Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6457-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6457-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective
Jinghua Xiong
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, 430072, China
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, 430072, China
Abhishek
School of Environment and Society, Tokyo Institute of Technology,
Yokohama 226-8503, Japan
Jie Chen
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, 430072, China
Jiabo Yin
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, 430072, China
Related authors
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024, https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Short summary
Temporal variability and spatial heterogeneity of climate systems challenge accurate estimation of probable maximum precipitation (PMP) in China. We use high-resolution precipitation data and climate models to explore the variability, trends, and shifts of PMP under climate change. Validated with multi-source estimations, our observations and simulations show significant spatiotemporal divergence of PMP over the country, which is projected to amplify in future due to land–atmosphere coupling.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023, https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm yr−1 with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
Jinghua Xiong, Shenglian Guo, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-645, https://doi.org/10.5194/hess-2021-645, 2022
Manuscript not accepted for further review
Short summary
Short summary
Although the “dry gets drier and wet gets wetter” (DDWW) paradigm is widely used to describe the trends in wetting and drying globally, we show that 27.1 % of global land agrees with the paradigm, while 22.4 % shows the opposite pattern during the period 1985–2014 from the perspective of terrestrial water storage change. Similar percentages are discovered under different scenarios during the future period. Our findings will benefit the understanding of hydrological responses under climate change.
Jiaoyang Wang, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Hua Chen, Jie Chen, Jiabo Yin, and Yuling Zhang
Hydrol. Earth Syst. Sci., 29, 3315–3339, https://doi.org/10.5194/hess-29-3315-2025, https://doi.org/10.5194/hess-29-3315-2025, 2025
Short summary
Short summary
The unclear feedback loops of water supply–hydropower generation–environmental conservation (SHE) nexuses with inter-basin water diversion projects (IWDPs) increase the uncertainty in the rational scheduling of water resources for water receiving and water donation areas. To address the different impacts of IWDPs on dynamic SHE nexuses and explore synergies, a framework is proposed to identify these effects across the different temporal and spatial scales in a reservoir group.
Chao Ma, Weifeng Hao, Qing Cheng, Fan Ye, Ying Qu, Jiabo Yin, Fang Xu, Haojian Wu, and Fei Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-79, https://doi.org/10.5194/essd-2025-79, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Antarctic sea ice albedo is a key factor influencing the energy balance of the cryosphere. Here we present a daily 1 km shortwave albedo product for Antarctic sea ice from 2012 to 2021, based on VIIRS reflectance data. Additionally, we reconstructed the albedo for missing pixels due to cloud cover. This dataset can be used to assess changes in Antarctic sea ice, radiation budget, and the strength of sea ice albedo feedback mechanisms, as well as their potential interconnections.
Xin Xiang, Shenglian Guo, Chenglong Li, and Yun Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-279, https://doi.org/10.5194/egusphere-2025-279, 2025
Short summary
Short summary
Deep learning models excel in hydrological simulations but lack physical foundations. We combine the Xinanjiang model’s principles into recurrent neural network units, forming a physical-based XAJRNN layer. Combined with LSTM layers, we propose an explainable deep learning model. The model shows low peak errors and minimal timing differences. The model improves accuracy and interpretability, offering new insights for combining deep learning and hydrological models in flood forecasting.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024, https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing warnings based on a people’s response process simulation. The results show that adjusting the warning threshold according to people’s tolerance levels to the failed warnings can improve warning effectiveness, but the prerequisite is to increase forecasting accuracy and decrease forecasting variance.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024, https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Short summary
Temporal variability and spatial heterogeneity of climate systems challenge accurate estimation of probable maximum precipitation (PMP) in China. We use high-resolution precipitation data and climate models to explore the variability, trends, and shifts of PMP under climate change. Validated with multi-source estimations, our observations and simulations show significant spatiotemporal divergence of PMP over the country, which is projected to amplify in future due to land–atmosphere coupling.
Qian Lin, Jie Chen, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-826, https://doi.org/10.5194/egusphere-2024-826, 2024
Preprint archived
Short summary
Short summary
Glaciers of the Tibetan Plateau (TP) have experienced widespread retreat in recent decades, but impacts of glacier changes that have occurred on regional climate, including precipitation, is still unknown. Thus, this study addressed this knowledge gap, and found that glacier changes exert a more pronounced impact on summer extreme precipitation events than mean precipitation over the TP. This provides a certain theoretical reference for the further improvement of long-term glacier projection.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023, https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm yr−1 with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022, https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Short summary
A data gap of 338 Chinese reservoirs with their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) during 2010–2021. Validation against the in situ observations of 93 reservoirs indicates the relatively high accuracy and reliability of the datasets. The unique and novel remotely sensed dataset would benefit studies involving many aspects (e.g., hydrological models, water resources related studies, and more).
