP-DWA mitigated the adverse effects of
nonlinearity-related interference, which thus facilitated the
identification of the soil moisture covariance matrix, espe-
cially the cross-covariance.

1 Introduction

As one of the few directly observable hydrological variables,
soil water content (SWC) exhibits critical importance in op-
timal water resource management, irrigation and drainage
schemes, fertilizer application, and crop production in agri-
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culture (Liu et al., 2011; Akhtar et al., 2019; Dobriyal et al.,
2012; Gu et al., 2021). Various data assimilation (DA) ap-
proaches (Dunne and Entekhabi, 2005; Li and Ren, 2011;
Reichle et al., 2008; Song et al., 2014) have been estab-
lished to reconstruct the spatiotemporal dynamics of SWC
from noisy or partial observations. The core of these tradi-
tional parametric filters is their reliance on repeated forward
integrations of an explicitly known physical model of unsatu-
rated flow, such as the HYDRUS (Šimùnek et al., 2006), Soil
and Water Assessment Tool (SWAT) (van Dam and Feddes,
2000), and Ross models (Ross, 2003; Zha et al., 2013).

Currently, the ever-increasing availability of multi-source
data from remote sensing (Montzka et al., 2011; Shi et al.,
2011), ground-based measurements (Li et al., 2018; Shuwen
et al., 2005; Yang et al., 2000) and numerical modeling
has paved the way for the development of fully data-driven
techniques within the DA framework. In particular, recent
advances in machine-learning-based DA schemes (Brajard
et al., 2020, 2021; Yamanaka et al., 2019) offer exciting
new opportunities for extracting patterns and insights of soil
moisture dynamics from data (Ju et al., 2018; Li et al., 2020;
Liu et al., 2020; Wang et al., 2021a). For instance, Kashif Gill
et al. (2007) proposed a hybrid DA methodology that com-
bined support vector machines and the ensemble Kalman
filter (EnKF) for soil moisture dynamics. Li et al. (2020)
compared the performance of a physical-based model with
DA and machine learning methods in terms of the simula-
tion of soil water dynamics under synthetic and real-world
conditions. Wang et al. (2021a, b) further attempted to learn
unknown relationships between SWC, as well as its spatio-
temporal gradients and highly accessible data, via the Gaus-
sian process (GP) regression.

Notwithstanding the success of these model-free DA
schemes built on machine learning for unsaturated flow, es-
sential caveats and limitations have hampered their further
adoption and impact. First, the amount of data required to
infer nonlinear relationships in unsaturated flow problems
may be overwhelming (Hughes, 1968), thus greatly increas-
ing the data collection budget. Subsequently, addressing the
abovementioned explosive data growth is also a challeng-
ing and time-demanding task requiring an extensive compu-
tational infrastructure. Second, the performance and quality
of the knowledge extracted by machine learning algorithms
are highly dependent on the quality and suitability of data
(García-Gil et al., 2019). Unfortunately, data gathering is
rarely perfect, and data corruption often occurs (Wang et al.,
2018). The identification of the multi-source SWC data qual-
ity or measurement error is not an easy task. This limitation
can instead create extra uncertainties in DA systems (Kisekka
et al., 2015). Third, it is the diversity of scenarios contained
in prior data rather than its volume that is more decisive
for the generalization ability of machine learning methods
(Wang et al., 2020). Direct data fusion without screening may
instead induce accidental correlations in learning algorithms,
thereby diminishing their generalization ability (García et al.,

2016). To avoid the overloaded monitoring cost due to redun-
dant data, it is essential to develop a framework to assess the
worth of alternative sampling strategies prior to data collec-
tion.

The data worth, sometimes called the data information
content or data impact, of a design is often defined as its
individual capacity to reduce uncertainty associated with a
prediction goal or to maximize some related measure of data
utility. Over the past decades, two main types of sophisticated
DW analysis frameworks have been proposed to identify the
most informative monitoring strategy in hydrology, namely,
one type based on sensitivity analysis (Dausman et al., 2010;
Fienen et al., 2010; Hill and Tiedeman, 2006) and the other
within a fully Bayesian framework (Dai et al., 2016; Neuman
et al., 2012; Nowak et al., 2012). The former approaches are
computationally fast, but these methods require model cali-
bration and assume linear models (Finsterle, 2015). The lat-
ter methods are derived based on the law of the total pos-
sibility without assumptions of the model and of the dis-
tributions of observations and model parameters. Neverthe-
less, both well-established frameworks are predicated on the
availability of the underlying physical models. For example,
Man et al. (2016) evaluated the expected value of alternative
SWC sampling strategies with respect to the estimation of
soil hydraulic parameters in the HYDRUS-1D model, while
Finsterle (2015) examined the worth of datasets potentially
applicable to the calibration of geothermal reservoir mod-
els. Within such parametric data worth analysis frameworks,
however, the strong nonlinearity of soil water problems (Lan-
noy et al., 2006; Leube et al., 2012; Yeh et al., 1985) and
the prevalence of model structural errors (Zhang et al., 2019)
are highly likely to lead to biased data worth (Wang et al.,
2018, 2020). Ultimately the reliability of the optimal design
of monitoring networks based on such evaluations is greatly
compromised.

Fortunately, the superiority of data-driven algorithms in
handling nonlinearities and structural errors in unsaturated
flow has been well demonstrated in our previous studies
(Wang et al., 2021a, b). With the explosive growth of big
data, how to evaluate the worth of multi-source data in this
new data-mining approach is becoming a critical issue. Sev-
eral recent works in the field of statistical learning have
bloomed in identifying and removing irrelevant and redun-
dant information from big data, such as feature selection
(Chandrashekar and Sahin, 2014; Hall, 1999) and instance
reduction (Amro et al., 2021; Olvera-López et al., 2010). To
the best of our knowledge, few studies have systematically
evaluated the worth of future observations regarding the con-
struction of fully data-driven models prior to data gather-
ing. As a follow-up study to Wang et al. (2018, 2020), one
major contribution of this study is the first embedding of a
purely data-driven model into the Bayesian data worth anal-
ysis framework, referred to as the nonparametric data worth
analysis (NP-DWA). Similarly to traditional DW analysis,
the proposed NP-DWA consists of prior, posterior and pre-
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posterior stages (Dai et al., 2016). The pre-posterior analysis
evaluates the anticipated worth of future observations regard-
ing the construction of purely data-driven models, for which
possible distributions are predicted in advance by condition-
ing on prior data.

There is a consensus in the field of statistics that “the high-
est accuracy results that an inductive learning system can
achieve depend on the quality of data and the appropriate
selection of a learning algorithm for the data” (Pechenizkiy
et al., 2006). In other words, once the algorithm is specified,
the significance of data noise to learning accuracy as almost
the only factor should not be overlooked. Considering the
powerful ability of dealing with observational noises of the
ensemble Kalman filter (EnKF) (Hamilton et al., 2017; Li et
al., 2018), another innovation of this study is the introduction
of EnKF into our NP-DWA framework. In conventional DW
analysis, the worth of data is primarily embodied in its ability
to be utilized or calibrated to adjust physical parameters (Dai
et al., 2016; Finsterle, 2015; Man et al., 2016). In the pro-
posed NP-DWA, nevertheless, future observations are first
used to construct data-driven models in the forecast step and
then are sequentially assimilated with the Kalman update in
the analysis step. Ultimately, its combined capacity to reduce
system uncertainties in these two ways is defined as its worth.
Furthermore, as a typical sequential DA scheme, the EnKF
facilitates the dynamic models and also its hyperparameters
to be updated in real time so the data utility in relation to
the modeling system can be detected instantaneously. Even-
tually, the sampling scheme can be dynamically adjusted to
save the monitoring and analysis costs.

