Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6457-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6457-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective
Jinghua Xiong
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, 430072, China
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, 430072, China
Abhishek
School of Environment and Society, Tokyo Institute of Technology,
Yokohama 226-8503, Japan
Jie Chen
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, 430072, China
Jiabo Yin
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, 430072, China
Related authors
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024, https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Short summary
Temporal variability and spatial heterogeneity of climate systems challenge accurate estimation of probable maximum precipitation (PMP) in China. We use high-resolution precipitation data and climate models to explore the variability, trends, and shifts of PMP under climate change. Validated with multi-source estimations, our observations and simulations show significant spatiotemporal divergence of PMP over the country, which is projected to amplify in future due to land–atmosphere coupling.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023, https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm yr−1 with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
Jinghua Xiong, Shenglian Guo, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-645, https://doi.org/10.5194/hess-2021-645, 2022
Manuscript not accepted for further review
Short summary
Short summary
Although the “dry gets drier and wet gets wetter” (DDWW) paradigm is widely used to describe the trends in wetting and drying globally, we show that 27.1 % of global land agrees with the paradigm, while 22.4 % shows the opposite pattern during the period 1985–2014 from the perspective of terrestrial water storage change. Similar percentages are discovered under different scenarios during the future period. Our findings will benefit the understanding of hydrological responses under climate change.
Jiaoyang Wang, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Hua Chen, Jie Chen, Jiabo Yin, and Yuling Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-399, https://doi.org/10.5194/hess-2024-399, 2025
Preprint under review for HESS
Short summary
Short summary
The unclear feedback loops of water supply-hydropower generation-environmental conservation (SHE) nexus with inter-basin water diversion projects (IWDPs) increase the uncertainty in the rational scheduling of water resources for the water receiving and water donation areas. To address the different impacts of IWDPs on the dynamic SHE nexus and explore collaborative states, a framework was proposed to identify these impacts across the multiple temporal and spatial scales in a reservoirs group.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024, https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing warnings based on a people’s response process simulation. The results show that adjusting the warning threshold according to people’s tolerance levels to the failed warnings can improve warning effectiveness, but the prerequisite is to increase forecasting accuracy and decrease forecasting variance.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024, https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Short summary
Temporal variability and spatial heterogeneity of climate systems challenge accurate estimation of probable maximum precipitation (PMP) in China. We use high-resolution precipitation data and climate models to explore the variability, trends, and shifts of PMP under climate change. Validated with multi-source estimations, our observations and simulations show significant spatiotemporal divergence of PMP over the country, which is projected to amplify in future due to land–atmosphere coupling.
Qian Lin, Jie Chen, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-826, https://doi.org/10.5194/egusphere-2024-826, 2024
Preprint archived
Short summary
Short summary
Glaciers of the Tibetan Plateau (TP) have experienced widespread retreat in recent decades, but impacts of glacier changes that have occurred on regional climate, including precipitation, is still unknown. Thus, this study addressed this knowledge gap, and found that glacier changes exert a more pronounced impact on summer extreme precipitation events than mean precipitation over the TP. This provides a certain theoretical reference for the further improvement of long-term glacier projection.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023, https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm yr−1 with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022, https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Short summary
A data gap of 338 Chinese reservoirs with their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) during 2010–2021. Validation against the in situ observations of 93 reservoirs indicates the relatively high accuracy and reliability of the datasets. The unique and novel remotely sensed dataset would benefit studies involving many aspects (e.g., hydrological models, water resources related studies, and more).
Wei Li, Jie Chen, Lu Li, Yvan J. Orsolini, Yiheng Xiang, Retish Senan, and Patricia de Rosnay
The Cryosphere, 16, 4985–5000, https://doi.org/10.5194/tc-16-4985-2022, https://doi.org/10.5194/tc-16-4985-2022, 2022
Short summary
Short summary
Snow assimilation over the Tibetan Plateau (TP) may influence seasonal forecasts over this region. To investigate the impacts of snow assimilation on the seasonal forecasts of snow, temperature and precipitation, twin ensemble reforecasts are initialized with and without snow assimilation above 1500 m altitude over the TP for spring and summer in 2018. The results show that snow assimilation can improve seasonal forecasts over the TP through the interaction between land and atmosphere.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022, https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Short summary
Plant carbon storage potential is central to moderate atmospheric CO2 concentration buildup and mitigation of climate change. There is an ongoing debate about the main driver of carbon storage. To reconcile this discrepancy, we use SEIB-DGVM to investigate the trend and response mechanism of carbon stock fractions among water limitation regions. Results show that the impact of CO2 and temperature on carbon stock depends on water limitation, offering a new perspective on carbon–water coupling.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Jiacheng Chen, Jie Chen, Xunchang John Zhang, Peiyi Peng, and Camille Risi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-460, https://doi.org/10.5194/essd-2021-460, 2022
Manuscript not accepted for further review
Short summary
Short summary
To make full use of the advantages of isotope observations and simulations, this study generates a new dataset by integrating multi-GCM data based on data fusion and bias correction methods. This dataset contains monthly δ18Op over mainland China for the 1870–2017 period with a spatial resolution of 50–60 km. The built isoscape shows similar spatial and temporal distribution characteristics to observations, which is reliable and useful to extend the time and space of observations in China.
Jinghua Xiong, Shenglian Guo, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-645, https://doi.org/10.5194/hess-2021-645, 2022
Manuscript not accepted for further review
Short summary
Short summary
Although the “dry gets drier and wet gets wetter” (DDWW) paradigm is widely used to describe the trends in wetting and drying globally, we show that 27.1 % of global land agrees with the paradigm, while 22.4 % shows the opposite pattern during the period 1985–2014 from the perspective of terrestrial water storage change. Similar percentages are discovered under different scenarios during the future period. Our findings will benefit the understanding of hydrological responses under climate change.
Wei Li, Lu Li, Jie Chen, Qian Lin, and Hua Chen
Hydrol. Earth Syst. Sci., 25, 4531–4548, https://doi.org/10.5194/hess-25-4531-2021, https://doi.org/10.5194/hess-25-4531-2021, 2021
Short summary
Short summary
Reforestation can influence climate, but the sensitivity of summer rainfall to reforestation is rarely investigated. We take two reforestation scenarios to assess the impacts of reforestation on summer rainfall under different reforestation proportions and explore the potential mechanisms. This study concludes that reforestation increases summer rainfall amount and extremes through thermodynamics processes, and the effects are more pronounced in populated areas than over the whole basin.
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
Shaokun He, Shenglian Guo, Chong-Yu Xu, Kebing Chen, Zhen Liao, Lele Deng, Huanhuan Ba, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-586, https://doi.org/10.5194/hess-2019-586, 2020
Manuscript not accepted for further review
Short summary
Short summary
Aiming at cascade impoundment operation, we develop a classification-aggregation-decomposition method to overcome the
curse of dimensionalityand inflow stochasticity problem. It is tested with a mixed 30-reservoir system in China. The results show that our method can provide lots of schemes to refer to different flood event scenarios. The best scheme outperforms the conventional operating rule, as it increases impoundment efficiency and hydropower generation while flood control risk is less.
Lei Gu, Jie Chen, Jiabo Yin, Sylvia C. Sullivan, Hui-Min Wang, Shenglian Guo, Liping Zhang, and Jong-Suk Kim
Hydrol. Earth Syst. Sci., 24, 451–472, https://doi.org/10.5194/hess-24-451-2020, https://doi.org/10.5194/hess-24-451-2020, 2020
Short summary
Short summary
Focusing on the multifaceted nature of droughts, this study quantifies the change in global drought risks for 1.5 and 2.0 °C warming trajectories by a multi-model ensemble under three representative concentration pathways (RCP2.6, 4.5 and 8.5). Socioeconomic exposures are investigated by incorporating the dynamic shared socioeconomic pathways (SSPs) into the drought impact assessment. The results show that even the ambitious 1.5 °C warming level can cause substantial increases on the global scale.
Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li
Hydrol. Earth Syst. Sci., 23, 4033–4050, https://doi.org/10.5194/hess-23-4033-2019, https://doi.org/10.5194/hess-23-4033-2019, 2019
Short summary
Short summary
When using large ensembles of global climate models in hydrological impact studies, there are pragmatic questions on whether it is necessary to weight climate models and how to weight them. We use eight methods to weight climate models straightforwardly, based on their performances in hydrological simulations, and investigate the influences of the assigned weights. This study concludes that using bias correction and equal weighting is likely viable and sufficient for hydrological impact studies.
Yanlai Zhou, Fi-John Chang, Shenglian Guo, Huanhuan Ba, and Shaokun He
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-457, https://doi.org/10.5194/hess-2017-457, 2017
Revised manuscript not accepted
Short summary
Short summary
Developing a robust recurrent ANFIS for modeling multi-step-ahead flood forecast. Fusing the LSE into GA for optimizing the parameters of recurrent ANFIS. Improving the robustness and generalization of recurrent ANFIS. An accurate and robust multi-step-ahead inflow forecast in the Three Gorges Reservoir will provide precious decision-making time for effectively managing contingencies and emergencies and greatly alleviating flood risk as well as loss of life and property.