Wei Li, Jie Chen, Lu Li, Yvan J. Orsolini, Yiheng Xiang, Retish Senan, and Patricia de Rosnay
The Cryosphere, 16, 4985–5000, https://doi.org/10.5194/tc-16-4985-2022, https://doi.org/10.5194/tc-16-4985-2022, 2022
Short summary
Short summary
Snow assimilation over the Tibetan Plateau (TP) may influence seasonal forecasts over this region. To investigate the impacts of snow assimilation on the seasonal forecasts of snow, temperature and precipitation, twin ensemble reforecasts are initialized with and without snow assimilation above 1500 m altitude over the TP for spring and summer in 2018. The results show that snow assimilation can improve seasonal forecasts over the TP through the interaction between land and atmosphere.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022, https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Short summary
Plant carbon storage potential is central to moderate atmospheric CO2 concentration buildup and mitigation of climate change. There is an ongoing debate about the main driver of carbon storage. To reconcile this discrepancy, we use SEIB-DGVM to investigate the trend and response mechanism of carbon stock fractions among water limitation regions. Results show that the impact of CO2 and temperature on carbon stock depends on water limitation, offering a new perspective on carbon–water coupling.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Jiacheng Chen, Jie Chen, Xunchang John Zhang, Peiyi Peng, and Camille Risi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-460, https://doi.org/10.5194/essd-2021-460, 2022
Manuscript not accepted for further review
Short summary
Short summary
To make full use of the advantages of isotope observations and simulations, this study generates a new dataset by integrating multi-GCM data based on data fusion and bias correction methods. This dataset contains monthly δ18Op over mainland China for the 1870–2017 period with a spatial resolution of 50–60 km. The built isoscape shows similar spatial and temporal distribution characteristics to observations, which is reliable and useful to extend the time and space of observations in China.
Jinghua Xiong, Shenglian Guo, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-645, https://doi.org/10.5194/hess-2021-645, 2022
Manuscript not accepted for further review
Short summary
Short summary
Although the “dry gets drier and wet gets wetter” (DDWW) paradigm is widely used to describe the trends in wetting and drying globally, we show that 27.1 % of global land agrees with the paradigm, while 22.4 % shows the opposite pattern during the period 1985–2014 from the perspective of terrestrial water storage change. Similar percentages are discovered under different scenarios during the future period. Our findings will benefit the understanding of hydrological responses under climate change.
Wei Li, Lu Li, Jie Chen, Qian Lin, and Hua Chen
Hydrol. Earth Syst. Sci., 25, 4531–4548, https://doi.org/10.5194/hess-25-4531-2021, https://doi.org/10.5194/hess-25-4531-2021, 2021
Short summary
Short summary
Reforestation can influence climate, but the sensitivity of summer rainfall to reforestation is rarely investigated. We take two reforestation scenarios to assess the impacts of reforestation on summer rainfall under different reforestation proportions and explore the potential mechanisms. This study concludes that reforestation increases summer rainfall amount and extremes through thermodynamics processes, and the effects are more pronounced in populated areas than over the whole basin.
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
Cited articles
Abhishek, Kinouchi, T., and Sayama, T.: A comprehensive assessment of water
storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin
during 2002–2020, J. Hydrol., 603, 126868,
https://doi.org/10.1016/j.jhydrol.2021.126868, 2021.
AghaKouchak, A.: A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 United States drought, Hydrol. Earth Syst. Sci., 18, 2485–2492, https://doi.org/10.5194/hess-18-2485-2014, 2014.
Allan, R. P., Soden, B. J., John, V. O., Ingram, W., and Good, P.: Current
changes in tropical precipitation, Environ. Res. Lett., 5, 025205,
https://doi.org/10.1088/1748-9326/5/2/025205, 2010.
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N.,
Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H.,
Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H.,
Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of
drought and heat-induced tree mortality reveals emerging climate change
risks for forests, For. Ecol. Manag. 259, 660–684,
https://doi.org/10.1016/j.foreco.2009.09.001, 2010.
An, L., Wang, J., Huang, J., Pokhrel, Y., Hugonnet, R., Wada, Y., Caceres,
D., Müller Schmied, H., Song, C. Q., Berthier, E., Yu, H. P., and Zhang,
G. L.: Divergent Causes of Terrestrial Water Storage Decline Between
Drylands and Humid Regions Globally, Geophys. Res. Lett., 48, e2021GL095035,
https://doi.org/10.1029/2021GL095035, 2021.
Beaudoing, H. and Rodell, M.: GLDAS Noah Land Surface Model L4 monthly 1.0 × 1.0 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/QN80TO7ZHFJZ, 2019.
Beaudoing, H. and Rodell, M.: GLDAS VIC Land Surface Model L4 monthly 1.0 × 1.0 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/ZRIHVF29X43C, 2020.
Barnard, D. M., Germino, M. J., Bradford, J. B., Connor, R. C., Andrews, C.
M., and Shriver, R. K.: Are drought indices and climate data good indicators
of ecologically relevant soil moisture dynamics in drylands?, Ecol. Indic.,
133, 108379, https://doi.org/10.1016/j.ecolind.2021.108379, 2021.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018.
