Articles | Volume 26, issue 19
https://doi.org/10.5194/hess-26-5185-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5185-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
Audrey Douinot
CORRESPONDING AUTHOR
Environmental Research and Innovation Department (ERIN), Luxembourg
Institute of Science and Technology (LIST), Belvaux, Luxembourg
Jean François Iffly
Environmental Research and Innovation Department (ERIN), Luxembourg
Institute of Science and Technology (LIST), Belvaux, Luxembourg
Cyrille Tailliez
Environmental Research and Innovation Department (ERIN), Luxembourg
Institute of Science and Technology (LIST), Belvaux, Luxembourg
Claude Meisch
Administration de la Gestion de l'Eau – Division de l'Hydrologie, 1, avenue du Rock'n'roll, 4361 Esch-sur-Alzette, Luxembourg
Laurent Pfister
Environmental Research and Innovation Department (ERIN), Luxembourg
Institute of Science and Technology (LIST), Belvaux, Luxembourg
Related authors
Judith Eeckman, Hélène Roux, Audrey Douinot, Bertrand Bonan, and Clément Albergel
Hydrol. Earth Syst. Sci., 25, 1425–1446, https://doi.org/10.5194/hess-25-1425-2021, https://doi.org/10.5194/hess-25-1425-2021, 2021
Short summary
Short summary
The risk of flash flood is of growing importance for populations, particularly in the Mediterranean area in the context of a changing climate. The representation of soil processes in models is a key factor for flash flood simulation. The importance of the various methods for soil moisture estimation are highlighted in this work. Local measurements from the field as well as data derived from satellite imagery can be used to assess the performance of model outputs.
Audrey Douinot, Hélène Roux, Pierre-André Garambois, and Denis Dartus
Hydrol. Earth Syst. Sci., 22, 5317–5340, https://doi.org/10.5194/hess-22-5317-2018, https://doi.org/10.5194/hess-22-5317-2018, 2018
Short summary
Short summary
The distributed, process-oriented model, MARINE, was used to test several hypotheses of flow dynamics in soils during flash flood events in the Mediterranean area. Results show that the most realistic hypothesis for each catchment is consistent with existing in situ observations and measurements. The study also highlights the potential of distributed modelling and spatial observations in hydrology, especially in dealing with equifinality issues.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-259, https://doi.org/10.5194/essd-2024-259, 2024
Preprint under review for ESSD
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. This data helps predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behavior and serves as a resource for future environmental studies.
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024, https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Short summary
Determining water transit times in aquifers is key to a better understanding of groundwater resources and their sustainable management. For our research, we used high-accuracy tritium data from 35 springs draining the Luxembourg Sandstone aquifer. We assessed the mean transit times of groundwater and found that water moves on average more than 10 times more slowly vertically in the vadose zone of the aquifer (~12 m yr-1) than horizontally in its saturated zone (~170 m yr-1).
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laurent Gourdol, Rémi Clément, Jérôme Juilleret, Laurent Pfister, and Christophe Hissler
Hydrol. Earth Syst. Sci., 25, 1785–1812, https://doi.org/10.5194/hess-25-1785-2021, https://doi.org/10.5194/hess-25-1785-2021, 2021
Short summary
Short summary
Electrical resistivity tomography (ERT) is a remarkable tool for characterizing the regolith, but its use over large areas remains cumbersome due to the requirement of small electrode spacing (ES). In this study we document the issues of using oversized ESs and propose a new approach to overcome this limitation. We demonstrate that our protocol significantly improves the accuracy of ERT profiles using large ES and offers a cost-effective means for carrying out large-scale surveys.
Jan Bondy, Jan Wienhöfer, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-174, https://doi.org/10.5194/hess-2021-174, 2021
Manuscript not accepted for further review
Short summary
Short summary
The Budyko curve is a widely-used and simple framework to predict the mean water balance of river catchments. While many catchments are in close accordance with the Budyko curve, others show more or less significant deviations. Our study aims at better understanding the role of soil storage characteristics in the mean water balance and offsets from the Budyko curve. Soil storage proved to be a very sensitive property and potentially explains significant deviations from the curve.
