Articles | Volume 27, issue 1
https://doi.org/10.5194/hess-27-159-2023
https://doi.org/10.5194/hess-27-159-2023
Technical note
 | 
09 Jan 2023
Technical note |  | 09 Jan 2023

Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow

Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur

Related authors

Technical Note: Extending the SWAT2012 and SWAT+ models to simulate pesticide plant uptake processes
Hendrik Rathjens, Jens Kiesel, Jeffrey Arnold, Gerald Reinken, and Robin Sur
EGUsphere, https://doi.org/10.5194/egusphere-2025-877,https://doi.org/10.5194/egusphere-2025-877, 2025
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025,https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025,https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary

Cited articles

Arabi, M., Frankenberger, J. R., Engel, B., and Arnold, J. G.: Representation of agricultural management practices with SWAT, Hydrol. Process., 22, 3042–3055, 2008. 
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large-area hydrologic modeling and assessment: part I. model development, Am. Wat. Res., 34, 73–89, 1998. 
Bannwarth, M. A., Sangchan, W., Hugenschmidt, C., Lamers, M., Ingwersen, J., Ziegler, A. D., and Streck, T.: Pesticide transport simulation in a tropical catchment by SWAT, Environ. Pollut., 191, 70–79, 2014. 
Bayer Crop Science: Bayer Crop Science Internal Report 1, 144 pp., 2018. 
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., and Srinivasan, R.: Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool, J. Am. Water Resour. As., 53, 115–130, https://doi.org/10.1111/1752-1688.12482, 2017. 
Download
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Share