Bouchard, F., Turner, K. W., MacDonald, L. A., Deakin, C., White, H.,
Farquharson, N., Medeiros, A. S., Wolfe, B. B., Hall, R. I., Pienitz, R.,
and Edwards, T. W. D.: Vulnerability of shallow subarctic lakes to evaporate
and desiccate when snowmelt runoff is low, Geophys. Res. Lett., 40,
6112–6117, https://doi.org/10.1002/2013GL058635, 2013.
Burke, E. J., Zhang, Y., and Krinner, G.: Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change, The Cryosphere, 14, 3155–3174, https://doi.org/10.5194/tc-14-3155-2020, 2020.
Byrne, M. P. and O'Gorman, P. A.: The Response of Precipitation Minus
Evapotranspiration to Climate Warming: Why the “Wet-Get-Wetter,
Dry-Get-Drier” Scaling Does Not Hold over Land, J. Climate, 28, 8078–8092,
https://doi.org/10.1175/JCLI-D-15-0369.1, 2015.
Chen, J. L., Wilson, C. R., and Tapley, B. D.: The 2009 exceptional Amazon
flood and interannual terrestrial water storage change observed by GRACE,
Water Resour. Res., 46, W12526, https://doi.org/10.1029/2010WR009383, 2010.
Chen, J. L., Tapley, B., Rodell, M., Seo, K.W., Wilson, C., Scanlon, B. R.,
and Pokhrel, Y.: Basin-Scale River Runoff Estimation From GRACE Gravity
Satellites, Climate Models, and In Situ Observations: A Case Study in the
Amazon Basin, Water Resour. Res., 56, e2020WR028032,
https://doi.org/10.1029/2020WR028032, 2020.
Chang, L.-L., Yuan, R., Gupta, H. V., Winter, C. L., and Niu, G.-Y.: Why is the
terrestrial water storage in dryland regions declining? A perspective based
on Gravity Recovery and Climate Experiment satellite observations and Noah
land surface model with multiparameterization schemes model simulations,
Water Resour. Res., 56, e2020WR027102, https://doi.org/10.1029/2020WR027102, 2020.
Chou, C., Neelin, J. D., Chen, C.-A., and Tu, J.-Y.: Evaluating the
“Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global
Warming, J. Climate, 22, 1982–2005, https://doi.org/10.1175/2008JCLI2471.1,
2009.
Climatic Research Unit: CRU TS Version 4.06, [data set], https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/, last access: 12 December 2022.
Coppola, E., Nogherotto, R., Ciarlo', J. M., Giorgi, F., van Meijgaard, E.,
Kadygrov, N., Iles, C., Corre, L., Sandstad, M., Somot, S., Nabat, P.,
Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J.,
Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., Christensen, O.
B., Boberg, F., Sørland, S. L., Demory, M.-E., Bülow, K., Teichmann,
C., Warrach-Sagi, K., and Wulfmeyer, V.: Assessment of the European Climate
Projections as Simulated by the Large EURO-CORDEX Regional and Global
Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032356,
https://doi.org/10.1029/2019JD032356, 2021.
Dai, A.: Drought under global warming: a review, Wiley Interdiscip.
Rev.-Clim. Change, 2, 45–65, https://doi.org/10.1002/wcc.81, 2011.
Derber, J., Parrish, D., and Lord, S.: The New Global Operational Analysis
System at the National-Meteorological-Center, Weather Forecast., 6, 538–547,
1991.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and
Eicker, A.: Global-scale assessment of groundwater depletion and related
groundwater abstractions: Combining hydrological modeling with information
from well observations and GRACE satellites, Water Resour. Res., 50,
5698–5720, https://doi.org/10.1002/2014WR015595, 2014.
Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., and Maher, N.:
More extreme precipitation in the world's dry and wet regions, Nat. Clim.
Change, 6, 508–513, https://doi.org/10.1038/NCLIMATE2941, 2016.
Durack, P. J., Wijffels, S. E., and Matear, R. J.: Ocean Salinities Reveal
Strong Global Water Cycle Intensification During 1950 to 2000, Science, 336,
455–458, https://doi.org/10.1126/science.1212222, 2012.
Durbin, J. and Watson, G. S.: Testing for Serial Correlation in Least
Squares Regression, I, Biometrika, 37, 409–428, 1950.
Durbin, J. and Watson, G. S.: Testing for Serial Correlation in Least
Squares Regression, II, Biometrika, 38, 159–179, 1951.
Earth System Grid Federation, CMIP6 GCMs simulations, [data set], https://esgf-node.llnl.gov/projects/cmip6/, last access: 12 December, 2022.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Feng, H. and Zhang, M.: Global land moisture trends: drier in dry and
wetter in wet over land, Sci. Rep.-UK, 5, 18018,
https://doi.org/10.1038/srep18018, 2015.