Chao Deng, Pan Liu, Shenglian Guo, Zejun Li, and Dingbao Wang
Hydrol. Earth Syst. Sci., 20, 4949–4961, https://doi.org/10.5194/hess-20-4949-2016, https://doi.org/10.5194/hess-20-4949-2016, 2016
Short summary
Short summary
Hydrological model parameters may vary in time under nonstationary conditions, i.e., climate change and anthropogenic activities. The technique of the ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model. Through a synthesis experiment and two case studies, the EnKF is demonstrated to be useful for the identification of parameter variations.
Lingqi Li, Lihua Xiong, Chong-Yu Xu, Shenglian Guo, and Pan Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-619, https://doi.org/10.5194/hess-2016-619, 2016
Revised manuscript not accepted
Short summary
Short summary
The study offers insights into future design floods that are inferred with both AM and POT samplings under nonstationarity caused by changing climate. Future design floods in nonstationarity context are usually (lower than) but not necessarily more different from stationary estimates. AM-based projection is more sensitive to climate change than POT estimates. The over-dispersion in POT arrival rate leads to the invalidation of Poisson assumption that the misuse may induce overestimated floods.
Chao Deng, Pan Liu, Shenglian Guo, Zejun Li, and Dingbao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2015-407, https://doi.org/10.5194/hess-2015-407, 2016
Manuscript not accepted for further review
Short summary
Short summary
Hydrological model parameters may not be constant in a changing environment, i.e., climate change and human activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model. Through a synthesis experiment and two case studies, the EnKF is demonstrated to be useful for the identification of parameter variation. The temporal variation parameter can be explained by catchment characteristic.
Related subject area
Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Interannual variations of terrestrial water storage in the East African Rift region
Technical note: Surface fields for global environmental modelling
Benchmarking multimodel terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations over major global river basins
Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022
Investigating sources of variability in closing the terrestrial water balance with remote sensing
Characterising recent drought events in the context of dry-season trends using state-of-the-art reanalysis and remote-sensing soil moisture products
Dynamic rainfall erosivity estimates derived from IMERG data
A global analysis of water storage variations from remotely sensed soil moisture and daily satellite gravimetry
Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data
Global assessment of subnational drought impact based on the Geocoded Disasters dataset and land reanalysis
Scaling methods of leakage correction in GRACE mass change estimates revisited for the complex hydro-climatic setting of the Indus Basin
Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale
Characterizing natural variability in complex hydrological systems using passive microwave-based climate data records: a case study for the Okavango Delta
High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River basin as a case study
The accuracy of temporal upscaling of instantaneous evapotranspiration to daily values with seven upscaling methods
Global component analysis of errors in three satellite-only global precipitation estimates
Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate Experiment (GRACE) water storage deficit
Intercomparison of freshwater fluxes over ocean and investigations into water budget closure
Widespread decline in terrestrial water storage and its link to teleconnections across Asia and eastern Europe
Assimilation of vegetation optical depth retrievals from passive microwave radiometry
Long-term total water storage change from a Satellite Water Cycle reconstruction over large southern Asian basins
Global partitioning of runoff generation mechanisms using remote sensing data
Land–atmosphere interactions in the tropics – a review
Global-scale human pressure evolution imprints on sustainability of river systems
Using GRACE in a streamflow recession to determine drainable water storage in the Mississippi River basin
A new dense 18-year time series of surface water fraction estimates from MODIS for the Mediterranean region
Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response
Using modelled discharge to develop satellite-based river gauging: a case study for the Amazon Basin
Global downscaling of remotely sensed soil moisture using neural networks
Global 5 km resolution estimates of secondary evaporation including irrigation through satellite data assimilation
Exploring the merging of the global land evaporation WACMOS-ET products based on local tower measurements
Estimating time-dependent vegetation biases in the SMAP soil moisture product
Daily GRACE gravity field solutions track major flood events in the Ganges–Brahmaputra Delta
Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model
Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data
Microwave implementation of two-source energy balance approach for estimating evapotranspiration
A global approach to estimate irrigated areas – a comparison between different data and statistics
The future of Earth observation in hydrology
Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations
MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data
Evaluating the hydrological consistency of evaporation products using satellite-based gravity and rainfall data
Evaluating the strength of the land–atmosphere moisture feedback in Earth system models using satellite observations
Cloud tolerance of remote-sensing technologies to measure land surface temperature
Dynamic changes in terrestrial net primary production and their effects on evapotranspiration
Assessing changes in urban flood vulnerability through mapping land use from historical information
SACRA – a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI
A global data set of the extent of irrigated land from 1900 to 2005
Evaluation of the satellite-based Global Flood Detection System for measuring river discharge: influence of local factors
Spatial patterns in timing of the diurnal temperature cycle
Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
Hydrol. Earth Syst. Sci., 28, 4733–4754, https://doi.org/10.5194/hess-28-4733-2024, https://doi.org/10.5194/hess-28-4733-2024, 2024
Short summary
Short summary
The satellites GRACE and GRACE-FO observe continental terrestrial water storage (TWS) changes. With over 20 years of data, we can look into long-term variations in the East Africa Rift region. We focus on analysing the interannual TWS variations compared to meteorological data and observations of the water storage compartments. We found strong influences of natural precipitation variability and human actions over Lake Victoria's water level.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Sadia Bibi, Tingju Zhu, Ashraf Rateb, Bridget R. Scanlon, Muhammad Aqeel Kamran, Abdelrazek Elnashar, Ali Bennour, and Ci Li
Hydrol. Earth Syst. Sci., 28, 1725–1750, https://doi.org/10.5194/hess-28-1725-2024, https://doi.org/10.5194/hess-28-1725-2024, 2024
Short summary
Short summary
We assessed 13 global models using GRACE satellite data over 29 river basins. Simulated seasonal water storage cycles showed discrepancies compared to GRACE. The models overestimated seasonal amplitude in boreal basins and showed underestimation in tropical, arid, and temperate zones, with phase differences of 2–3 months compared to GRACE in cold basins and of 1 month in temperate, arid, and semi-arid basins. Seasonal amplitude and phase differences provide insights for model improvement.
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024, https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Short summary
Understanding the spatial and temporal distribution of surface water is crucial for effective water resource management, maintaining ecosystem health and assessing flood risks. This study examined permanent and seasonal rivers and lakes globally over 38 years, uncovering a statistically significant expansion in seasonal extent captured in the new SARL database. The findings offer valuable resources for assessing the impact of changing river and lake extents on ecosystems and human livelihoods.
Claire I. Michailovsky, Bert Coerver, Marloes Mul, and Graham Jewitt
Hydrol. Earth Syst. Sci., 27, 4335–4354, https://doi.org/10.5194/hess-27-4335-2023, https://doi.org/10.5194/hess-27-4335-2023, 2023
Short summary
Short summary
Many remote sensing products for precipitation, evapotranspiration, and water storage variations exist. However, when these are used with in situ runoff data in water balance closure studies, no single combination of products consistently outperforms others. We analyzed the water balance closure using different products in catchments worldwide and related the results to catchment characteristics. Our results can help identify the dataset combinations best suited for use in different catchments.
Martin Hirschi, Bas Crezee, Pietro Stradiotti, Wouter Dorigo, and Sonia I. Seneviratne
EGUsphere, https://doi.org/10.5194/egusphere-2023-2499, https://doi.org/10.5194/egusphere-2023-2499, 2023
Short summary
Short summary
Based on surface and root-zone soil moisture, we compare the ability of selected long-term reanalysis and merged remote-sensing products to represent major agroecological drought events. While all products capture the investigated droughts, they particularly show differences in the drought magnitudes. Globally, the diverse and regionally contradicting dry-season soil moisture trends of the products is an important factor governing their drought representation and monitoring capability.
Robert A. Emberson
Hydrol. Earth Syst. Sci., 27, 3547–3563, https://doi.org/10.5194/hess-27-3547-2023, https://doi.org/10.5194/hess-27-3547-2023, 2023
Short summary
Short summary
Soil can be eroded by rainfall, and this is a major threat to agricultural sustainability. Estimating the erosivity of rainfall is essential as a first step to determine how much soil might be lost. Until recently, satellite data have not been used to estimate rainfall erosivity, but the data quality is now sufficient to do so. In this study, I test several methods to calculate rainfall erosivity using satellite rainfall data and contrast this with ground-based estimates.
Daniel Blank, Annette Eicker, Laura Jensen, and Andreas Güntner
Hydrol. Earth Syst. Sci., 27, 2413–2435, https://doi.org/10.5194/hess-27-2413-2023, https://doi.org/10.5194/hess-27-2413-2023, 2023
Short summary
Short summary
Soil moisture (SM), a key variable of the global water cycle, is analyzed using two types of satellite observations; microwave sensors measure the top few centimeters and satellite gravimetry (GRACE) the full vertical water column. As SM can change very fast, non-standard daily GRACE data are applied for the first time for this analysis. Jointly analyzing these data gives insight into the SM dynamics at different soil depths, and time shifts indicate the infiltration time into deeper layers.