Most previous studies are based on synthetic cases, and
data worth analysis in the context of dynamically evolving
soil moisture profiles was still poorly studied in a real-world
case. For nonlinear problems, nevertheless, the estimation
variance and more sophisticated measures of data utility de-
pend on the actual values of measurements, which are still
unknown prior to collection (Leube et al., 2012). It will be
more convincing to investigate the data worth regarding the
reconstruction of fully data-driven models under real-world
cases for unsaturated flow. With the aid of observed data
retrieved from three typical stations with different climate
regimes, we aim to shed light on the following questions:
(1) as opposed to the traditional way of utilizing data (to
calibrate physical parameters), is the worth of observations
capable of being accurately quantified by NP-DWA in this
new, purely data-driven approach? (2) Given multiple pre-
diction objectives, how does the DW (in the form of various
indices) evolve under different hydrometeorological condi-
tions in the determination of fully data-driven soil moisture
dynamics? (3) How does the proposed NP-DWA respond to
the presence of multiple levels of data noise? We intend for
this study to provide guidance in the design of future moni-
toring strategies within the fully data-driven soil water flow
models for real-world problems.

The remainder of this paper is organized as follows: Sect. 2
first summarizes the experimental data and methods. There-
into, the principles of Bayesian DW analysis, nonparametric
DA and the hybrid framework are detailed. Section 3 presents
the results, and a discussion is contained in Sect. 4. Finally,
conclusions are outlined in Sect. 5.

2 Methodology

In Wang et al. (2021a), a nonparametric sequential data as-
similation scheme (Kalman-GP) has been proposed based
on the filtering equations of EnKF and data-driven model-
ing with GP. On top of that, this paper further develops a
nonparametric data worth analysis framework to assess the
potential worth of future observations in the reconstruction
of dynamical soil water flow models prior to data collection.
In our proposed NP-DWA framework, the mapping from the
input vector x and state variable of interest y is approximated
by the GP regression model. In this study, the target output y
is the soil moisture, while the entries of x include the corre-
sponding observation time, depth, daily precipitation and air
temperature. Thus, here, the dimension of input x is d = 4.
Similarly to the Kalman-GP in Wang et al. (2021a), EnKF is
implemented to update the forecast yield by GP models by
assimilating real-time observations of soil moisture. On the
one hand, this fusion can effectively reduce the risk of un-
reasonable spatio-temporal interpolation in GP models, ulti-
mately enhancing the robustness of such purely data-driven
models. On the other hand, by combining with the Kalman
update, the forecast cross-covariance between the state and
the predictions corresponding to available observations con-
strained the otherwise high error covariances of state vari-
ables at unobserved locations, which resulted in a signifi-
cantly reduced uncertainty for this hybrid method relative to
GP alone. More details can be found in Wang et al. (2021a).
In addition, to demonstrate the generalizability of the NP-
DWA, other machine learning algorithms (including support
vector machine and random forest) and DA schemes (i.e.,
particle filter) are also employed to replace GP and EnKF,
respectively. The specific details of these algorithms are not
presented here, but the corresponding results are provided in
the Supplement.

2.1 Construction of GP dynamic models

As stated in Wang et al. (2021a), N GP models are con-
structed independently at each time step in a sequential man-
ner as new data are recorded. N is the ensemble size. There-
into, the observed time series is corrupted by the prescribed
observation noises satisfying Gaussian distribution to obtain
N sets of training data. Here, we only take the procedure of
building the mth GP model at any time t = k as an example,
i.e., GPmk (m= 1, 2, . . . ,N ). The superscript m will be omit-
ted below for ease of expression.
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At t = k, the input X1:(k−1) and output y1:(k−1) of training
data in GPk can be expressed as follows:

X1:(k−1) =
[
x1

1, x2
1, . . ., x

q1
1 , . . ., x

1
p, x

2
p, . . ., x

qp
p ,

. . ., x1
k−1, x

2
k−1, . . ., x

qk−1
k−1

]T
(1)

y1:(k−1) =
[
y1

1 , y
2
1 , . . ., y

q1
1 , . . ., y

1
p, y

2
p, . . ., y

qp
p ,

. . ., y1
k−1, y

2
k−1, . . ., y

qk−1
k−1

]T
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where X1:(k−1) and y1:(k−1) denote a collection of all avail-
able x and y from t =1 to (k− 1), respectively; qp de-
notes the number of available observations at t = p (p =
1, 2, . . . , k− 1). In this paper we assume that the number
of available observations at each time step is identical, i.e.,
q1 = q2 = . . . = qk−1 = q. Hence the dimensions of matrix
Xk−1 and vector yk−1 are q(k−1)×d and q(k−1), respec-
tively.

As defined in Rasmussen (2004) and Rasmussen and
Williams (2006), a GP model can be fully specified by a
mean function µ(x) and covariance function k(x, x′), i.e.,
G(x)∼N(µ(x), k(xx′)). In this study, a linear mean func-
tion and an anisotropic squared exponential covariance func-
tion are specified (Zhang et al., 2019) as follows:

µ(x)= βT x, (3)

k(x, x′)= σ 2 exp

[
−

d∑
l=1

(
xl − x

′

l

)2
τ 2
l

]
, (4)

where β is a vector containing d linear coefficients, i.e.,
β = {β1, β2, . . ., βd}. σ 2 controls the marginal variance in
the output, and τ = {τ1, τ2, . . ., τd} determines the depen-
dence strength in each of the component directions of x.

Then, the hyperparameters of the GPk , ∅= {β, σ 2, τ },
can be inferred from the training datasets {X1:(k−1), y1:(k−1)}

via log marginal likelihood maximization:

L= logp
(
y1:(k−1)|X1:(k−1), ∅

)
=−

1
2

(
y1:(k−1)−µ

)T
6−1 (y1:(k−1)−µ

)
−

1
2

log |6| −
n

2
log2π, (5)

where µ denotes the prior mean vector with the dimension
of q(k− 1), and 6 denotes the covariance matrix whose
elements in the ith row and j th column constitute 6ij =
k(xi, xj ) (i = 1, 2, . . . , q(k−1); j = 1, 2, . . . , q(k−1)). The
GPML MATLAB toolbox (version 4.2), as documented in
Rasmussen and Williams (2006), was adopted for GP in-
ference in this study (http://www.gaussianprocess.org/gpml/
code/matlab/doc/, last access: 15 July 2023).

In this study, the entire soil moisture profile at t = k is ex-
pected to be forecasted. Assuming that the total number of
nodes of the vertical one-dimensional soil profile is Nn, then
the input at the current time step is X∗k = [x

1
k, x

2
k, . . ., x

Nn
k ]

T

with the dimension ofNn×d . The corresponding output vec-
tor yf

k with the dimension ofNn can be calculated as follows:

yf
k = µ

∗
+6∗

T

6−1 (y1:(k−1)−µ
)
, (6)

where µ∗ denotes the prior mean of µ(X∗k) with the di-
mension of Nn, and 6∗ is calculated as 6∗i = k(x

i
k, xj )

(i = 1, 2, . . . ,Nn; j = 1, 2, . . . , q(k− 1)).
As a collection of yf

k from N GP models, the resultant
forecasted state vector Y f

k at t = k can be represented as fol-
lows:

Yf
k =

[
yf
k,1, y

f
k,2, . . ., y

f
k,m, . . ., y

f
k,N

]T
, (7)

where yf
k,m denotes the forecasted state vector of interest for

GPmk (m= 1, 2, . . . ,N ); the dimension of Yf
k is N ×Nn; the

superscript “f” denotes forecast.

2.2 The Kalman update in a nonparametric data
assimilation scheme

In the analysis step of the EnKF, for any ensemble member
m at t = k, the state vector can be updated by combing GP
model predictions and observations dobs

k :

ya
k,m = y

f
k,m+Kk

(
dobs
k,m−Hyf

k,m

)
, (8)

where ya
k,m denotes the improved estimates for realization

m by conditioning on the observed information at t = k; H is
the observation operator with the dimension of q×Nn, which
represents the relationship between the state and observation
vectors; the superscript “a” indicates analysis, and dobs

k,m with
the dimension of q denotes the observation vector at t = k for
the mth ensemble member of dobs

k . It should be emphasized
that the relationship between observations at t = k, dobs

k and
their true values yk = [y

1
k , y

2
k , . . ., y

q
k ]
T can be expressed as

follows:

dobs
k = yk + εk, (9)

where εk with the dimension of N × q represents the mea-
surement error vector which is assumed to be zero-mean
Gaussian with Rk; Rk denotes the error covariance matrix
of the observations with the dimension of q × q.