Feng, W., Zhong, M., Lemoine, J.-M., Biancale, R., Hsu, H.-T., and Xia, J.:
Evaluation of groundwater depletion in North China using the Gravity
Recovery and Climate Experiment (GRACE) data and ground-based measurements:
Groundwater Depletion In North China, Water Resour. Res., 49, 2110–2118,
https://doi.org/10.1002/wrcr.20192, 2013.
François, B., Vrac, M., Cannon, A. J., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: which benefits for which losses?, Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, 2020.
Freedman, F. R., Pitts, K. L., and Bridger, A. F. C.: Evaluation of CMIP
climate model hydrological output for the Mississippi River basin using
GRACE satellite observations, J. Hydrol., 519, 3566–3577,
https://doi.org/10.1016/j.jhydrol.2014.10.036, 2014.
Gampe, D., Zscheischler, J., Reichstein, M., O'Sullivan, M., Smith, W. K.,
Sitch, S., and Buermann, W.: Increasing impact of warm droughts on northern
ecosystem productivity over recent decades, Nat. Clim. Change, 11, 772–779,
https://doi.org/10.1038/s41558-021-01112-8, 2021.
Gaughan, A. E. and Waylen, P. R.: Spatial and temporal precipitation
variability in the Okavango-Kwando-Zambezi catchment, southern Africa, J.
Arid Environ., 82, 19–30, https://doi.org/10.1016/j.jaridenv.2012.02.007,
2012.
Getirana, A.: Extreme Water Deficit in Brazil Detected from Space, J.
Hydrometeorol., 17, 591–599, https://doi.org/10.1175/JHM-D-15-0096.1, 2016.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.:
G-RUN ENSEMBLE: A Multi-Forcing Observation-Based Global Runoff Reanalysis,
Water Resour. Res., 57, e2020WR028787, https://doi.org/10.1029/2020WR028787,
2021a.
Ghiggi, G., Humphrey, V., Gudmundsson, L., and Seneviratne, S. I.: G-RUN ENSEMBLE, figshare [data set], https://doi.org/10.6084/m9.figshare.12794075.v1, 2021b.
GLEAM: Global Land Evaporation Amsterdam Model, https://www.gleam.eu/, last access: 12 December 2022.
Goyal, R. K.: Sensitivity of evapotranspiration to global warming: A case
study of arid zone of Rajasthan (India), Agr. Water Manage., 69,
1–11, 2004.
GRACE: CSR GRACE/GRACE-FO RL06 Mascon Solutions (version 02), GRACE [data set], https://www2.csr.utexas.edu/grace/RL06_mascons.html, last access: 2 December 2022.
Greve, P. and Seneviratne, S. I.: Assessment of future changes in water
availability and aridity, Geophys. Res. Lett., 42, 5493–5499,
https://doi.org/10.1002/2015GL064127, 2015.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and
Seneviratne, S. I.: Global assessment of trends in wetting and drying over
land, Nat. Geosci., 7, 716–721, https://doi.org/10.1038/NGEO2247, 2014.
Grigoriev, V. Y. and Frolova, N. L.: Terrestrial water storage change of
European Russia and its impact on water balance, Geography, Environment,
Sustainability, 11, 38–50,
https://doi.org/10.24057/2071-9388-2018-11-1-38-50, 2018.
Guo, M., Yue, W., Wang, T., Zheng, N., and Wu, L.: Assessing the use of
standardized groundwater index for quantifying groundwater drought over the
conterminous US, J. Hydrol., 598, 126227,
https://doi.org/10.1016/j.jhydrol.2021.126227, 2021.
Haacker, E. M. K., Kendall, A. D., and Hyndman, D. W.: Water Level Declines
in the High Plains Aquifer: Predevelopment to Resource Senescence,
Groundwater 54, 231–242, https://doi.org/10.1111/gwat.12350, 2016.
Hamed, K. H. and Rao, A. R.: A modified Mann-Kendall trend test for
autocorrelated data, J. Hydrol., 204, 182–196, 1998.
Hao, Z. and Singh, V. P.: Drought characterization from a multivariate
perspective: A review, J. Hydrol., 527, 668–678,
https://doi.org/10.1016/j.jhydrol.2015.05.031, 2015.
Hao, Z., Singh, V. P., and Xia, Y. Seasonal Drought Prediction: Advances,
Challenges, and Future Prospects, Rev. Geophys., 56, 108–141,
https://doi.org/10.1002/2016RG000549, 2018.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 1–8, 2020.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699,
https://doi.org/10.1175/JCLI3990.1, 2006.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Hu, B., Wang, L., Li, X., Zhou, J., and Pan, Y.: Divergent Changes in
Terrestrial Water Storage Across Global Arid and Humid Basins, Geophys. Res.
Lett., 48, e2020GL091069, https://doi.org/10.1029/2020GL091069, 2021.