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023, https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Short summary
We present an approach to estimate soil moisture (SM) at 1 km resolution using Sentinel-1 and Sentinel-3 satellites. The estimates were compared to other high-resolution (HR) datasets over Europe, northern Africa, Australia, and North America, showing good agreement. However, the discrepancies between the different HR datasets and their lower performances compared with in situ measurements and coarse-resolution datasets show the remaining challenges for large-scale HR SM mapping.
Yuya Kageyama and Yohei Sawada
Hydrol. Earth Syst. Sci., 26, 4707–4720, https://doi.org/10.5194/hess-26-4707-2022, https://doi.org/10.5194/hess-26-4707-2022, 2022
Short summary
Short summary
This study explores the link between hydrometeorological droughts and their socioeconomic impact at a subnational scale based on the newly developed disaster dataset with subnational location information. Hydrometeorological drought-prone areas were generally consistent with socioeconomic drought-prone areas in the disaster dataset. Our analysis clarifies the importance of the use of subnational disaster information.
Vasaw Tripathi, Andreas Groh, Martin Horwath, and Raaj Ramsankaran
Hydrol. Earth Syst. Sci., 26, 4515–4535, https://doi.org/10.5194/hess-26-4515-2022, https://doi.org/10.5194/hess-26-4515-2022, 2022
Short summary
Short summary
GRACE/GRACE-FO provided global observations of water storage change since 2002. Scaling is a common approach to compensate for the spatial filtering inherent to the results. However, for complex hydrological basins, the compatibility of scaling with the characteristics of regional hydrology has been rarely assessed. We assess traditional scaling approaches and a new scaling approach for the Indus Basin. Our results will help users with regional focus understand implications of scaling choices.
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
Robin van der Schalie, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu
Hydrol. Earth Syst. Sci., 26, 3611–3627, https://doi.org/10.5194/hess-26-3611-2022, https://doi.org/10.5194/hess-26-3611-2022, 2022
Short summary
Short summary
Climate data records of surface soil moisture, vegetation optical depth, and land surface temperature can be derived from passive microwave observations. The ability of these datasets to properly detect anomalies and extremes is very valuable in climate research and can especially help to improve our insight in complex regions where the current climate reanalysis datasets reach their limitations. Here, we present a case study over the Okavango Delta, where we focus on inter-annual variability.
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022, https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Short summary
A high-resolution (1 km) rainfall product with 10–30 d temporal resolution was obtained starting from SM data from Sentinel-1. Good performances are achieved using observed data (gauge and radar) over the Po River Valley, Italy, as a benchmark. The comparison with a product characterized by lower spatial resolution (25 km) highlights areas where the high spatial resolution of Sentinel-1 has great benefits. Possible applications include water management, agriculture and index-based insurances.
Zhaofei Liu
Hydrol. Earth Syst. Sci., 25, 4417–4433, https://doi.org/10.5194/hess-25-4417-2021, https://doi.org/10.5194/hess-25-4417-2021, 2021
Short summary
Short summary
Instantaneous evapotranspiration (ET), which is detected by the remote sensing technique, needs to be upscaled to daily values in order to practical applications. The accuracy of seven upscaling methods is evaluated by using global observations. The sine function and the evaporative fraction method using extraterrestrial solar irradiance are recommended. Although every upscaling scheme has high accuracy at most sites, it is less accurate at tropical rainforest and tropical monsoon sites.
Hanqing Chen, Bin Yong, Pierre-Emmanuel Kirstetter, Leyang Wang, and Yang Hong
Hydrol. Earth Syst. Sci., 25, 3087–3104, https://doi.org/10.5194/hess-25-3087-2021, https://doi.org/10.5194/hess-25-3087-2021, 2021
Alka Singh, John Thomas Reager, and Ali Behrangi
Hydrol. Earth Syst. Sci., 25, 511–526, https://doi.org/10.5194/hess-25-511-2021, https://doi.org/10.5194/hess-25-511-2021, 2021
Short summary
Short summary
The study demonstrates the utility of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies (TWSAs) for obtaining statistics of hydrological droughts, i.e., recovery periods and required precipitation in different precipitation scenarios. The findings of this study are that the GRACE-based drought index is valid for estimating the required precipitation for drought recovery, and the period of drought recovery depends on the intensity of the precipitation.
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021, https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
Short summary
The net exchange of water between the surface and atmosphere is mainly determined by the freshwater flux: the difference between evaporation (E) and precipitation (P), or E−P. Although there is consensus among modelers that with a warming climate E−P will increase, evidence from satellite data is still not conclusive, mainly due to sensor calibration issues. We here investigate the degree of correspondence among six recent
satellite-based climate data records and ERA5 reanalysis E−P data.
Xianfeng Liu, Xiaoming Feng, Philippe Ciais, and Bojie Fu
Hydrol. Earth Syst. Sci., 24, 3663–3676, https://doi.org/10.5194/hess-24-3663-2020, https://doi.org/10.5194/hess-24-3663-2020, 2020
Short summary
Short summary
Freshwater availability is crucial for sustainable development across the Asian and eastern European regions. Our results indicate widespread decline in terrestrial water storage (TWS) over the region during 2002–2017, primarily due to the intensive over-extraction of groundwater and warmth-induced surface water loss. The findings provide insights into changes in TWS and its components over the Asian and eastern European regions, where there is growing demand for food grains and water supplies.
Sujay V. Kumar, Thomas R. Holmes, Rajat Bindlish, Richard de Jeu, and Christa Peters-Lidard
Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, https://doi.org/10.5194/hess-24-3431-2020, 2020
Short summary
Short summary
Vegetation optical depth (VOD) is a byproduct of the soil moisture retrieval from passive microwave instruments. This study demonstrates that VOD information can be utilized for improving land surface water budget and carbon conditions through data assimilation.
Victor Pellet, Filipe Aires, Fabrice Papa, Simon Munier, and Bertrand Decharme
Hydrol. Earth Syst. Sci., 24, 3033–3055, https://doi.org/10.5194/hess-24-3033-2020, https://doi.org/10.5194/hess-24-3033-2020, 2020
Short summary
Short summary
The water mass variation at and below the land surface is a major component of the water cycle that was first estimated using GRACE observations (2002–2017). Our analysis shows the advantages of the use of satellite observation for precipitation and evapotranspiration along with river discharge measurement to perform an indirect and coherent reconstruction of this water component estimate over longer time periods.
Joseph T. D. Lucey, John T. Reager, and Sonya R. Lopez
Hydrol. Earth Syst. Sci., 24, 1415–1427, https://doi.org/10.5194/hess-24-1415-2020, https://doi.org/10.5194/hess-24-1415-2020, 2020
Short summary
Short summary
This work relates total water storage (TWS) and rainfall to surface water inundation (SWI) using NASA satellite data. We determine whether TWS and/or rainfall control global SWI developments. Regression methods and cross-correlations were used to relate the measurements and correct for time differences among peaks. Results show TWS and rainfall control most global SWI developments. To our knowledge, this is the first global study on SWI controls and validates previous findings.
Pierre Gentine, Adam Massmann, Benjamin R. Lintner, Sayed Hamed Alemohammad, Rong Fu, Julia K. Green, Daniel Kennedy, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 23, 4171–4197, https://doi.org/10.5194/hess-23-4171-2019, https://doi.org/10.5194/hess-23-4171-2019, 2019
Short summary
Short summary
Land–atmosphere interactions are key for the exchange of water, energy, and carbon dioxide, especially in the tropics. We here review some of the recent findings on land–atmosphere interactions in the tropics and where we see potential challenges and paths forward.
Serena Ceola, Francesco Laio, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 3933–3944, https://doi.org/10.5194/hess-23-3933-2019, https://doi.org/10.5194/hess-23-3933-2019, 2019
Short summary
Short summary
A simple and effective index for the quantitative estimation of the evolution of human pressure on rivers at global scale is proposed. This index, based on nightlights and river discharge data, shows a significant increase from 1992 to 2013 worldwide. The most notable changes are found in river basins across Africa and Asia, where human pressure on rivers is growing markedly. This index identifies priority areas that can be targeted for the implementation of mitigation strategies and plans.
Heloisa Ehalt Macedo, Ralph Edward Beighley, Cédric H. David, and John T. Reager
Hydrol. Earth Syst. Sci., 23, 3269–3277, https://doi.org/10.5194/hess-23-3269-2019, https://doi.org/10.5194/hess-23-3269-2019, 2019
Short summary
Short summary
The water stored under the surface is very important for defining the amount of water available for human and environmental applications; however, it is still a challenge to obtain such measurements. NASA's GRACE satellites provide information on total terrestrial water storage based on observations of gravity changes. Here, we relate GRACE data to streamflow measurements, providing estimations of the fraction of baseflow and total drainable storage for the Mississippi River basin.