The Kalman gain at t = k, Kk , with the dimension ofNn×
q can be defined as follows:

Kk = Cf
kH

T
(

HCf
kH

T
+Rk

)−1
, (10)

where Cf
k with the dimension of Nn×Nn is the covariance

matrix of the state vector at t = k, which can be approxi-
mated as follows:

Cf
k ≈

1
N − 1

N∑
m=1

{[
yf
k,m−

〈
Yf
k

〉][
yf
k,m−

〈
Yf
k

〉]T }
, (11)

where 〈Yf
k〉 denotes the ensemble mean of Yf

k .
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Figure 1. The workflow of nonparametric data worth analysis
framework coupled with ensemble Kalman filter (EnKF).

2.3 Nonparametric data worth analysis framework

Following the methodologies of Neuman et al. (2012) and
Dai et al. (2016), data worth analysis of future monitoring
networks within the aforementioned NP-DWA framework
also consists of three stages. The whole workflow of the NP-
DWA framework is depicted in Fig. 1.

2.3.1 Prior stage

At the prior stage (0< t ≤ Tp), the integration of GP dy-
namic models and EnKF with an ensemble size of N =N1
is implemented to sequentially train and assimilate the prior
data via Eqs. (1)–(11). Here, all available prior datasets from
t =0 to t = Tp are denoted as vector A= y1:Tp = d

obs
1:Tp with

the dimension of qTp, while the corresponding GP input
is denoted as matrix X1:Tp with the dimension of qTp × d.
Then, a set of N1 hypothetical observations can be gener-
ated, denoted as Bk,i =Hky

f
k,i (k = Tp + 1, Tp + 2, . . ., Tt;

i = 1, 2, . . . ,N1), via Eq. (6). Tt is the total simulation time.
Moreover, prior prediction statistics (mean and covariance)
of the posterior vector Yk , i.e., E(Y|A) and Cov(Y|A), can
be yielded conditional on {A}, which can be denoted as E1
and C1, respectively, for the sake of simplicity.

2.3.2 Pre-posterior stage

At the pre-posterior stage (Tp + 1< t ≤ Tt), for each pos-
sible data Bk,i at t = k, N2 realizations satisfying a Gaus-
sian distribution are further generated. The ensemble mean
is the value of Bk,i , while the variance is the measure-
ment error. Since this method is recursive, the time in-
dex k is omitted in the following equations. Then, the in-
tegration of GP models and EnKF is again implemented
through a set of N2 Monte Carlo realizations for each of

the N1 hypothetical observations. This allows us to calcu-
late prediction statistics of the posterior state vector Yij
(i = 1, 2, . . . ,N1; j = 1, 2, . . . ,N2), i.e., E(Yi |A, Bi) and
Cov(Yi |A, Bi), conditional on {A, Bi}. Finally, quantities
EB|AE(Y|A, B), EB|ACov(Y|A, B) and CovB|AE(Y|A, B)
can be yielded by averaging over the collection of N1×N2
realizations. It should be emphasized that EB|AE(Y|A, B)
and EB|ACov(Y|A, B) represent the pre-posterior prediction
mean and uncertainty after the addition of future possible
data B, which can be denoted as E2 and C2, respectively.

To quantify the expected data worth of potential mea-
surements, three commonly considered information metrics,
namely the trace (Tr), Shannon entropy difference (SED) and
relative entropy (RE), are introduced in this study. Tr and
SED offer scalar indices to measure the decrease in variance
and covariance, respectively, while the RE comprehensively
quantifies both mean and covariance effects.

(1) Trace

As a scalar indicator (Dai et al., 2016), Tr quantifies the DW
in terms of variance reduction as follows:

Tr= Tr(C1)−Tr(C2) , (12)

where Tr(∗) denotes the trace (sum of the diagonal entries)
of a matrix.

(2) Shannon entropy difference

According to Shannon (1949), the Shannon entropy (SE) of
PDF p(x) can be defined as follows:

SE(p)=−
∫
p(x) lnp(x)dx, x ∈ εR. (13)

The SED between the prior and pre-posterior PDFs can also
be considered to quantify the information content extracted
from additional observations. Assuming that these two PDFs
are both Gaussian in the EnKF model, the SED can be ex-
pressed in terms of covariance reduction (Xu, 2007) as fol-
lows:

SED=
lndet(C1)

2
−

lndet(C2)

2
=

lndet
(

C1C−1
2

)
2

, (14)

where det(∗) is the determinant of a matrix.

(3) Relative entropy

Similar to the SED, the RE also provides a measure of the
information content of the pre-posterior PDF with respect to
the prior PDF. In addition to uncertainty reduction, the influ-
ence of future data on the mean behavior of PDFs is consid-
ered (Singh et al., 2013; Zhang et al., 2015). Considering that
the prior and pre-posterior PDFs are n-dimensional Gaussian
functions, the RE can be defined as follows:
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RE=
1
2
(E2−E1)

TC−1
1 (E2−E1)

+
1
2

[
lndet

(
C1C−1

2

)
+Tr

(
C2C−1

1

)
− n

]
. (15)

Finally, the expected DW of Bk can be estimated in the form
of the above three indices prior to data gathering. Similar
procedures are repeated until the final time t = Tt is reached.

2.3.3 Posterior stage

At the posterior stage (Tp + 1< t ≤ Tt), the available ac-
tual dataset B′ is incorporated into the GP training datasets
and assimilated in a sequential manner. The actual mean
and covariance of posterior state vector Y , i.e., E(Y|A, B′)
and Cov(Y|A, B′), respectively, are obtained conditional on
{A, B′}. The reference data worth in the form of the various
indices can be calculated via Eqs. (12)–(15), where E2 and
C2 are replaced with E(Y|A, B′) and Cov(Y|A, B′), respec-
tively.

3 Description of experimental data and model setup

3.1 Data sources and site description

Three typical sites, namely Falkenberg (52.1669◦ N,
14.1241◦ E), Cape_Charles_5_ENE (37.2907◦ N,
75.9270◦W – hereafter referred to as Cape), and DAHRA
(15.4035◦ N, 15.4320◦W), were selected from the Interna-
tional Soil Moisture Network (ISMN, 2023) to evaluate the
performance of the proposed NP-DWA framework under
different soil types and climatic regimes. According to the
dominant fraction of clay, silt and sand for two layers (top-
soil: 0.0–0.3 m, subsoil: 0.3–1.0 m) provided by the ISMN,
we use the United States Department of Agriculture (USDA)
soil texture classification and classified the soil at three sites.
The soil at Falkenberg is sandy loam, and the DAHRA soil
is loamy sand. The topsoil and subsoil at Cape are clay
loam and loamy clay, respectively. At these three sites, the
in situ volumetric SWC was operationally measured with
the TRIME-EZ (IMKO), the Stevens Hydraprobe II SDI-12
(Stevens Water Inc.) and the ThetaProbe ML2X (Delta-T
Devices) instruments, respectively. The measurement depths
were (1) 0.08, 0.15, 0.30, 0.45, 0.60 and 0.90 m at the
Falkenberg site; (2) 0.05, 0.10, 0.20, 0.50 and 1.00 m at the
Cape site; and (3) 0.05, 0.10, 0.50 and 1.00 m at the DAHRA
site. The measurement error was artificially specified to be
0.02 cm3 cm−3 unless otherwise specified.