Hu, Z., Chen, X., Chen, D., Li, J., Wang, S., Zhou, Q., Yin, G., and Guo,
N.: “Dry gets drier, wet gets wetter”: A case study over the arid regions
of central Asia, Int. J. Climatol., 39, 1072–1091,
https://doi.org/10.1002/joc.5863, 2019.
Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., and Ran, J.: Global semi-arid
climate change over last 60 years, Clim. Dynam., 46, 1131–1150,
https://doi.org/10.1007/s00382-015-2636-8, 2016.
Huang, L., Li, Z., Tian, B., Chen, Q., and Zhou, J.: Monitoring glacier
zones and snow/firn line changes in the Qinghai–Tibetan Plateau using
C-band SAR imagery, Remote Sens. Environ., 137, 17–30,
https://doi.org/10.1016/j.rse.2013.05.016, 2013.
Huang, L., Li, Z., Zhou, J. M., and Zhang, P.: An automatic method for clean
glacier and nonseasonal snow area change estimation in High Mountain Asia
from 1990 to 2018, Remote Sens. Environ., 258, 112376,
https://doi.org/10.1016/j.rse.2021.112376, 2021.
Huntington, T. G.: Evidence for intensification of the global water cycle:
Review and synthesis, J. Hydrol., 319, 83–95,
https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate change
will affect the Asian water towers, Science, 328, 1382–1385, 2010.
Iqbal, Z., Shahid, S., Ahmed, K., Ismail, T., Ziarh, G. F., Chung, E.-S.,
and Wang, X.: Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia,
Atmos. Res., 254, 105525,
https://doi.org/10.1016/j.atmosres.2021.105525, 2021.
Kim, Y. H., Min, S. K., Zhang, X., Sillmann, J., and Sandstad, M.:
Evaluation of the CMIP6 multi-model ensemble for climate extreme indices,
Weather Clim. Extremes, 29, 100269, https://doi.org/10.1016/j.wace.2020.100269, 2020.
Kumar, S., Allan, R. P., Zwiers, F., Lawrence, D. M., and Dirmeyer, P. A.:
Revisiting trends in wetness and dryness in the presence of internal climate
variability and water limitations over land, Geophys. Res. Lett., 42,
10867–10875, https://doi.org/10.1002/2015GL066858, 2015.
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.
Lehmann, F., Vishwakarma, B. D., and Bamber, J.: How well are we able to close the water budget at the global scale?, Hydrol. Earth Syst. Sci., 26, 35–54, https://doi.org/10.5194/hess-26-35-2022, 2022.
Li, B., Beaudoing, H., and Rodell, M.: GLDAS Catchment Land Surface Model L4 monthly 1.0 × 1.0 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/SGSL3LNKGJWW, 2020.
Li, F.: Data from: Long-term (1979–present) total water storage anomalies over the global land derived by reconstructing GRACE data, Dryad [data set], https://doi.org/10.5061/dryad.z612jm6bt, 2021.
Li, F., Kusche, J., Chao, N., Wang, Z., and Loecher, A.: Long-Term
(1979–Present) Total Water Storage Anomalies Over the Global Land Derived by
Reconstructing GRACE Data, Geophys. Res. Lett., 48, e2021GL093492,
https://doi.org/10.1029/2021GL093492, 2021.
Li, Y., Zhang, Y., Ye, W., and Zhang, X.: Global Wet/Dry Patterns and Mechanisms
Since the Last Glacial Maximum: A Key to Future Projection, Earths Future,
9, e2020EF001907, https://doi.org/10.1029/2020EF001907, 2021.
Li, X., Long, D., Scanlon, B. R., Mann, M. E., Li, X., Tian, F., Sun, Z.,
and Wang, G.: Climate change threatens terrestrial water storage over the
Tibetan Plateau, Nat. Clim. Change, 12, 801–807,
https://doi.org/10.1038/s41558-022-01443-0, 2022.
Liang, X., Lettenmaier, D., Wood, E., and Burges, S.: A Simple
Hydrologically Based Model of Land-Surface Water and Energy Fluxes for
General-Circulation Models, J. Geophys. Res.-Atmos., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Liu, X., Yin, Z. Y., Shao, X., and Qin, N.: Temporal trends and variability
of daily maximum and minimum, extreme temperature events, and growing season
length over the eastern and central Tibetan Plateau during 1961–2003, J.
Geophys. Res., 111, D19109, https://doi.org/10.1029/2005JD006915, 2006.
Long, D., Shen, Y., Sun, A., Hong, Y., Longuevergne, L., Yang, Y., Li, B.,
and Chen, L.: Drought and flood monitoring for a large karst plateau in
Southwest China using extended GRACE data, Remote Sens. Environ., 155,
145–160, https://doi.org/10.1016/j.rse.2014.08.006, 2014.
Luthcke, S. B., Sabaka, T. J., Loomis, B. D., Arendt, A. A., McCarthy, J.