Linlin Li, Andrew Skidmore, Anton Vrieling, and Tiejun Wang
Hydrol. Earth Syst. Sci., 23, 3037–3056, https://doi.org/10.5194/hess-23-3037-2019, https://doi.org/10.5194/hess-23-3037-2019, 2019
Short summary
Short summary
We derived an 8 d, 500 m resolution surface water fraction product over the Mediterranean region for 2000–2017 based on MODIS data. This dataset complements existing surface water/wetland datasets by adding more temporal detail. It allows for the seasonal, inter-annual, and long-term dynamics of the surface water extent to be monitored, inclusive of small-sized and highly dynamic water bodies; it can also contribute to biodiversity and climate change assessment.
Siyuan Tian, Luigi J. Renzullo, Albert I. J. M. van Dijk, Paul Tregoning, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 1067–1081, https://doi.org/10.5194/hess-23-1067-2019, https://doi.org/10.5194/hess-23-1067-2019, 2019
Jiawei Hou, Albert I. J. M. van Dijk, Luigi J. Renzullo, and Robert A. Vertessy
Hydrol. Earth Syst. Sci., 22, 6435–6448, https://doi.org/10.5194/hess-22-6435-2018, https://doi.org/10.5194/hess-22-6435-2018, 2018
Short summary
Short summary
Satellite-based river gauging can be constructed based on remote-sensing-derived surface water extent and modelled discharge, and used to estimate river discharges with satellite observations only. This provides opportunities for monitoring river discharge in the absence of a real-time hydrological model or gauging stations.
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.
Albert I. J. M. van Dijk, Jaap Schellekens, Marta Yebra, Hylke E. Beck, Luigi J. Renzullo, Albrecht Weerts, and Gennadii Donchyts
Hydrol. Earth Syst. Sci., 22, 4959–4980, https://doi.org/10.5194/hess-22-4959-2018, https://doi.org/10.5194/hess-22-4959-2018, 2018
Short summary
Short summary
Evaporation from wetlands, lakes and irrigation areas needs to be measured to understand water scarcity. So far, this has only been possible for small regions. Here, we develop a solution that can be applied at a very high resolution globally by making use of satellite observations. Our results show that 16% of global water resources evaporate before reaching the ocean, mostly from surface water. Irrigation water use is less than 1% globally but is a very large water user in several dry basins.
Carlos Jiménez, Brecht Martens, Diego M. Miralles, Joshua B. Fisher, Hylke E. Beck, and Diego Fernández-Prieto
Hydrol. Earth Syst. Sci., 22, 4513–4533, https://doi.org/10.5194/hess-22-4513-2018, https://doi.org/10.5194/hess-22-4513-2018, 2018
Short summary
Short summary
Observing the amount of water evaporated in nature is not easy, and we need to combine accurate local measurements with estimates from satellites, more uncertain but covering larger areas. This is the main topic of our paper, in which local observations are compared with global land evaporation estimates, followed by a weighting of the global observations based on this comparison to attempt derive a more accurate evaporation product.
Simon Zwieback, Andreas Colliander, Michael H. Cosh, José Martínez-Fernández, Heather McNairn, Patrick J. Starks, Marc Thibeault, and Aaron Berg
Hydrol. Earth Syst. Sci., 22, 4473–4489, https://doi.org/10.5194/hess-22-4473-2018, https://doi.org/10.5194/hess-22-4473-2018, 2018
Short summary
Short summary
Satellite soil moisture products can provide critical information on incipient droughts and the interplay between vegetation and water availability. However, time-variant systematic errors in the soil moisture products may impede their usefulness. Using a novel statistical approach, we detect such errors (associated with changing vegetation) in the SMAP soil moisture product. The vegetation-associated biases impede drought detection and the quantification of vegetation–water interactions.
Ben T. Gouweleeuw, Andreas Kvas, Christian Gruber, Animesh K. Gain, Thorsten Mayer-Gürr, Frank Flechtner, and Andreas Güntner
Hydrol. Earth Syst. Sci., 22, 2867–2880, https://doi.org/10.5194/hess-22-2867-2018, https://doi.org/10.5194/hess-22-2867-2018, 2018
Short summary
Short summary
Daily GRACE gravity field solutions have been evaluated against daily river runoff data for major flood events in the Ganges–Brahmaputra Delta in 2004 and 2007. Compared to the monthly gravity field solutions, the trends over periods of a few days in the daily gravity field solutions are able to reflect temporal variations in river runoff during major flood events. This implies that daily gravity field solutions released in near-real time may support flood monitoring for large events.
Peter J. Shellito, Eric E. Small, and Ben Livneh
Hydrol. Earth Syst. Sci., 22, 1649–1663, https://doi.org/10.5194/hess-22-1649-2018, https://doi.org/10.5194/hess-22-1649-2018, 2018
Short summary
Short summary
After soil gets wet, much of the surface moisture evaporates directly back into the air. Recent satellite data show that this process is enhanced when there is more water in the soil, less humidity in the air, and less vegetation covering the ground. A widely used model shows similar effects of soil water and humidity, but it largely misses the role of vegetation and assigns outsized importance to soil type. These results are encouraging evidence that the satellite can be used to improve models.
Cassandra Normandin, Frédéric Frappart, Bertrand Lubac, Simon Bélanger, Vincent Marieu, Fabien Blarel, Arthur Robinet, and Léa Guiastrennec-Faugas
Hydrol. Earth Syst. Sci., 22, 1543–1561, https://doi.org/10.5194/hess-22-1543-2018, https://doi.org/10.5194/hess-22-1543-2018, 2018
Thomas R. H. Holmes, Christopher R. Hain, Wade T. Crow, Martha C. Anderson, and William P. Kustas
Hydrol. Earth Syst. Sci., 22, 1351–1369, https://doi.org/10.5194/hess-22-1351-2018, https://doi.org/10.5194/hess-22-1351-2018, 2018
Short summary
Short summary
In an effort to apply cloud-tolerant microwave data to satellite-based monitoring of evapotranspiration (ET), this study reports on an experiment where microwave-based land surface temperature is used as the key diagnostic input to a two-source energy balance method for the estimation of ET. Comparisons of this microwave ET with the conventional thermal infrared estimates show widespread agreement in spatial and temporal patterns from seasonal to inter-annual timescales over Africa and Europe.
Jonas Meier, Florian Zabel, and Wolfram Mauser
Hydrol. Earth Syst. Sci., 22, 1119–1133, https://doi.org/10.5194/hess-22-1119-2018, https://doi.org/10.5194/hess-22-1119-2018, 2018
Short summary
Short summary
The following study extends existing irrigation maps based on official reports. The main idea was to extend the reported irrigated areas using agricultural suitability data and compare them with remote sensing information about plant conditions. The analysis indicates an increase in irrigated land by 18 % compared to the reported statistics. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated.
Matthew F. McCabe, Matthew Rodell, Douglas E. Alsdorf, Diego G. Miralles, Remko Uijlenhoet, Wolfgang Wagner, Arko Lucieer, Rasmus Houborg, Niko E. C. Verhoest, Trenton E. Franz, Jiancheng Shi, Huilin Gao, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, https://doi.org/10.5194/hess-21-3879-2017, 2017
Short summary
Short summary
We examine the opportunities and challenges that technological advances in Earth observation will present to the hydrological community. From advanced space-based sensors to unmanned aerial vehicles and ground-based distributed networks, these emergent systems are set to revolutionize our understanding and interpretation of hydrological and related processes.
Liangjing Zhang, Henryk Dobslaw, Tobias Stacke, Andreas Güntner, Robert Dill, and Maik Thomas
Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, https://doi.org/10.5194/hess-21-821-2017, 2017
Short summary
Short summary
Global numerical models perform differently, as has been found in some model intercomparison studies, which mainly focused on components like evapotranspiration, soil moisture or runoff. We have applied terrestrial water storage that is estimated from a GRACE-based state-of-art post-processing method to validate four global numerical models and try to identify the advantages and deficiencies of a certain model. GRACE-based TWS demonstrates its additional benefits to improve the models in future.
Hylke E. Beck, Albert I. J. M. van Dijk, Vincenzo Levizzani, Jaap Schellekens, Diego G. Miralles, Brecht Martens, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, https://doi.org/10.5194/hess-21-589-2017, 2017
Short summary
Short summary
MSWEP (Multi-Source Weighted-Ensemble Precipitation) is a new global terrestrial precipitation dataset with a high 3-hourly temporal and 0.25° spatial resolution. The dataset is unique in that it takes advantage of a wide range of data sources, including gauge, satellite, and reanalysis data, to obtain the best possible precipitation estimates at global scale. The dataset outperforms existing gauge-adjusted precipitation datasets.
Oliver López, Rasmus Houborg, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 21, 323–343, https://doi.org/10.5194/hess-21-323-2017, https://doi.org/10.5194/hess-21-323-2017, 2017
Short summary
Short summary
The study evaluated the spatial and temporal consistency of satellite-based hydrological products based on the water budget equation, including three global evaporation products. The products were spatially matched using spherical harmonics analysis. The results highlighted the difficulty in obtaining agreement between independent satellite products, even over regions with simple water budgets. However, imposing a time lag on water storage data improved results considerably.