Apart from soil water measurements at different depths,
the daily precipitation and air temperature at the height of
2 m were obtained from the ISMN. At each site, 200 d time
series (from 15 January and 2 August 2005 at the Falken-
berg site, from 24 April to 9 November 2004 at the Cape
site and from 9 April to 25 October 2011 at the DAHRA

Table 1. The summary of key parameters.

Parameter Value

Description of soil column

Soil column height [m] 1.00
No. of nodes, Nn 53 (Falkenberg)/52 (Cape & DAHRA)

Number of realizations

N1 50
N2 50

Prior values of GP hyperparameters

τ1, τ2, τ3, τ4 1
σ 2 0.5
β1, β2, β3, β4 0

site) were collected in this study, as shown in Fig. 2. Having
a continental climate, the Falkenberg receives frequent but
less intense precipitation during the simulation period. The
Cape has a humid subtropical climate with the highest rates
of rainfall among the three sites, and there were a few rain-
storm events during the study period (e.g., up to 150 mm d−1

on 8 September 2014). The region of DAHRA has a tropical
climate with well-defined dry and humid seasons. The early
stage of the simulation is in its dry season, with little to no
rainfall. The late stage is in its humid season when frequent
but less intense rainfall events occur and the daily average air
temperature is about 30 ◦C.

3.2 Model simulation setup and case design

The key parameters of this study are summarized in Table 1.
Each site is represented by a one-dimensional soil column
with a height of 1 m, which is discretized into 2 cm grids
with the local refinement of 1 cm monitoring-depth inter-
vals, i.e., z= 0.15 m and 0.45 m at the Falkenberg site and
z= 0.05 m at the Cape and DAHRA sites. At each time step,
N1 = 50 GP-based dynamic models of unsaturated flow are
constructed. The GP model input x includes the observation
time, depth, daily precipitation and air temperature, while
the output is the corresponding soil moisture. The state vec-
tor y comprises the soil moisture for all nodes at each site,
and the trained and assimilated observations dobs refer to the
available soil moisture at all observed depths (as described in
Sect. 3.1).

We illustrate our approach based on a set of real-world
test cases, as listed in Table 2. The performances of the three
indices, namely, Tr, SED and RE, in data worth quantifica-
tion are compared at all three sites. In all test cases of this
study, prior data for training GP includes the soil water con-
tent at all observed depths during the prior stage (from t = 1
to t = Tp), i.e., z= 0.08, 0.15, 0.30, 0.45, 0.60 and 0.90 m
at Falkenberg; z= 0.05, 0.10, 0.20, 0.50 and 1.00 m at Cape;
and z= 0.05, 0.10, 0.50 and 1.00 m at the DAHRA. At the
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Figure 2. The temporal evolutions of soil moisture at various depths, daily rainfall and mean daily air temperature (AT) at 2 m height at
Falkenberg, Cape and DAHRA, respectively. Note that the red area indicates the pre-posterior or posterior stage.

Table 2. The summary of designed test cases and main characteris-
tics.

Case name Potential Observation Prior Variable
observation error data of interest

variance (d)

TC1 TC1-1 θS 0.0004 80 θave
1.00

TC1-2 θM 0.0004 80 θave
1.00

TC1-3 θD 0.0004 80 θave
1.00

TC2 TC2-1 θS 0.0004 80 θave
0.60

TC2-2 θM 0.0004 80 θave
0.60

TC2-3 θD 0.0004 80 θave
0.60

TC3 TC3-1 θS 0.0004 80 θave
0.30

TC3-2 θM 0.0004 80 θave
0.30

TC3-3 θD 0.0004 80 θave
0.30

TC4 θS 0.0001 80 θave
1.00

TC5 θS 0.0016 80 θave
1.00

TC6 θS 0.0004 40 θave
1.00

TC7 θS 0.0004 180 θave
1.00

TC8 θS, θM 0.0004 80 θave
1.00

TC9 θS, θM, θD 0.0004 80 θave
1.00

pre-posterior or posterior stage in the NP-DWA, the worth of
potential observations regarding the retrieval of three quanti-
ties of interest, including θave

1.00, θave
0.60 and θave

0.30, is evaluated.
Here, θave

1.00, θave
0.60 and θave

0.30 represent the average soil mois-
ture in the top 1.00, 0.60 and 0.30 m, respectively. A compar-
ison among cases TC1, TC2 and TC3 is designed to investi-
gate the data worth response of surface (θS), middle (θM) and

deep (θD) SWC regarding the above different prediction ob-
jectives. Specifically, θS refers to soil moisture at z= 0.08 m
at Falkenberg and at z= 0.05 m at Cape and DAHRA, re-
spectively. θM refers to soil moisture at z= 0.45 m at Falken-
berg and at z= 0.50 m at Cape and DAHRA, respectively.
θD refers to soil moisture at z= 0.90 m at Falkenberg and
at z= 1.00 m at Cape and DAHRA, respectively. The prior
datasets entering these cases comprise SWC, daily precipita-
tion and air temperature over the first 80 d, as shown in the
gray areas of Fig. 2. The subsequent 20 d data (red areas in
Fig. 2) are augmented as additional data for reference DW
assessment in the posterior stage.

As stated in Pechenizkiy et al. (2006) and Zhu and
Wu (2004), the maximum accuracy of statistical learning al-
gorithms mainly depends on the quality of training data in
addition to the inherent bias in the algorithm itself. In other
words, the magnitude and accuracy of the expected worth of
driving data in machine-learning-based DA may be closely
related to the noise level. Thus, two additional test cases
(TC4 and TC5) are considered to evaluate the performance of
the proposed NP-DWA framework under different measure-
ment errors. The soil moisture measurement error variance
values of 0.012 and 0.042 are artificially specified in TC4
and TC5, respectively, to be compared to a value of 0.022 in
TC1-1.

Moreover, test cases TC6 and TC7 differ from test case
TC1-1. These test cases are designed to investigate the influ-
ence of the prior data content on data worth analysis, which
facilitates the determination of the required prior informa-
tion content to ensure the accuracy of data worth assessment.
The 80 d prior data in test case TC1-1 are reduced backward
in time to 40 d in test case TC6 and augmented forward to
180 d in test case TC7. In addition, test cases TC1-1, TC8

https://doi.org/10.5194/hess-27-2661-2023 Hydrol. Earth Syst. Sci., 27, 2661–2680, 2023



2668 Y. Wang et al.: Data worth analysis within a model-free data assimilation framework for soil moisture flow

Figure 3. The probability distributions (dotted curved line) of potential observation realizations, as well as their mean (dotted vertical line)
and the corresponding actual soil water content (SWC) observation (solid line) in the surface, middle and deep layers on the 81st, 90th and
99th days at Falkenberg, Cape and DAHRA, respectively.

and TC9 consider the composite DW of different combina-
tions of monitoring schemes. The comprehensive contribu-
tions of the surface SWC jointly with the middle and/or deep
ones are compared with its individual contribution.

3.3 Evaluation setup

To compare the relative differences in data worth estimation
accuracy under the various test scenarios, the mean absolute
percentage error (MAPE) between the expected and refer-
ence data worth in the form of Tr, SED and RE is defined as
follows:

MAPE=
1

Tt− Tp

Tt∑
k=Tp+1

∣∣∣∣∣DWExpect
k −DWRefer

k

DWRefer
k

∣∣∣∣∣ , (16)

where DWExpect
k and DWRefer

k denote the expected and refer-
ence DW values, respectively, at time step t = k.

4 Results and discussions

4.1 Optimal monitoring location for the multiple
predictive objectives (TC1,TC2 and TC3)

Figure 3 shows the probability distributions of the generated
potential observation realizations, as well as their ensemble
mean and the corresponding actual observations of the sur-
face (θS), middle (θM) and deep (θD) soil moisture at three
sites. Only the results on the 81st, 90th and 99th days are
presented here. Overall, the N1 = 50 potential realizations
could capture the actual SWC observations with acceptable
accuracy. Specifically, the forecasted middle SWC exhibited
a considerably more robust capturing performance with sus-
tained better proximity of potential and actual θM throughout
the simulation period. This occurred especially pronouncedly
at the Cape site. For example, both surface and deep layers at
Cape may be at risk of a poor fit of potential observations to
measurements (Fig. 3d and w), while the generated middle
SWC is always fairly well approximated to the correspond-
ing actual values in Fig. 3m–o.