J., and Camp, J.: Antarctica, Greenland and Gulf of Alaska land-ice
evolution from an iterated GRACE global mascon solution, J. Glaciol., 59,
613–631, https://doi.org/10.3189/2013JoG12J147, 2013.
Lv, M., Ma, Z., Chen, L., and Peng, S.: Evapotranspiration reconstruction
based on land surface models and observed water budget components while
considering irrigation, J. Hydrometeorol., 20, 2163–2183,
https://doi.org/10.1175/jhm-d-19-0090.1, 2019.
Lv, M., Ma, Z., and Yuan, N.: Attributing terrestrial water storage
variations across China to changes in groundwater and human water use, J.
Hydrometeorol., 22, 3–21, https://doi.org/10.1175/jhm-d-20-0095.1, 2021.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Meng, F., Su, F., Li, Y., and Tong. K.: Changes in Terrestrial Water Storage
During 2003–2014 and Possible Causes in Tibetan Plateau, J. Geophys. Res.-Atmos., 124, 2909–2931, 2019.
Milly, P. C. D., Dunne, K. A., and Vecchia, A. V.: Global pattern of trends
in streamflow and water availability in a changing climate, Nature, 438,
347–350, https://doi.org/10.1038/nature04312, 2005.
Moreno-Jimenez, E., Plaza, C., Saiz, H., Manzano, R., Flagmeier, M., and
Maestre, F. T.: Aridity and reduced soil micronutrient availability in
global drylands, Nat. Sustain., 2, 371–377,
https://doi.org/10.1038/s41893-019-0262-x, 2019.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Shadkam, S., Trautmann, T., and Döll,
P.: The global water resources and use model WaterGAP v2.2d – Standard model output, PANGAEA, [data set], https://doi.org/10.1594/PANGAEA.918447, 2020.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021.
Ogou, F. K., Ojeh, V. N., Naabil, E., and Mbah, C. I.: Hydro-climatic and
Water Availability Changes and its Relationship with NDVI in Northern
Sub-Saharan Africa, Earth Syst. Environ, 6, 681–696,
https://doi.org/10.1007/s41748-021-00260-3, 2022.
Peña-Angulo, D., Vicente-Serrano, S. M., Domínguez-Castro, F.,
Murphy, C., Reig, F., Tramblay, Y., Trigo, R. M., Luna, M. Y., Turco, M.,
Noguera, I., Aznárez-Balta, M., García-Herrera, R., Tomas-Burguera,
M., and El Kenawy, A.: Long-term precipitation in Southwestern Europe
reveals no clear trend attributable to anthropogenic forcing, Environ. Res.
Lett., 15, 094070, https://doi.org/10.1088/1748-9326/ab9c4f, 2020.
Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. L., and Hong, T.:
Quantifying the impacts of climate change and extreme climate events on
energy systems, Nat. Energy, 5, 150–159,
https://doi.org/10.1038/s41560-020-0558-0, 2020.
Perrone, D. and Jasechko, S.: Dry groundwater wells in the western United
States, Environ. Res. Lett., 12, 104002, https://doi.org/10.1088/1748-9326/aa8ac0, 2017.
Pham-Duc, B., Papa, F., Prigent, C., Aires, F., Biancamaria, S., and
Frappart, F.: Variations of surface and subsurface water storage in the
Lower Mekong Basin (Vietnam and Cambodia) from multisatellite observations,
Water, 11, 75, https://doi.org/10.3390/w11010075, 2019.
Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke,
A., Gerten, D., Gosling, S.N., Grillakis, M., Gudmundsson, L., Hanasaki, N.,
Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Müller
Schmied, H., Stacke, T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F.,
and Wada, Y.: Global terrestrial water storage and drought severity under
climate change, Nat. Clim. Change, 11, 226–233,
https://doi.org/10.1038/s41558-020-00972-w, 2021.
Polson, D. and Hegerl, G. C.: Strengthening contrast between precipitation
in tropical wet and dry regions, Geophys. Res. Lett., 44, 365–373,
https://doi.org/10.1002/2016GL071194, 2017.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data
assimilation system, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates
of groundwater depletion in India, Nature, 460, 999–1002,
https://doi.org/10.1038/nature08238, 2009.
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H.
K., Landerer, F. W., and Lo, M. H.: Emerging trends in global freshwater
availability, Nature, 557, 651–659, 2018.
Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for understanding the response of the water cycle to global warming over land and ocean, Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.
Roth, N., Jaramillo, F., Wang-Erlandsson, L., Zamora, D.,
Palomino-Ángel, S., and Cousins, S. A.: A call for consistency with the
terms “wetter” and “drier” in climate change studies, Environ. Evid., 10, 1–7,
2021.
Ruscica, R. C., Sörensson, A. A., Diaz, L. B., Vera, C., Castro, A.,
Papastefanou, P., Rammig, A., Rezende, L., Sakschewski, B., Thonicke, K.,
Viovy, N., and von Randow, C.: Evapotranspiration trends and variability in
southeastern South America: The roles of land-cover change and precipitation
variability, Int. J. Climatol., 42, 2019–2038, 2022.