Paul A. Levine, James T. Randerson, Sean C. Swenson, and David M. Lawrence
Hydrol. Earth Syst. Sci., 20, 4837–4856, https://doi.org/10.5194/hess-20-4837-2016, https://doi.org/10.5194/hess-20-4837-2016, 2016
Short summary
Short summary
We demonstrate a new approach to assess the strength of feedbacks resulting from land–atmosphere coupling on decadal timescales. Our approach was tailored to enable evaluation of Earth system models (ESMs) using data from Earth observation satellites that measure terrestrial water storage anomalies and relevant atmospheric variables. Our results are consistent with previous work demonstrating that ESMs may be overestimating the strength of land surface feedbacks compared with observations.
Thomas R. H. Holmes, Christopher R. Hain, Martha C. Anderson, and Wade T. Crow
Hydrol. Earth Syst. Sci., 20, 3263–3275, https://doi.org/10.5194/hess-20-3263-2016, https://doi.org/10.5194/hess-20-3263-2016, 2016
Short summary
Short summary
We test the cloud tolerance of two technologies to estimate land surface temperature (LST) from space: microwave (MW) and thermal infrared (TIR). Although TIR has slightly lower errors than MW with ground data under clear-sky conditions, it suffers increasing negative bias as cloud cover increases. In contrast, we find no direct impact of clouds on the accuracy and bias of MW-LST. MW-LST can therefore be used to improve TIR cloud screening and increase sampling in clouded regions.
Zhi Li, Yaning Chen, Yang Wang, and Gonghuan Fang
Hydrol. Earth Syst. Sci., 20, 2169–2178, https://doi.org/10.5194/hess-20-2169-2016, https://doi.org/10.5194/hess-20-2169-2016, 2016
Short summary
Short summary
Global net primary production (NPP) slightly increased in 2000–2014. More than 64 % of vegetated land in the Northern Hemisphere (NH) showed increased NPP, while 60.3 % in Southern Hemisphere (SH) showed a decreasing trend. Vegetation greening and climate change promote rises of global evapotranspiration (ET). The increased rate of ET in the NH is faster than that in the SH. Meanwhile, global warming and vegetation greening accelerate evaporation in soil moisture. Continuation of these trends will likely exacerbate the risk of ecological drought.
M. Boudou, B. Danière, and M. Lang
Hydrol. Earth Syst. Sci., 20, 161–173, https://doi.org/10.5194/hess-20-161-2016, https://doi.org/10.5194/hess-20-161-2016, 2016
Short summary
Short summary
This paper presents an appraisal of flood vulnerability of two French cities, Besançon and Moissac, which have been largely impacted by two ancient major floods (resp. in January 1910 and March 1930). An analysis of historical sources allows the mapping of land use and occupation within the flood extent of the two historical floods, both in past and present contexts. It gives an insight into the complexity of flood risk evolution, at a local scale.
S. Kotsuki and K. Tanaka
Hydrol. Earth Syst. Sci., 19, 4441–4461, https://doi.org/10.5194/hess-19-4441-2015, https://doi.org/10.5194/hess-19-4441-2015, 2015
Short summary
Short summary
This study aims to develop a new global data set of a satellite-derived crop calendar (SACRA) and to reveal its advantages and disadvantages compared to other global products. The cultivation period of SACRA is identified from the time series of NDVI; therefore, SACRA considers current effects of human decisions and natural disasters. The difference between the estimated sowing dates and other existing products is less than 2 months (< 62 days) in most areas.
S. Siebert, M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, https://doi.org/10.5194/hess-19-1521-2015, 2015
Short summary
Short summary
We developed the historical irrigation data set (HID) depicting the spatio-temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5arcmin resolution.
The HID reflects very well the spatial patterns of irrigated land as shown on two historical maps for 1910 and 1960.
Global AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. Mean aridity on irrigated land increased and mean natural river discharge decreased from 1900 to 1950.
B. Revilla-Romero, J. Thielen, P. Salamon, T. De Groeve, and G. R. Brakenridge
Hydrol. Earth Syst. Sci., 18, 4467–4484, https://doi.org/10.5194/hess-18-4467-2014, https://doi.org/10.5194/hess-18-4467-2014, 2014
Short summary
Short summary
One of the main challenges in global hydrological modelling is the limited availability of observational data for calibration and model verification. The aim of this study is to test the potentials and constraints of the remote sensing signal of the Global Flood Detection System (GFDS) for converting the flood detection signal into river discharge values. This work also provides a first analysis of the local factors influencing the accuracy of discharge measurement as provided by this system.
T. R. H. Holmes, W. T. Crow, and C. Hain
Hydrol. Earth Syst. Sci., 17, 3695–3706, https://doi.org/10.5194/hess-17-3695-2013, https://doi.org/10.5194/hess-17-3695-2013, 2013
A. Loew, T. Stacke, W. Dorigo, R. de Jeu, and S. Hagemann
Hydrol. Earth Syst. Sci., 17, 3523–3542, https://doi.org/10.5194/hess-17-3523-2013, https://doi.org/10.5194/hess-17-3523-2013, 2013
Cited articles
Abhishek, Kinouchi, T., and Sayama, T.: A comprehensive assessment of water
storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin
during 2002–2020, J. Hydrol., 603, 126868,
https://doi.org/10.1016/j.jhydrol.2021.126868, 2021.
AghaKouchak, A.: A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 United States drought, Hydrol. Earth Syst. Sci., 18, 2485–2492, https://doi.org/10.5194/hess-18-2485-2014, 2014.
Allan, R. P., Soden, B. J., John, V. O., Ingram, W., and Good, P.: Current
changes in tropical precipitation, Environ. Res. Lett., 5, 025205,
https://doi.org/10.1088/1748-9326/5/2/025205, 2010.
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N.,
Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H.,
Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H.,
Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of
drought and heat-induced tree mortality reveals emerging climate change
risks for forests, For. Ecol. Manag. 259, 660–684,
https://doi.org/10.1016/j.foreco.2009.09.001, 2010.
An, L., Wang, J., Huang, J., Pokhrel, Y., Hugonnet, R., Wada, Y., Caceres,
D., Müller Schmied, H., Song, C. Q., Berthier, E., Yu, H. P., and Zhang,
G. L.: Divergent Causes of Terrestrial Water Storage Decline Between
Drylands and Humid Regions Globally, Geophys. Res. Lett., 48, e2021GL095035,
https://doi.org/10.1029/2021GL095035, 2021.
Beaudoing, H. and Rodell, M.: GLDAS Noah Land Surface Model L4 monthly 1.0 × 1.0 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/QN80TO7ZHFJZ, 2019.
Beaudoing, H. and Rodell, M.: GLDAS VIC Land Surface Model L4 monthly 1.0 × 1.0 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/ZRIHVF29X43C, 2020.
Barnard, D. M., Germino, M. J., Bradford, J. B., Connor, R. C., Andrews, C.
M., and Shriver, R. K.: Are drought indices and climate data good indicators
of ecologically relevant soil moisture dynamics in drylands?, Ecol. Indic.,
133, 108379, https://doi.org/10.1016/j.ecolind.2021.108379, 2021.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018.
Bouchard, F., Turner, K. W., MacDonald, L. A., Deakin, C., White, H.,
Farquharson, N., Medeiros, A. S., Wolfe, B. B., Hall, R. I., Pienitz, R.,
and Edwards, T. W. D.: Vulnerability of shallow subarctic lakes to evaporate
and desiccate when snowmelt runoff is low, Geophys. Res. Lett., 40,
6112–6117, https://doi.org/10.1002/2013GL058635, 2013.
Burke, E. J., Zhang, Y., and Krinner, G.: Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change, The Cryosphere, 14, 3155–3174, https://doi.org/10.5194/tc-14-3155-2020, 2020.
Byrne, M. P. and O'Gorman, P. A.: The Response of Precipitation Minus
Evapotranspiration to Climate Warming: Why the “Wet-Get-Wetter,
Dry-Get-Drier” Scaling Does Not Hold over Land, J. Climate, 28, 8078–8092,
https://doi.org/10.1175/JCLI-D-15-0369.1, 2015.
Chen, J. L., Wilson, C. R., and Tapley, B. D.: The 2009 exceptional Amazon
flood and interannual terrestrial water storage change observed by GRACE,
Water Resour. Res., 46, W12526, https://doi.org/10.1029/2010WR009383, 2010.
Chen, J. L., Tapley, B., Rodell, M., Seo, K.W., Wilson, C., Scanlon, B. R.,
and Pokhrel, Y.: Basin-Scale River Runoff Estimation From GRACE Gravity
Satellites, Climate Models, and In Situ Observations: A Case Study in the
Amazon Basin, Water Resour. Res., 56, e2020WR028032,
https://doi.org/10.1029/2020WR028032, 2020.