Based on the above potential observations, their expected
data worth regarding the retrieval of θave

1.00, θave
0.60 and θave

0.30
can be quantified in the form of Tr, SED and RE, as de-
picted in Fig. 4. Meanwhile, for ease of analysis, Fig. 5 com-
pares the covariance matrices of entire soil moisture profiles
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Figure 4. The expected data worth of potential soil moisture observations in the surface, middle and deep layers in the form of trace (Tr),
Shannon entropy difference (SED) and relative entropy (RE), respectively, regarding the retrieval of average soil moisture in the top 0.30,
0.60 and 1.00 m at three sites.

in the prior stage, pre-posterior stage, and posterior stage.
Only the results from the 81st to the 90th day at Falkenberg
are revealed here. It can be observed that, despite an over-
all increasing trend over time, the values of expected DW
were prone to local spikes due to changes in the atmospheric
boundary conditions such as rainfall. First of all, this general
trend of increase should be attributed to the sequential aug-
mentation of potential observations based on existing prior
data, resulting in the cumulative values of DW over time.
However, abrupt changes in external forcing, such as unex-
perienced rainfall events on the 88th day at the Falkenberg,
could trigger temporal extrapolation of statistical learning (Li
et al., 2020; Minns and Hall, 1996; Xu and Valocchi, 2015),
which in turn led to a surge in prior predictive uncertainty,
i.e., C1 = Cov(Y|A) (the first column of Fig. 5). Fortunately,
joint GP training and sequential assimilation of real-time po-
tential observations can effectively lower the risk of such ir-
rational extrapolation (Wang et al., 2021a, b), allowing these
temporal mutations to be substantially attenuated at the pre-
posterior stage (i.e., C2 = EB|ACov(Y |A, B)) (the second
to the fourth column of Fig. 5). This uncertainty reduction
brought about the fusion of additional data became signifi-
cantly larger when external forcing encountered mutations,
which ultimately led to the localized surge in DW during
rainfall events. We recall that such DW surges induced by

contrasting scenarios also occurred in traditional DW analy-
sis based on physically motivated models. As stated in Wang
et al. (2018), “If one model undergoes different and contrast-
ing scenarios, the model structural error is likely to appear
since model parameters updated or calibrated under one sce-
nario have not been examined under another scenario”. Al-
though in different ways, the expected DW of future mon-
itoring strategies within both the traditional parametric and
proposed nonparametric DA frameworks heavily depends on
the coverage of additional data by available prior scenarios
(Li et al., 2020).

Moreover, Fig. 4 also suggests that the optimal observation
depth shifted as the prediction target changed. As expected,
the surface SWC θS produced higher Tr, SED and RE val-
ues regarding the estimation of θave

0.30. As the depth range of
the average SWC to be estimated was extended downward,
the data worth advantages of θM and θD began to emerge.
Surprisingly, the potential middle SWC still exhibited a con-
siderably higher superiority even in θave

1.00 estimation. In other
words, the soil moisture in the middle layer has the most ro-
bust advantage in data worth. This may be due to the fact
that the integration of surface or deep SWC only reduced the
uncertainty within the corresponding depth ranges (the sec-
ond and fourth columns of Fig. 5), whereas the augmentation
of θM significantly decreased the covariance matrices of the
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Figure 5. The covariance matrices of soil moisture profiles from the 81st to the 90th day at Falkenberg before (column 1) and after poten-
tial (columns 2–4) and corresponding actual (columns 5–7) soil moisture observations in the surface, middle and deep layers were fused,
respectively.

entirety of the SWC profiles (the third column of Fig. 5). This
selection result of the optimal monitoring location seemingly
contradicts previous findings within the traditional paramet-
ric DW analysis where the surface observations with the
largest temporal variation always produced the greatest data
worth, as reported in Dai et al. (2016) and Wang et al. (2018).
This discrepancy is likely to depend on the different mech-
anisms that characterize soil moisture dynamics in the ver-
tical direction between the two approaches. The traditional
parametric unsaturated-flow model follows the law-of-mass-
conservation-based physical governing equations (i.e., the
Richardson–Richards equation, Richards, 1931; Richardson,

1922), as well as their physical properties, to simulate the
soil water infiltration process. The strongest time-varying na-
ture of surface SWC was conducive to the effective updating
of the physical parameters in EnKF, eventually generating
the maximum data worth (Wang et al., 2018). However, the
spatial prediction performance of data-driven methods sub-
stantially hinged on the similarity of data between differ-
ent depths. Theoretically, there occurs an inherent delayed
response of soil moisture profiles to rainfall events, which
has been well-documented experimentally (Wierenga et al.,
1986; Bresler et al., 1971; Vauclin et al., 1979). This causes
the temporal changes in surface and deep SWC to be nat-
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Figure 6. The MAPEs between expected and reference data worth in the form of Tr, SED and RE of potential soil moisture observations in
the surface (S), middle (M) and deep (D) layers, respectively, regarding the retrieval of average soil moisture in the top 0.30, 0.60 and 1.00 m
at three sites.

urally asynchronous, thus rendering their representativeness
in characterizing the whole soil moisture profile somewhat
limited. Ultimately, the complete reliance on statistical and
information-theoretic measures allowed the most represen-
tative middle SWC to establish the most robust superiority
in DW.

It can also be seen from Fig. 4 that, when using different
information indices (i.e., Tr, SED and RE) to quantify the
data worth, the optimal observation location selected is iden-
tical regardless of soil textures and climatic regimes. This
conclusion is generally in line with Wang et al. (2018) and
Man et al. (2016). Furthermore, to quantify the data worth
assessment accuracy, Fig. 6 depicts the MAPE between the
expected and reference data worth in the form of Tr, SED
and RE of alternative monitoring schemes at different depths.
It can be observed that the surface SWC yielded the small-
est MAPE when retrieving θave

0.30 regardless of the metric
type. Nevertheless, during the estimation of θave

0.60 and θave
1.00,

the expected data worth of θM more accurately and robustly
approached the reference counterparts with overall smaller
MAPEs. We recall that this ranking of DW estimation accu-
racy was exactly in line with the ranking of the magnitude
of their expected DW in Fig. 4. To be specific, a compari-
son of Figs. 4 and 6 reveals that potential observations with
a larger expected DW are prone to a higher DW estimation
accuracy due to its more robust ability to imitate the actual
observations (Fig. 3).

4.2 Effects of observation noise (TC1-1, TC4 and TC5)

Figure 7 shows the probability distributions of the poten-
tial observation ensemble, as well as their mean and the
corresponding actual observations of the surface SWC un-
der different SWC noise levels. Similarly, only the results of
the 81st, 90th and 99th days are displayed. It can be observed
that a higher noise level was not always detrimental but rather
expanded the distribution width along the SWC axis and pro-
duced a flatter curve. The risk of failure in the generated re-
alizations capturing the real observations was thus reduced.
Even on the 81st day at Falkenberg, for example, the increase
in SWC error variance from 0.012 to 0.042 facilitated a bet-
ter agreement between the potential and actual surface soil
moisture, as revealed in Fig. 7a, j and s. Similar phenomena
can also be found via a comparison of Fig. 7e and n.