Save, H., Bettadpur, S., and Tapley, B. D.: High resolution CSR GRACE RL05 mascons, J. Geophys. Res.-Sol. Ea., 121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016.
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., van
Beek, L. P. H., Wiese, D. N., Wada, Y., Long, D., and Reedy, R. C.: Global
models underestimate large decadal declining and rising water storage trends
relative to GRACE satellite data, P. Natl. Acad. Sci. USA, 115, 201704665, https://doi.org/10.1073/pnas.1704665115,
2018.
Seneviratne, S. I., Luethi, D., Litschi, M., and Schaer, C.: Land-atmosphere
coupling and climate change in Europe, Nature, 443, 205–209,
https://doi.org/10.1038/nature05095, 2006.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman,
K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change,
10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F. T.: Groundwater use for irrigation – a global inventory, Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, 2010.
Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., and Wilson, C. R.:
Analysis of terrestrial water storage changes from GRACE and GLDAS, Water
Resour. Res., 44, W02433, https://doi.org/10.1029/2006WR005779, 2008.
Tapley B. D., Bettadpur S., Ries, J. C., Thompson, P. F., and Watkins M. M.:
GRACE measurements of mass variability in the Earth system, Science, 305,
503–505, https://doi.org/10.1126/science.1099192, 2004.
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S.,
Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D.
P., Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C.,
Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and
Velicogna, I.: Contributions of GRACE to understanding climate change, Nat.
Clim. Change, 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2, 2019.
Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Change, 4, 17–22, https://doi.org/10.1038/NCLIMATE2067, 2014.
Velicogna, I., Sutterley, T. C., and Van Den Broeke, M. R.: Regional
acceleration in ice mass loss from Greenland and Antarctica using GRACE
time-variable gravity data, Geophys. Res. Lett., 41, 8130–8137, 2014.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
Wan, W., Xiao, P., Feng, X., Li, H., Ma, R., Duan, H., and Zhao, L.:
Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years
using satellite remote sensing data, Chinese Sci. Bull., 59, 701–714,
https://doi.org/10.1007/s11434-014-0128-6, 2014.
Wan, W., Zhao, J., Popat, E., Herbert, C., and Döll, P.: Analyzing the
Impact of Streamflow Drought on Hydroelectricity Production: A Global-Scale
Study, Water Resour. Res., 57, e2020WR028087,
https://doi.org/10.1029/2020WR028087, 2021.
Wang, R., Li, L., Gentine, P., Zhang, Y., Chen, J., Chen, X., Chen, L.,
Ning, L., Yuan, L., and Lu, G.: Recent increase in the observation-derived
land evapotranspiration due to global warming, Environ. Res. Lett., 17,
024020, https://doi.org/10.1088/1748-9326/ac4291, 2022.
Wang, Z., Li, J., Lai, C., Wang, R.Y., Chen, X., and Lian, Y.: Drying
tendency dominating the global grain production area. Glob. Food
Secur.-Agric., Policy Econ. Environ., 16, 138–149,
https://doi.org/10.1016/j.gfs.2018.02.001, 2018.
Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Sol. Ea., 120, 2648–2671,
https://doi.org/10.1002/2014JB011547, 2015.
Wu, J., Miao, C., Tang, X., Duan, Q., and He, X.: A nonparametric
standardized runoff index for characterizing hydrological drought on the
Loess Plateau, China, Global Planet. Change, 161, 53–65,
https://doi.org/10.1016/j.gloplacha.2017.12.006, 2018.
Wu, R.-J., Lo, M.-H., and Scanlon, B. R.: The Annual Cycle of Terrestrial
Water Storage Anomalies in CMIP6 Models Evaluated against GRACE Data, J.
Climate, 34, 8205–8217, https://doi.org/10.1175/JCLI-D-21-0021.1, 2021.
Xing, Z., Fan, L., Zhao, L., De Lannoy, G., Frappart, F., Peng, J., Li, X.,
Zeng, J., Al-Yaari, A., Yang, K., Zhao, T., Shi, J., Wang, M., Liu, X., Hu,
G., Xiao, Y., Du, E., Li, R., Qiao, Y., Shi, J., Wen, J., Ma, M., and
Wigneron, J.-P.: A first assessment of satellite and reanalysis
estimates of surface and root-zone soil moisture over the permafrost region
of Qinghai-Tibet Plateau, Remote Sens. Environ., 265, 112666,
https://doi.org/10.1016/j.rse.2021.112666, 2021.
Xiong, J., Guo, S., Abhishek, Chen, J., and Yin, J.: Data used for the article “Global evaluation of the dry gets drier and wet gets wetter paradigm from terrestrial water storage changes perspective”, (3.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7212993, 2022.