Chang, L.-L., Yuan, R., Gupta, H. V., Winter, C. L., and Niu, G.-Y.: Why is the
terrestrial water storage in dryland regions declining? A perspective based
on Gravity Recovery and Climate Experiment satellite observations and Noah
land surface model with multiparameterization schemes model simulations,
Water Resour. Res., 56, e2020WR027102, https://doi.org/10.1029/2020WR027102, 2020.
Chou, C., Neelin, J. D., Chen, C.-A., and Tu, J.-Y.: Evaluating the
“Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global
Warming, J. Climate, 22, 1982–2005, https://doi.org/10.1175/2008JCLI2471.1,
2009.
Climatic Research Unit: CRU TS Version 4.06, [data set], https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/, last access: 12 December 2022.
Coppola, E., Nogherotto, R., Ciarlo', J. M., Giorgi, F., van Meijgaard, E.,
Kadygrov, N., Iles, C., Corre, L., Sandstad, M., Somot, S., Nabat, P.,
Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J.,
Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., Christensen, O.
B., Boberg, F., Sørland, S. L., Demory, M.-E., Bülow, K., Teichmann,
C., Warrach-Sagi, K., and Wulfmeyer, V.: Assessment of the European Climate
Projections as Simulated by the Large EURO-CORDEX Regional and Global
Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032356,
https://doi.org/10.1029/2019JD032356, 2021.
Dai, A.: Drought under global warming: a review, Wiley Interdiscip.
Rev.-Clim. Change, 2, 45–65, https://doi.org/10.1002/wcc.81, 2011.
Derber, J., Parrish, D., and Lord, S.: The New Global Operational Analysis
System at the National-Meteorological-Center, Weather Forecast., 6, 538–547,
1991.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and
Eicker, A.: Global-scale assessment of groundwater depletion and related
groundwater abstractions: Combining hydrological modeling with information
from well observations and GRACE satellites, Water Resour. Res., 50,
5698–5720, https://doi.org/10.1002/2014WR015595, 2014.
Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., and Maher, N.:
More extreme precipitation in the world's dry and wet regions, Nat. Clim.
Change, 6, 508–513, https://doi.org/10.1038/NCLIMATE2941, 2016.
Durack, P. J., Wijffels, S. E., and Matear, R. J.: Ocean Salinities Reveal
Strong Global Water Cycle Intensification During 1950 to 2000, Science, 336,
455–458, https://doi.org/10.1126/science.1212222, 2012.
Durbin, J. and Watson, G. S.: Testing for Serial Correlation in Least
Squares Regression, I, Biometrika, 37, 409–428, 1950.
Durbin, J. and Watson, G. S.: Testing for Serial Correlation in Least
Squares Regression, II, Biometrika, 38, 159–179, 1951.
Earth System Grid Federation, CMIP6 GCMs simulations, [data set], https://esgf-node.llnl.gov/projects/cmip6/, last access: 12 December, 2022.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Feng, H. and Zhang, M.: Global land moisture trends: drier in dry and
wetter in wet over land, Sci. Rep.-UK, 5, 18018,
https://doi.org/10.1038/srep18018, 2015.
Feng, W., Zhong, M., Lemoine, J.-M., Biancale, R., Hsu, H.-T., and Xia, J.:
Evaluation of groundwater depletion in North China using the Gravity
Recovery and Climate Experiment (GRACE) data and ground-based measurements:
Groundwater Depletion In North China, Water Resour. Res., 49, 2110–2118,
https://doi.org/10.1002/wrcr.20192, 2013.
François, B., Vrac, M., Cannon, A. J., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: which benefits for which losses?, Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, 2020.
Freedman, F. R., Pitts, K. L., and Bridger, A. F. C.: Evaluation of CMIP
climate model hydrological output for the Mississippi River basin using
GRACE satellite observations, J. Hydrol., 519, 3566–3577,
https://doi.org/10.1016/j.jhydrol.2014.10.036, 2014.
Gampe, D., Zscheischler, J., Reichstein, M., O'Sullivan, M., Smith, W. K.,
Sitch, S., and Buermann, W.: Increasing impact of warm droughts on northern
ecosystem productivity over recent decades, Nat. Clim. Change, 11, 772–779,
https://doi.org/10.1038/s41558-021-01112-8, 2021.
Gaughan, A. E. and Waylen, P. R.: Spatial and temporal precipitation
variability in the Okavango-Kwando-Zambezi catchment, southern Africa, J.
Arid Environ., 82, 19–30, https://doi.org/10.1016/j.jaridenv.2012.02.007,
2012.
Getirana, A.: Extreme Water Deficit in Brazil Detected from Space, J.
Hydrometeorol., 17, 591–599, https://doi.org/10.1175/JHM-D-15-0096.1, 2016.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.:
G-RUN ENSEMBLE: A Multi-Forcing Observation-Based Global Runoff Reanalysis,
Water Resour. Res., 57, e2020WR028787, https://doi.org/10.1029/2020WR028787,
2021a.
Ghiggi, G., Humphrey, V., Gudmundsson, L., and Seneviratne, S. I.: G-RUN ENSEMBLE, figshare [data set], https://doi.org/10.6084/m9.figshare.12794075.v1, 2021b.
GLEAM: Global Land Evaporation Amsterdam Model, https://www.gleam.eu/, last access: 12 December 2022.
Goyal, R. K.: Sensitivity of evapotranspiration to global warming: A case
study of arid zone of Rajasthan (India), Agr. Water Manage., 69,
1–11, 2004.
GRACE: CSR GRACE/GRACE-FO RL06 Mascon Solutions (version 02), GRACE [data set], https://www2.csr.utexas.edu/grace/RL06_mascons.html, last access: 2 December 2022.
Greve, P. and Seneviratne, S. I.: Assessment of future changes in water
availability and aridity, Geophys. Res. Lett., 42, 5493–5499,
https://doi.org/10.1002/2015GL064127, 2015.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and
Seneviratne, S. I.: Global assessment of trends in wetting and drying over
land, Nat. Geosci., 7, 716–721, https://doi.org/10.1038/NGEO2247, 2014.
Grigoriev, V. Y. and Frolova, N. L.: Terrestrial water storage change of
European Russia and its impact on water balance, Geography, Environment,
Sustainability, 11, 38–50,
https://doi.org/10.24057/2071-9388-2018-11-1-38-50, 2018.
Guo, M., Yue, W., Wang, T., Zheng, N., and Wu, L.: Assessing the use of
standardized groundwater index for quantifying groundwater drought over the
conterminous US, J. Hydrol., 598, 126227,
https://doi.org/10.1016/j.jhydrol.2021.126227, 2021.
Haacker, E. M. K., Kendall, A. D., and Hyndman, D. W.: Water Level Declines
in the High Plains Aquifer: Predevelopment to Resource Senescence,
Groundwater 54, 231–242, https://doi.org/10.1111/gwat.12350, 2016.
Hamed, K. H. and Rao, A. R.: A modified Mann-Kendall trend test for
autocorrelated data, J. Hydrol., 204, 182–196, 1998.
Hao, Z. and Singh, V. P.: Drought characterization from a multivariate
perspective: A review, J. Hydrol., 527, 668–678,
https://doi.org/10.1016/j.jhydrol.2015.05.031, 2015.
Hao, Z., Singh, V. P., and Xia, Y. Seasonal Drought Prediction: Advances,
Challenges, and Future Prospects, Rev. Geophys., 56, 108–141,
https://doi.org/10.1002/2016RG000549, 2018.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 1–8, 2020.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699,
https://doi.org/10.1175/JCLI3990.1, 2006.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Hu, B., Wang, L., Li, X., Zhou, J., and Pan, Y.: Divergent Changes in
Terrestrial Water Storage Across Global Arid and Humid Basins, Geophys. Res.
Lett., 48, e2020GL091069, https://doi.org/10.1029/2020GL091069, 2021.
Hu, Z., Chen, X., Chen, D., Li, J., Wang, S., Zhou, Q., Yin, G., and Guo,
N.: “Dry gets drier, wet gets wetter”: A case study over the arid regions
of central Asia, Int. J. Climatol., 39, 1072–1091,
https://doi.org/10.1002/joc.5863, 2019.
Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., and Ran, J.: Global semi-arid
climate change over last 60 years, Clim. Dynam., 46, 1131–1150,
https://doi.org/10.1007/s00382-015-2636-8, 2016.
Huang, L., Li, Z., Tian, B., Chen, Q., and Zhou, J.: Monitoring glacier
zones and snow/firn line changes in the Qinghai–Tibetan Plateau using
C-band SAR imagery, Remote Sens. Environ., 137, 17–30,
https://doi.org/10.1016/j.rse.2013.05.016, 2013.
Huang, L., Li, Z., Zhou, J. M., and Zhang, P.: An automatic method for clean
glacier and nonseasonal snow area change estimation in High Mountain Asia
from 1990 to 2018, Remote Sens. Environ., 258, 112376,
https://doi.org/10.1016/j.rse.2021.112376, 2021.
Huntington, T. G.: Evidence for intensification of the global water cycle:
Review and synthesis, J. Hydrol., 319, 83–95,
https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate change
will affect the Asian water towers, Science, 328, 1382–1385, 2010.