Figure 8 shows the temporal evolution and time-averaged
MAPE of the expected and reference data worth in the form
of three information indices under various noise levels. Some
interesting findings can be obtained. (1) Overall, the poten-
tial SWC data corrupted by a lower noise level yielded larger
data worth with higher accuracy. (2) Nevertheless, the occur-
rence of rainfall events triggered a futile DW increase while
also rendering the potential observations with appropriately
magnified observation errors more valuable. For instance, a
properly inflated observation error of 0.022 on the 88th day
at the Falkenberg site resulted in a notably higher data worth
than that of 0.012, as highlighted by the dashed ellipse boxes
in Fig. 8a and d. Furthermore, this increase in data worth
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Figure 7. The probability distributions (dotted curved line) of potential observation realizations, as well as their mean (dotted vertical line)
and the corresponding actual soil water content (SWC) observations (solid line) in the surface layer on the 81st, 90th and 99th days at three
sites under different measurement error variances, these being 0.012 (TC4), 0.022 (TC1-1) and 0.042 (TC5), respectively.

resulting from noise amplification was particularly evident
in the form of Tr over the other two metrics, as depicted in
Fig. 8a–c and d–i. At DAHRA, potential observations with
an observation error of 0.022 even produced a significantly
higher Tr value than that of 0.012 throughout almost the en-
tire simulation period (Fig. 8c). (3) As opposed to Tr and
SED indices focusing only on the system uncertainty (vari-
ance or covariance), the expected RE, as a comprehensive
mean-covariance-type metric, was often more challenging to
approach its reference counterparts with the largest MAPE at
all sites, as shown in Fig. 8j–l.

4.3 Effects of prior data content (TC1-1, TC6 and TC7)

Figure 9a–i depicts the temporal evolution of the expected
and reference data worth of the surface SWC in cases TC6,
TC1-1 and TC7 with the 40, 80 and 180 d prior data content,
respectively. Under normal circumstances, an increase in the
available prior data content inevitably entails a shrinkage in
the DW of subsequent data due to the possibility of infor-
mation redundancy. However, this seems to be valid only for
a modest increase in prior data (from 40 to 80 d) within our
NP-DWA framework. The substantial augmentation in avail-
able data content from 80 to 180 d instead resulted in a no-
tably higher DW of the additional data (Fig. 9). Even more
unexpectedly, this DW growth was prevalent across sites, re-

gardless of the soil types and climatic regimes. To clarify
this anomaly, Fig. 10 further shows the predicted covariance
matrices of soil moisture profiles conditional on {A} in the
prior stage and {A, B} in the pre-posterior stage in cases
TC6, TC1-1 and TC7, respectively. Only the results from
the 81st to the 90th day at Falkenberg are presented here.
Our previous studies have demonstrated that, although the
mean values of potential samples can approach actual obser-
vations well in fully (Wang et al., 2021a) or partially (Zhang
et al., 2019) data-driven dynamical systems, their ensem-
ble was apt to suffer from considerable uncertainty (Wang
et al., 2021b). Unfortunately, augmented prior data, despite
its potential to enrich available GP training scenarios, failed
to prevent the non-convergence of Ne = 50 GP samples. In
contrast, the additional noise associated with prior data sup-
plementation could exacerbate the increase in the prior pre-
diction uncertainty (i.e., C1), as illustrated by a comparison
between the first three columns of Fig. 10. It should be high-
lighted that the fusion of B enabled a notable reduction in
the pre-posterior uncertainties (i.e., C2) in the data assimila-
tion system to a comparable level (the last three columns of
Fig. 10), even with different prior data content. The gradual
widening of the gap between C1 and C2 eventually yielded
the highest data worth with the maximum amount of prior
data in test case TC7 (Fig. 9). This seems to warn us that un-
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Figure 8. The temporal evolution (a–i) and time-averaged
MAPEs (j–l) of the expected and reference data worth in the form
of Tr, SED and RE at three sites, respectively, under different mea-
surement error variances, these being 0.012 (TC4), 0.022 (TC1-1)
and 0.042 (TC5), respectively.

controlled expansion of big data within fully data-driven sys-
tems may not be beneficial. The adverse effects of extra noise
may overshadow its original superiority in generalization ca-
pability. Access to high-quality and representative small data
may constitute the key to the successful application of fully
data-driven algorithms for reshaping soil moisture dynamics.

Furthermore, Fig. 9j–l depicts the time-averaged MAPE in
the expected and reference data worth in cases TC6, TC1-1
and TC7, respectively. A comparison of Fig. 9a–i and j–l re-
veals some interesting findings: (1) similarly to the results
in Sect. 4.1, the potential measurements with the largest ex-
pected (or reference) data worth in TC7 are apt to possess
the highest estimation accuracy of data worth. (2) Local vari-
ations in data worth at different sites respond slightly dif-
ferently to the augmentation of prior data content. For in-
stance, even with 180 d of available historical data, the DW
spike induced by the unexperienced rainfall event on the

Figure 9. The temporal evolution (a–i) and time-averaged
MAPEs (j–l) of the expected and reference data worth in the form
of Tr, SED and RE at three sites for cases TC6, TC1-1 and TC7 with
40, 80 and 180 d prior data content, respectively.

88th day at the Falkenberg has not been eliminated or di-
minished (Fig. 9a, d and g). However, similar DW surges
on the 82nd day at Cape were successfully mitigated as the
amount of prior data content increased from 40 d (TC6) to
80 d (TC1-1) (Fig. 9e and h). This is because the prior data
at Falkenberg, even if augmented to 180 day, did not cover
the rainfall event on the 88th day (Fig. 2b), whereas the 80 d
training data at Cape already included the scenario on the
82nd (Fig. 2d). These results agree with the conclusions re-
ported in Wang et al. (2020) that the diversity of scenarios
in the training data is more decisive than the data volume re-
garding the performance of data-driven methods. However, it
is worth noting that the response of our nonparametric frame-
work to the prior data augmentation is not in line with that of
the physical-model-based DW analysis framework (Wang et
al., 2018). In the latter, insufficient prior scenarios within the
traditional framework may trigger unresolved model struc-
tural errors. When these lead to a deteriorating DW assess-
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Figure 10. The covariance matrices of soil moisture profiles from the 81st to the 90th day at Falkenberg in the prior and pre-posterior stages
for cases TC6, TC1-1 and TC7 with 40, 80 and 180 d prior data content, respectively.

ment performance, this cannot be compensated for by assim-
ilating more prior data. In contrast, the elimination of depen-
dence on physical governing equations shields our model-
free DA schemes from model structural errors. Continuous
enrichment of prior scenarios in the NP-DWA directly as-
sures effective coverage of potential future scenarios, yield-
ing the mitigation of DW local surges and an improved DW
estimation accuracy. (3) Although inferior to Tr and SED, the
estimation accuracy of RE is generally acceptable, especially

when prior data is expanded to 180 d. This is certainly a re-
markable improvement over the rather poor performance of
RE in traditional parametric data worth analysis (Wang et al.,
2018, 2020). This progress should be attributed to the radical
abandonment of physical models in the NP-DWA, which pre-
vented adverse effects of the high nonlinearity of soil water
flow in the propagation of uncertainties from input to output
(i.e., soil moisture in this study). Direct mapping from regu-
lar meteorological data to SWC facilitated the identification
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of the soil moisture covariance matrix from potential obser-
vations.

4.4 Effects of potential observational combinations
(TC1-1, TC8 and TC9)

Figure 11a–i compares the expected (and reference) data
worth of three combinations of potential observations at dif-
ferent depths at the three sites. It can be seen that the com-
posite data worth of the alternative monitoring schemes ex-
hibited an increasing pattern as the depth range of the ob-
served SWC continued to expand downward. Nevertheless,
the response of the different data worth indicators and study
sites to this vertical expansion of potential observations var-
ied slightly. Further integration of θD in TC9 did not cause a
marked increase in Tr but yielded notably greater SED and
RE values, especially at the DAHRA site (Fig. 11c, f and d).
This is undoubtedly due to the extra consideration of the lat-
ter two indicators for the non-diagonal elements of the co-
variance matrix or/and the behavior of the mean. Moreover,
the joint fusion of potential θS and θM failed to result in a
sustained increase in Tr and RE at DAHRA while creating a
significant increase in composite DW at the other two sites.
This could be attributed to the sandy soil texture at DAHRA
(with the fraction of sand up to 90 % and Ks = 3.22 m d−1),
resulting in the almost synchronous responses of the SWC at
z= 0.05 m and 0.50 m to the atmospheric boundary condi-
tions (Fig. 2e) and thus triggering possible data redundancy.