Xiong, J., Guo, S., Yin, J., Ning, Z., Zeng, Z., and Wang, R.: Projected
changes in terrestrial water storage and associated flood potential across
the Yangtze River basin, Sci. Total Environ., 817, 152998,
https://doi.org/10.1016/j.scitotenv.2022.152998, 2022a.
Xiong, J., Yin, J., Guo, S., He, S., Chen, J., and Abhishek: Annual runoff
coefficient variation in a changing environment: a global perspective,
Environ. Res. Lett., 6, 064006, https://doi.org/10.1088/1748-9326/ac62ad, 2022b.
Xiong, J., Abhishek, Guo, S., and Kinouchi, T.: Leveraging Machine Learning
Methods to Quantify 50 Years of Dwindling Groundwater in India, Sci. Total
Environ., 835, 155474, https://doi.org/10.1016/j.scitotenv.2022.155474, 2022c.
Xu, Z., Cheng, L., Liu, P., Makarieva, O., and Chen, M.: Detecting and
quantifying the impact of long-term terrestrial water storage changes on the
runoff ratio in the head regions of the two largest rivers in China, J.
Hydrol., 601, 126668, https://doi.org/10.1016/j.jhydrol.2021.126668, 2021.
Yang, T., Ding, J., Liu, D., Wang, X., and Wang, T.: Combined Use of
Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet
Gets Wetter Paradigm, J. Climate, 32, 737–748,
https://doi.org/10.1175/JCLI-D-18-0261.1, 2019.
Yi, W., Feng, Y., Liang, S., Kuang, X., Yan, D., and Wan, L.: Increasing
annual streamflow and groundwater storage in response to climate warming in
the Yangtze River source region, Environ. Res. Lett., 16, 084011,
https://doi.org/10.1088/1748-9326/ac0f27, 2021.
Yin, J., Slater, L., Gu, L., Liao, Z., Guo, S., and Gentine, P.: Global
increases in lethal compound heat stress: Hydrological drought hazards under
climate change, Geophys. Res. Lett., 49, e2022GL100880,
https://doi.org/10.1029/2022GL100880, 2022.
Zeng, H., Wu, B., Zhang, N., Tian, F., Phiri, E., Musakwa, W., Zhang, M.,
Zhu, L., and Mashonjowa, E.: Spatiotemporal Analysis of Precipitation in the
Sparsely Gauged Zambezi River Basin Using Remote Sensing and Google Earth
Engine, Remote Sens., 11, 2977, https://doi.org/10.3390/rs11242977, 2019.
Zhang, C., Tang, Q., Chen, D., Li, L., Liu, X., and Cui, H.: Tracing changes in atmospheric moisture supply to the drying Southwest China, Atmos. Chem. Phys., 17, 10383–10393, https://doi.org/10.5194/acp-17-10383-2017, 2017.
Zhang, G., Ran, Y., Wan, W., Luo, W., Chen, W., Xu, F., and Li, X.: 100 years of lake evolution over the Qinghai–Tibet Plateau, Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, 2021.
Zhao, M., Geruo, A., Velicogna, I., and Kimball, J. S.: Satellite
Observations of Regional Drought Severity in the Continental United States
Using GRACE-Based Terrestrial Water Storage Changes, J. Climate, 30,
6297–6308, https://doi.org/10.1175/JCLI-D-16-0458.1, 2017.
Zhao, M., Geruo, A., Zhang, J., Velicogna, I., Liang, C., and Li, Z.:
Ecological restoration impact on total terrestrial water storage, Nat.
Sustain., 4, 56–62, https://doi.org/10.1038/s41893-020-00600-7, 2021.
Zhong, M., Duan, J., Xu, H., Peng, P., Yan, H., and Zhu, Y.: Trend of China
land water storage redistribution at medi-and large-spatial scales in recent
five years by satellite gravity observations, Chinese Sci. Bull., 54,
816–821, https://doi.org/10.1007/s11434-008-0556-2, 2009.
Zmijewski, K. and Becker, R.: Estimating the effects of anthropogenic
modification on water balance in the Aral Sea watershed using GRACE:
2003–12, Earth Interact., 18, 1–16, 2014.
Executive editor
This work addresses the important issue of the "dry gets drier wet gets wetter" paradigm from a new perspective using terrestrial water storage estimates. The paper can be an important contribution to the debate on how climate change will impact the global distribution of aridity.
This work addresses the important issue of the "dry gets drier wet gets wetter" paradigm from a...
Short summary
Although the "dry gets drier, and wet gets wetter (DDWW)" paradigm is prevalent in summarizing wetting and drying trends, we show that only 11.01 %–40.84 % of the global land confirms and 10.21 %–35.43 % contradicts the paradigm during 1985–2014 from a terrestrial water storage change perspective. Similar proportions that intensify with the increasing emission scenarios persist until the end of the 21st century. Findings benefit understanding of global hydrological responses to climate change.
Although the "dry gets drier, and wet gets wetter (DDWW)" paradigm is prevalent in summarizing...