Iqbal, Z., Shahid, S., Ahmed, K., Ismail, T., Ziarh, G. F., Chung, E.-S.,
and Wang, X.: Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia,
Atmos. Res., 254, 105525,
https://doi.org/10.1016/j.atmosres.2021.105525, 2021.
Kim, Y. H., Min, S. K., Zhang, X., Sillmann, J., and Sandstad, M.:
Evaluation of the CMIP6 multi-model ensemble for climate extreme indices,
Weather Clim. Extremes, 29, 100269, https://doi.org/10.1016/j.wace.2020.100269, 2020.
Kumar, S., Allan, R. P., Zwiers, F., Lawrence, D. M., and Dirmeyer, P. A.:
Revisiting trends in wetness and dryness in the presence of internal climate
variability and water limitations over land, Geophys. Res. Lett., 42,
10867–10875, https://doi.org/10.1002/2015GL066858, 2015.
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.
Lehmann, F., Vishwakarma, B. D., and Bamber, J.: How well are we able to close the water budget at the global scale?, Hydrol. Earth Syst. Sci., 26, 35–54, https://doi.org/10.5194/hess-26-35-2022, 2022.
Li, B., Beaudoing, H., and Rodell, M.: GLDAS Catchment Land Surface Model L4 monthly 1.0 × 1.0 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/SGSL3LNKGJWW, 2020.
Li, F.: Data from: Long-term (1979–present) total water storage anomalies over the global land derived by reconstructing GRACE data, Dryad [data set], https://doi.org/10.5061/dryad.z612jm6bt, 2021.
Li, F., Kusche, J., Chao, N., Wang, Z., and Loecher, A.: Long-Term
(1979–Present) Total Water Storage Anomalies Over the Global Land Derived by
Reconstructing GRACE Data, Geophys. Res. Lett., 48, e2021GL093492,
https://doi.org/10.1029/2021GL093492, 2021.
Li, Y., Zhang, Y., Ye, W., and Zhang, X.: Global Wet/Dry Patterns and Mechanisms
Since the Last Glacial Maximum: A Key to Future Projection, Earths Future,
9, e2020EF001907, https://doi.org/10.1029/2020EF001907, 2021.
Li, X., Long, D., Scanlon, B. R., Mann, M. E., Li, X., Tian, F., Sun, Z.,
and Wang, G.: Climate change threatens terrestrial water storage over the
Tibetan Plateau, Nat. Clim. Change, 12, 801–807,
https://doi.org/10.1038/s41558-022-01443-0, 2022.
Liang, X., Lettenmaier, D., Wood, E., and Burges, S.: A Simple
Hydrologically Based Model of Land-Surface Water and Energy Fluxes for
General-Circulation Models, J. Geophys. Res.-Atmos., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Liu, X., Yin, Z. Y., Shao, X., and Qin, N.: Temporal trends and variability
of daily maximum and minimum, extreme temperature events, and growing season
length over the eastern and central Tibetan Plateau during 1961–2003, J.
Geophys. Res., 111, D19109, https://doi.org/10.1029/2005JD006915, 2006.
Long, D., Shen, Y., Sun, A., Hong, Y., Longuevergne, L., Yang, Y., Li, B.,
and Chen, L.: Drought and flood monitoring for a large karst plateau in
Southwest China using extended GRACE data, Remote Sens. Environ., 155,
145–160, https://doi.org/10.1016/j.rse.2014.08.006, 2014.
Luthcke, S. B., Sabaka, T. J., Loomis, B. D., Arendt, A. A., McCarthy, J.
J., and Camp, J.: Antarctica, Greenland and Gulf of Alaska land-ice
evolution from an iterated GRACE global mascon solution, J. Glaciol., 59,
613–631, https://doi.org/10.3189/2013JoG12J147, 2013.
Lv, M., Ma, Z., Chen, L., and Peng, S.: Evapotranspiration reconstruction
based on land surface models and observed water budget components while
considering irrigation, J. Hydrometeorol., 20, 2163–2183,
https://doi.org/10.1175/jhm-d-19-0090.1, 2019.
Lv, M., Ma, Z., and Yuan, N.: Attributing terrestrial water storage
variations across China to changes in groundwater and human water use, J.
Hydrometeorol., 22, 3–21, https://doi.org/10.1175/jhm-d-20-0095.1, 2021.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Meng, F., Su, F., Li, Y., and Tong. K.: Changes in Terrestrial Water Storage
During 2003–2014 and Possible Causes in Tibetan Plateau, J. Geophys. Res.-Atmos., 124, 2909–2931, 2019.
Milly, P. C. D., Dunne, K. A., and Vecchia, A. V.: Global pattern of trends
in streamflow and water availability in a changing climate, Nature, 438,
347–350, https://doi.org/10.1038/nature04312, 2005.
Moreno-Jimenez, E., Plaza, C., Saiz, H., Manzano, R., Flagmeier, M., and
Maestre, F. T.: Aridity and reduced soil micronutrient availability in
global drylands, Nat. Sustain., 2, 371–377,
https://doi.org/10.1038/s41893-019-0262-x, 2019.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Shadkam, S., Trautmann, T., and Döll,
P.: The global water resources and use model WaterGAP v2.2d – Standard model output, PANGAEA, [data set], https://doi.org/10.1594/PANGAEA.918447, 2020.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021.
Ogou, F. K., Ojeh, V. N., Naabil, E., and Mbah, C. I.: Hydro-climatic and
Water Availability Changes and its Relationship with NDVI in Northern
Sub-Saharan Africa, Earth Syst. Environ, 6, 681–696,
https://doi.org/10.1007/s41748-021-00260-3, 2022.
Peña-Angulo, D., Vicente-Serrano, S. M., Domínguez-Castro, F.,
Murphy, C., Reig, F., Tramblay, Y., Trigo, R. M., Luna, M. Y., Turco, M.,
Noguera, I., Aznárez-Balta, M., García-Herrera, R., Tomas-Burguera,
M., and El Kenawy, A.: Long-term precipitation in Southwestern Europe
reveals no clear trend attributable to anthropogenic forcing, Environ. Res.
Lett., 15, 094070, https://doi.org/10.1088/1748-9326/ab9c4f, 2020.
Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. L., and Hong, T.:
Quantifying the impacts of climate change and extreme climate events on
energy systems, Nat. Energy, 5, 150–159,
https://doi.org/10.1038/s41560-020-0558-0, 2020.
Perrone, D. and Jasechko, S.: Dry groundwater wells in the western United
States, Environ. Res. Lett., 12, 104002, https://doi.org/10.1088/1748-9326/aa8ac0, 2017.
Pham-Duc, B., Papa, F., Prigent, C., Aires, F., Biancamaria, S., and
Frappart, F.: Variations of surface and subsurface water storage in the
Lower Mekong Basin (Vietnam and Cambodia) from multisatellite observations,
Water, 11, 75, https://doi.org/10.3390/w11010075, 2019.
Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke,
A., Gerten, D., Gosling, S.N., Grillakis, M., Gudmundsson, L., Hanasaki, N.,
Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Müller
Schmied, H., Stacke, T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F.,
and Wada, Y.: Global terrestrial water storage and drought severity under
climate change, Nat. Clim. Change, 11, 226–233,
https://doi.org/10.1038/s41558-020-00972-w, 2021.
Polson, D. and Hegerl, G. C.: Strengthening contrast between precipitation
in tropical wet and dry regions, Geophys. Res. Lett., 44, 365–373,
https://doi.org/10.1002/2016GL071194, 2017.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data
assimilation system, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates
of groundwater depletion in India, Nature, 460, 999–1002,
https://doi.org/10.1038/nature08238, 2009.
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H.
K., Landerer, F. W., and Lo, M. H.: Emerging trends in global freshwater
availability, Nature, 557, 651–659, 2018.
Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for understanding the response of the water cycle to global warming over land and ocean, Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.
Roth, N., Jaramillo, F., Wang-Erlandsson, L., Zamora, D.,
Palomino-Ángel, S., and Cousins, S. A.: A call for consistency with the
terms “wetter” and “drier” in climate change studies, Environ. Evid., 10, 1–7,
2021.
Ruscica, R. C., Sörensson, A. A., Diaz, L. B., Vera, C., Castro, A.,
Papastefanou, P., Rammig, A., Rezende, L., Sakschewski, B., Thonicke, K.,
Viovy, N., and von Randow, C.: Evapotranspiration trends and variability in
southeastern South America: The roles of land-cover change and precipitation
variability, Int. J. Climatol., 42, 2019–2038, 2022.
Save, H., Bettadpur, S., and Tapley, B. D.: High resolution CSR GRACE RL05 mascons, J. Geophys. Res.-Sol. Ea., 121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016.
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., van
Beek, L. P. H., Wiese, D. N., Wada, Y., Long, D., and Reedy, R. C.: Global
models underestimate large decadal declining and rising water storage trends
relative to GRACE satellite data, P. Natl. Acad. Sci. USA, 115, 201704665, https://doi.org/10.1073/pnas.1704665115,
2018.