Figure 11j–l further show the estimation accuracy of ex-
pected data worth for the above three potential observation
combinations. Surprisingly, the increase in the number of po-
tential observations, while making it more difficult to capture
actual SWC data, ends up significantly improving the accu-
racy of the data worth assessment. As shown in Fig. 11j–l,
as more potential observations along the vertical direction
were evaluated, the MAPEs between expected data worth
and its reference counterparts decreased continuously. This
phenomenon actually breaks the misconceptions about the
data worth assessment accuracy in previous studies, i.e., that
an excellent fit of potential observations is equivalent to high-
precision estimates of the corresponding data worth. For the
sake of explanation, Fig. 12 shows the predicted covariance
matrices of soil moisture profiles in cases TC1-1, TC8 and
TC9 from the 81st to the 90th day at Falkenberg conditional
on {At}, {A, B} and {A, B′}, respectively. It can be found
that, compared to TC1-1, which only reduces the uncertain-
ties in the surface SWC, the integration of observations at
multiple depths clearly reduces the uncertainties in the en-
tirety of the SWC profiles to a considerably lower level. This
ultimately facilitates better proximity between expected and
reference covariance matrices, as revealed in the fourth and
seventh columns in Fig. 12. The above results suggest that the
accuracy of data worth assessment of potential observations
does not only depend on their capacity to capture actual mea-
surements but is also closely related to their correlation with

Figure 11. The temporal evolution (a–i) and time-averaged
MAPEs (j–l) of the expected and reference data worth in the form
of Tr, SED and RE at three sites for cases TC1-1 (surface soil mois-
ture), TC8 (surface and middle soil moisture) and TC9 (surface,
middle and deep soil moisture), respectively.

the variable of interest. We recall that similar phenomena also
exist in the preceding test cases. For example, the weaker
correlation between surface SWC observations and θave

1.00 led
to deterioration in the DW estimation performance with the
largest MAPE values (Fig. 6a, d and g) even if the actual sur-
face observations could be suitably reproduced (Fig. 3a–c).
Therefore, to enhance the reliability of data worth assess-
ment, a strategy wherein potential observations at multiple
depths were simultaneously incorporated into existing DA
systems was recommended in this study.

5 Conclusions

Conventional data worth analysis for soil water problems de-
pends on physical dynamic models. Due to the widespread
occurrence of model structural errors, it may lead to biased
or wrong worth assessment. The strong nonlinearity of un-
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Figure 12. The covariance matrices of soil moisture profiles from the 81st to the 90th day at Falkenberg before (column 1) and after potential
(columns 2–4) and actual observations (columns 5–7) for cases TC1-1 (surface soil moisture), TC8 (surface and middle soil moisture) and
TC9 (surface, middle and deep soil moisture) were fused, respectively.

saturated flow further deteriorates the DW assessment per-
formance in the retrieval of soil moisture profiles. This study
proposed a nonparametric data worth analysis method within
a fully data-driven modeling framework. The information ex-
tracted from real-time soil moisture data after GP training
and Kalman update was quantified with three representative
types of indicators, i.e., variance- (Tr), covariance- (SED)
and mean-covariance-type (RE) indicators. With the aid of
a series of real-world cases, the ability and challenge of the
NP-DWA in terms of the variables of interest, spatial loca-
tion, observation error and prior data content were assessed.
The following conclusions were drawn:

1. The proposed NP-DWA framework enabled an accurate
assessment of the data worth of potential observations
regarding the reconstruction of purely data-driven soil
water flow models prior to data collection. Similarly to
traditional DW analysis based on physical models, the
overall increasing trend of the DW from the sequential
augmentation of additional observations within the pro-
posed NP-DWA framework was also susceptible to in-
terruptions by localized surges due to never-experienced
atmospheric conditions. The difference is that this bi-
ased DW in the traditional parametric method is caused
by model structural errors triggered by contrasting sce-
narios, which is difficult to be compensated for by as-
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similating more prior data, while the adverse effects of
anomalous GP extrapolation in our NP-DWA could be
suitably avoided by the enrichment of training scenarios
in prior data. Moreover, the appropriate amplification of
observational noise under extreme meteorological con-
ditions also facilitated the alleviation of these biased es-
timates by enhancing the generalization capacity of dy-
namic models.

2. The optimal observation depth shifted as the predic-
tion target varied. In contrast to the notably higher DW
of surface SWC observations within the conventional
DW analysis framework based on physical models, mid-
dle SWC observations tended to exhibit considerably
higher robustness in the construction of model-free soil
moisture dynamic models. This should be attributed to
the ability of the SWC in the middle layer to effec-
tively reduce the predictive uncertainty of the entirety
of the soil moisture profiles due to its optimal represen-
tativeness. The inherent delayed response of soil mois-
ture profiles to rainfall events allowed this advantage of
middle SWC prevalent across sites, even becoming in-
creasingly pronounced with increasing delay effect.

3. Although the addition of prior data content could greatly
improve the estimation accuracy of the expected DW,
the ensuing observation noise could substantially in-
crease the uncertainty in a purely data-driven DA sys-
tem, leading to potentially higher data worth of subse-
quent observations. Hence, high-quality and representa-
tive small data may be regarded as a better choice than
unfiltered big data.

4. The performance of data worth assessment was jointly
determined by the 3Cs, i.e., the capacity of potential ob-
servation realizations to capture actual observations, the
correlation of potential observations with the predicted
variables of interest, and the choice of DW quantitative
indicators. Furthermore, the direct mapping from reg-
ular meteorological data to SWC in our nonparametric
method facilitated the identification of the soil moisture
covariance matrix (especially the cross-covariance) due
to its alleviation of the high nonlinearity of soil wa-
ter flow problems. Hence, satisfactory estimation ac-
curacy could also be achieved even with covariance-
related data worth metrics (i.e., the SED and RE).

Code and data availability. The code and data that support the
findings of this study are available from the corresponding author
upon reasonable request.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-27-2661-2023-supplement.

Author contributions. YW: conceptualization, methodology, soft-
ware, writing – original draft. XH: conceptualization, software.
LW: methodology. JL: data curation, methodology. LL: supervision.
KH: data curation. LS: writing – review and editing, supervision.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors acknowledge ISMN for data sup-
port and Carl Edward Rasmussen and Christopher K. I. Williams
for GP code support.

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China (grant nos. U2243235
and 51979200) and the Open Research Fund of Guangxi Key 60
Laboratory of Water Engineering Materials and Structures (grant
no. GXHRI-WEMS-2020-06).

Review statement. This paper was edited by Gerrit H. de Rooij and
reviewed by two anonymous referees.

References

Akhtar, K., Wang, W., Khan, A., Ren, G., Afridi, M. Z., Feng,
Y., and Yang, G.: Wheat straw mulching offset soil moisture
deficient for improving physiological and growth performance
of summer sown soybean, Agric. Water Manage., 211, 16–25,
https://doi.org/10.1016/j.agwat.2018.09.031, 2019.

Amro, A., Al-Akhras, M., Hindi, K. E., Habib, M., and Shawar,
B. A.: Instance Reduction for Avoiding Overfitting in Decision
Trees, J. Intell. Syst., 30, 438–459, https://doi.org/10.1515/jisys-
2020-0061, 2021.

Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combin-
ing data assimilation and machine learning to emulate a dy-
namical model from sparse and noisy observations: A case
study with the Lorenz 96 model, J. Comput. Sci., 44, 101171,
https://doi.org/10.1016/j.jocs.2020.101171, 2020.

Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combin-
ing data assimilation and machine learning to infer unresolved
scale parametrization, Philos. T. Roy. Soc. A, 379, 20200086,
https://doi.org/10.1098/rsta.2020.0086, 2021.