Seneviratne, S. I., Luethi, D., Litschi, M., and Schaer, C.: Land-atmosphere
coupling and climate change in Europe, Nature, 443, 205–209,
https://doi.org/10.1038/nature05095, 2006.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman,
K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change,
10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F. T.: Groundwater use for irrigation – a global inventory, Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, 2010.
Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., and Wilson, C. R.:
Analysis of terrestrial water storage changes from GRACE and GLDAS, Water
Resour. Res., 44, W02433, https://doi.org/10.1029/2006WR005779, 2008.
Tapley B. D., Bettadpur S., Ries, J. C., Thompson, P. F., and Watkins M. M.:
GRACE measurements of mass variability in the Earth system, Science, 305,
503–505, https://doi.org/10.1126/science.1099192, 2004.
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S.,
Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D.
P., Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C.,
Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and
Velicogna, I.: Contributions of GRACE to understanding climate change, Nat.
Clim. Change, 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2, 2019.
Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Change, 4, 17–22, https://doi.org/10.1038/NCLIMATE2067, 2014.
Velicogna, I., Sutterley, T. C., and Van Den Broeke, M. R.: Regional
acceleration in ice mass loss from Greenland and Antarctica using GRACE
time-variable gravity data, Geophys. Res. Lett., 41, 8130–8137, 2014.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
Wan, W., Xiao, P., Feng, X., Li, H., Ma, R., Duan, H., and Zhao, L.:
Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years
using satellite remote sensing data, Chinese Sci. Bull., 59, 701–714,
https://doi.org/10.1007/s11434-014-0128-6, 2014.
Wan, W., Zhao, J., Popat, E., Herbert, C., and Döll, P.: Analyzing the
Impact of Streamflow Drought on Hydroelectricity Production: A Global-Scale
Study, Water Resour. Res., 57, e2020WR028087,
https://doi.org/10.1029/2020WR028087, 2021.
Wang, R., Li, L., Gentine, P., Zhang, Y., Chen, J., Chen, X., Chen, L.,
Ning, L., Yuan, L., and Lu, G.: Recent increase in the observation-derived
land evapotranspiration due to global warming, Environ. Res. Lett., 17,
024020, https://doi.org/10.1088/1748-9326/ac4291, 2022.
Wang, Z., Li, J., Lai, C., Wang, R.Y., Chen, X., and Lian, Y.: Drying
tendency dominating the global grain production area. Glob. Food
Secur.-Agric., Policy Econ. Environ., 16, 138–149,
https://doi.org/10.1016/j.gfs.2018.02.001, 2018.
Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Sol. Ea., 120, 2648–2671,
https://doi.org/10.1002/2014JB011547, 2015.
Wu, J., Miao, C., Tang, X., Duan, Q., and He, X.: A nonparametric
standardized runoff index for characterizing hydrological drought on the
Loess Plateau, China, Global Planet. Change, 161, 53–65,
https://doi.org/10.1016/j.gloplacha.2017.12.006, 2018.
Wu, R.-J., Lo, M.-H., and Scanlon, B. R.: The Annual Cycle of Terrestrial
Water Storage Anomalies in CMIP6 Models Evaluated against GRACE Data, J.
Climate, 34, 8205–8217, https://doi.org/10.1175/JCLI-D-21-0021.1, 2021.
Xing, Z., Fan, L., Zhao, L., De Lannoy, G., Frappart, F., Peng, J., Li, X.,
Zeng, J., Al-Yaari, A., Yang, K., Zhao, T., Shi, J., Wang, M., Liu, X., Hu,
G., Xiao, Y., Du, E., Li, R., Qiao, Y., Shi, J., Wen, J., Ma, M., and
Wigneron, J.-P.: A first assessment of satellite and reanalysis
estimates of surface and root-zone soil moisture over the permafrost region
of Qinghai-Tibet Plateau, Remote Sens. Environ., 265, 112666,
https://doi.org/10.1016/j.rse.2021.112666, 2021.
Xiong, J., Guo, S., Abhishek, Chen, J., and Yin, J.: Data used for the article “Global evaluation of the dry gets drier and wet gets wetter paradigm from terrestrial water storage changes perspective”, (3.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7212993, 2022.
Xiong, J., Guo, S., Yin, J., Ning, Z., Zeng, Z., and Wang, R.: Projected
changes in terrestrial water storage and associated flood potential across
the Yangtze River basin, Sci. Total Environ., 817, 152998,
https://doi.org/10.1016/j.scitotenv.2022.152998, 2022a.
Xiong, J., Yin, J., Guo, S., He, S., Chen, J., and Abhishek: Annual runoff
coefficient variation in a changing environment: a global perspective,
Environ. Res. Lett., 6, 064006, https://doi.org/10.1088/1748-9326/ac62ad, 2022b.
Xiong, J., Abhishek, Guo, S., and Kinouchi, T.: Leveraging Machine Learning
Methods to Quantify 50 Years of Dwindling Groundwater in India, Sci. Total
Environ., 835, 155474, https://doi.org/10.1016/j.scitotenv.2022.155474, 2022c.
Xu, Z., Cheng, L., Liu, P., Makarieva, O., and Chen, M.: Detecting and
quantifying the impact of long-term terrestrial water storage changes on the
runoff ratio in the head regions of the two largest rivers in China, J.
Hydrol., 601, 126668, https://doi.org/10.1016/j.jhydrol.2021.126668, 2021.
Yang, T., Ding, J., Liu, D., Wang, X., and Wang, T.: Combined Use of
Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet
Gets Wetter Paradigm, J. Climate, 32, 737–748,
https://doi.org/10.1175/JCLI-D-18-0261.1, 2019.
Yi, W., Feng, Y., Liang, S., Kuang, X., Yan, D., and Wan, L.: Increasing
annual streamflow and groundwater storage in response to climate warming in
the Yangtze River source region, Environ. Res. Lett., 16, 084011,
https://doi.org/10.1088/1748-9326/ac0f27, 2021.
Yin, J., Slater, L., Gu, L., Liao, Z., Guo, S., and Gentine, P.: Global
increases in lethal compound heat stress: Hydrological drought hazards under
climate change, Geophys. Res. Lett., 49, e2022GL100880,
https://doi.org/10.1029/2022GL100880, 2022.
Zeng, H., Wu, B., Zhang, N., Tian, F., Phiri, E., Musakwa, W., Zhang, M.,
Zhu, L., and Mashonjowa, E.: Spatiotemporal Analysis of Precipitation in the
Sparsely Gauged Zambezi River Basin Using Remote Sensing and Google Earth
Engine, Remote Sens., 11, 2977, https://doi.org/10.3390/rs11242977, 2019.
Zhang, C., Tang, Q., Chen, D., Li, L., Liu, X., and Cui, H.: Tracing changes in atmospheric moisture supply to the drying Southwest China, Atmos. Chem. Phys., 17, 10383–10393, https://doi.org/10.5194/acp-17-10383-2017, 2017.
Zhang, G., Ran, Y., Wan, W., Luo, W., Chen, W., Xu, F., and Li, X.: 100 years of lake evolution over the Qinghai–Tibet Plateau, Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, 2021.
Zhao, M., Geruo, A., Velicogna, I., and Kimball, J. S.: Satellite
Observations of Regional Drought Severity in the Continental United States
Using GRACE-Based Terrestrial Water Storage Changes, J. Climate, 30,
6297–6308, https://doi.org/10.1175/JCLI-D-16-0458.1, 2017.
Zhao, M., Geruo, A., Zhang, J., Velicogna, I., Liang, C., and Li, Z.:
Ecological restoration impact on total terrestrial water storage, Nat.
Sustain., 4, 56–62, https://doi.org/10.1038/s41893-020-00600-7, 2021.
Zhong, M., Duan, J., Xu, H., Peng, P., Yan, H., and Zhu, Y.: Trend of China
land water storage redistribution at medi-and large-spatial scales in recent
five years by satellite gravity observations, Chinese Sci. Bull., 54,
816–821, https://doi.org/10.1007/s11434-008-0556-2, 2009.
Zmijewski, K. and Becker, R.: Estimating the effects of anthropogenic
modification on water balance in the Aral Sea watershed using GRACE:
2003–12, Earth Interact., 18, 1–16, 2014.
Executive editor
This work addresses the important issue of the "dry gets drier wet gets wetter" paradigm from a new perspective using terrestrial water storage estimates. The paper can be an important contribution to the debate on how climate change will impact the global distribution of aridity.
This work addresses the important issue of the "dry gets drier wet gets wetter" paradigm from a...
Short summary
Although the "dry gets drier, and wet gets wetter (DDWW)" paradigm is prevalent in summarizing wetting and drying trends, we show that only 11.01 %–40.84 % of the global land confirms and 10.21 %–35.43 % contradicts the paradigm during 1985–2014 from a terrestrial water storage change perspective. Similar proportions that intensify with the increasing emission scenarios persist until the end of the 21st century. Findings benefit understanding of global hydrological responses to climate change.
Although the "dry gets drier, and wet gets wetter (DDWW)" paradigm is prevalent in summarizing...