Bresler, E., Heller, J., Diner, N., Ben-Asher, I., Brandt,
A., and Goldberg, D.: Infiltration from a Trickle
Source: II. Experimental Data and Theoretical Pre-
dictions, Soil Sci. Soc. Am. J., 35, 683–689,
https://doi.org/10.2136/sssaj1971.03615995003500050019x,
1971.

https://doi.org/10.5194/hess-27-2661-2023 Hydrol. Earth Syst. Sci., 27, 2661–2680, 2023

https://doi.org/10.5194/hess-27-2661-2023-supplement
https://doi.org/10.1016/j.agwat.2018.09.031
https://doi.org/10.1515/jisys-2020-0061
https://doi.org/10.1515/jisys-2020-0061
https://doi.org/10.1016/j.jocs.2020.101171
https://doi.org/10.1098/rsta.2020.0086
https://doi.org/10.2136/sssaj1971.03615995003500050019x


2678 Y. Wang et al.: Data worth analysis within a model-free data assimilation framework for soil moisture flow

Chandrashekar, G. and Sahin, F.: A survey on feature
selection methods, Comput. Electr. Eng., 40, 16–28,
https://doi.org/10.1016/j.compeleceng.2013.11.024, 2014.

Dai, C., Xue, L., Zhang, D., and Guadagnini, A.: Data-
worth analysis through probabilistic collocation-based
Ensemble Kalman Filter, J. Hydrol., 540, 488–503,
https://doi.org/10.1016/j.jhydrol.2016.06.037, 2016.

Dausman, A. M., Doherty, J., Langevin, C. D., and
Sukop, M. C.: Quantifying Data Worth Toward Reduc-
ing Predictive Uncertainty, Groundwater, 48, 729–740,
https://doi.org/10.1111/j.1745-6584.2010.00679.x, 2010.

Dobriyal, P., Qureshi, A., Badola, R., and Hussain, S. A.: A review
of the methods available for estimating soil moisture and its im-
plications for water resource management, J. Hydrol., 458–459,
110–117, https://doi.org/10.1016/j.jhydrol.2012.06.021, 2012.

Dunne, S. and Entekhabi, D.: An ensemble-based reanalysis ap-
proach to land data assimilation, Water Resour. Res., 41,
W02013, https://doi.org/10.1029/2004WR003449, 2005.

Fienen, M. N., Doherty, J. E., Hunt, R. J., and Reeves, H. W.: Us-
ing prediction uncertainty analysis to design hydrologic mon-
itoring networks: example applications from the Great Lakes
water availability pilot project, US Geological Survey, https:
//pubs.usgs.gov/sir/2010/5159/ (last access: 15 July 2023), 2010.

Finsterle, S.: Practical notes on local data-worth
analysis, Water Resour. Res., 51, 9904–9924,
https://doi.org/10.1002/2015WR017445, 2015.

García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., and Her-
rera, F.: Big data preprocessing: methods and prospects, Big Data
Anal., 1, 9, https://doi.org/10.1186/s41044-016-0014-0, 2016.

García-Gil, D., Luengo, J., García, S., and Herrera, F.: Enabling
Smart Data: Noise filtering in Big Data classification, Inform.
Sci., 479, 135–152, https://doi.org/10.1016/j.ins.2018.12.002,
2019.

Gu, H., Lin, Z., Guo, W., and Deb, S.: Retrieving Surface Soil
Water Content Using a Soil Texture Adjusted Vegetation Index
and Unmanned Aerial System Images, Remote Sens., 13, 145,
https://doi.org/10.3390/rs13010145, 2021.

Hall, M. A.: Correlation-based feature selection for machine
learning, The University of Waikato, https://researchcommons.
waikato.ac.nz/handle/10289/15043 (last access: 15 July 2023),
1999.

Hamilton, F., Berry, T., and Sauer, T.: Kalman-Takens filtering in
the presence of dynamical noise, Eur. Phys. J. Spec. Top., 226,
3239–3250, https://doi.org/10.1140/epjst/e2016-60363-2, 2017.

Hill, M. C. and Tiedeman, C. R.: Effective ground-
water model calibration: with analysis of data, sen-
sitivities, predictions, and uncertainty, John Wi-
ley & Sons, https://wwwbrr.cr.usgs.gov/projects/GW_
ModUncert/hill_tiedeman_book/exercise-files-UCODE_
2005/ExerciseInstructions-mfi05-uc-v17.pdf (last access:
15 July 2023), 2006.

ISMN – International Soil Moisture Network: Welcome to the In-
ternational Soil Moisture Network, https://ismn.geo.tuwien.ac.
at/en/ (last access: 15 July 2023), 2023.

Hughes, G.: On the mean accuracy of statistical pat-
tern recognizers, IEEE T. Inform. Theory, 14, 55–63,
https://doi.org/10.1109/TIT.1968.1054102, 1968.

Ju, L., Zhang, J., Meng, L., Wu, L., and Zeng, L.: An
adaptive Gaussian process-based iterative ensemble smoother

for data assimilation, Adv. Water Resour., 115, 125–135,
https://doi.org/10.1016/j.advwatres.2018.03.010, 2018.

Kashif Gill, M., Kemblowski, M. W., and McKee, M.: Soil Moisture
Data Assimilation Using Support Vector Machines and Ensem-
ble Kalman Filter1, J. Am. Water Resour. Assoc., 43, 1004–1015,
https://doi.org/10.1111/j.1752-1688.2007.00082.x, 2007.

Kisekka, I., Migliaccio, K. W., Muñoz-Carpena, R., Schaffer,
B., and Khare, Y.: Modelling soil water dynamics consider-
ing measurement uncertainty, Hydrol. Process., 29, 692–711,
https://doi.org/10.1002/hyp.10173, 2015.

Lannoy, G. J. M. D., Verhoest, N. E. C., Houser, P. R.,
Gish, T. J., and Meirvenne, M. V.: Spatial and tempo-
ral characteristics of soil moisture in an intensively mon-
itored agricultural field (OPE3), J. Hydrol., 331, 719–730,
https://doi.org/10.1016/j.jhydrol.2006.06.016, 2006.

Leube, P. C., Geiges, A., and Nowak, W.: Bayesian assess-
ment of the expected data impact on prediction confidence
in optimal sampling design, Water Resour. Res., 48, W02501,
https://doi.org/10.1029/2010WR010137, 2012.

Li, C. and Ren, L.: Estimation of Unsaturated Soil Hydraulic Pa-
rameters Using the Ensemble Kalman Filter, Vadose Zone J., 10,
1205–1227, https://doi.org/10.2136/vzj2010.0159, 2011.

Li, P., Zha, Y., Shi, L., Tso, C.-H. M., Zhang, Y., and
Zeng, W.: Comparison of the use of a physical-based model
with data assimilation and machine learning methods for
simulating soil water dynamics, J. Hydrol., 584, 124692,
https://doi.org/10.1016/j.jhydrol.2020.124692, 2020.

Li, X., Shi, L., Zha, Y., Wang, Y., and Hu, S.: Data as-
similation of soil water flow by considering multiple uncer-
tainty sources and spatial–temporal features: a field-scale real
case study, Stoch. Environ. Res. Risk A., 32, 2477–2493,
https://doi.org/10.1007/s00477-018-1541-1, 2018.

Liu, H. L., Yang, J. Y., Tan, C. S., Drury, C. F., Reynolds, W.
D., Zhang, T. Q., Bai, Y. L., Jin, J., He, P., and Hoogenboom,
G.: Simulating water content, crop yield and nitrate-N loss un-
der free and controlled tile drainage with subsurface irrigation
using the DSSAT model, Agr. Water Manage., 98, 1105–1111,
https://doi.org/10.1016/j.agwat.2011.01.017, 2011.

Liu, K., Huang, G., Jiang, Z., Xu, X., Xiong, Y., Huang,
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