Judith Eeckman, Hélène Roux, Audrey Douinot, Bertrand Bonan, and Clément Albergel
Hydrol. Earth Syst. Sci., 25, 1425–1446, https://doi.org/10.5194/hess-25-1425-2021, https://doi.org/10.5194/hess-25-1425-2021, 2021
Short summary
Short summary
The risk of flash flood is of growing importance for populations, particularly in the Mediterranean area in the context of a changing climate. The representation of soil processes in models is a key factor for flash flood simulation. The importance of the various methods for soil moisture estimation are highlighted in this work. Local measurements from the field as well as data derived from satellite imagery can be used to assess the performance of model outputs.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020, https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020, https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Short summary
We present the first annually resolved stable isotope record (1819–1998) from shells of Swedish river mussels. Data reflect hydrological processes in the catchment and changes in the isotope value of local precipitation. The latter is related to the origin of moisture from which precipitation formed (North Atlantic or the Arctic) and governed by large-scale atmospheric circulation patterns. Results help to better understand climate dynamics and constrain ecological changes in river ecosystems.
Laurent Gourdol, Rémi Clément, Jérôme Juilleret, Laurent Pfister, and Christophe Hissler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-519, https://doi.org/10.5194/hess-2018-519, 2018
Revised manuscript not accepted
Short summary
Short summary
Electrical Resistivity Tomography (ERT) is a remarkable tool for characterizing the geometry and properties of the regolith. However, its use for large horizontal surveys remains cumbersome to characterize shallow subsurface structures due to the requirement of small electrode spacing increments. Here we propose a new approach to overcome this limitation. We demonstrate that our protocol significantly improves the accuracy of ERT profiles when using large electrode spacing increments.
Barbara Glaser, Marta Antonelli, Marco Chini, Laurent Pfister, and Julian Klaus
Hydrol. Earth Syst. Sci., 22, 5987–6003, https://doi.org/10.5194/hess-22-5987-2018, https://doi.org/10.5194/hess-22-5987-2018, 2018
Short summary
Short summary
We demonstrate how thermal infrared images can be used for mapping the appearance and disappearance of water at the surface. The use of thermal infrared images allows for mapping this appearance and disappearance for various temporal and spatial resolutions, and the images can be understood intuitively. We explain the necessary steps in detail, from image acquisition to final processing, by relying on image examples and experience from an 18-month mapping campaign.
Audrey Douinot, Hélène Roux, Pierre-André Garambois, and Denis Dartus
Hydrol. Earth Syst. Sci., 22, 5317–5340, https://doi.org/10.5194/hess-22-5317-2018, https://doi.org/10.5194/hess-22-5317-2018, 2018
Short summary
Short summary
The distributed, process-oriented model, MARINE, was used to test several hypotheses of flow dynamics in soils during flash flood events in the Mediterranean area. Results show that the most realistic hypothesis for each catchment is consistent with existing in situ observations and measurements. The study also highlights the potential of distributed modelling and spatial observations in hydrology, especially in dealing with equifinality issues.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-416, https://doi.org/10.5194/hess-2017-416, 2017
Revised manuscript not accepted
Simon Paul Seibert, Conrad Jackisch, Uwe Ehret, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 2817–2841, https://doi.org/10.5194/hess-21-2817-2017, https://doi.org/10.5194/hess-21-2817-2017, 2017
Short summary
Short summary
Runoff production mechanisms and their corresponding physiographic controls continue to pose major research challenges in catchment hydrology. We propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in inter-comparison studies. Specifically, we present dimensionless double mass curves which allow us to infer information on runoff generation at the seasonal and annual timescales. The method is based on commonly available data.
N. Martínez-Carreras, C. E. Wetzel, J. Frentress, L. Ector, J. J. McDonnell, L. Hoffmann, and L. Pfister
Hydrol. Earth Syst. Sci., 19, 3133–3151, https://doi.org/10.5194/hess-19-3133-2015, https://doi.org/10.5194/hess-19-3133-2015, 2015
Short summary
Short summary
We tested the hypothesis that different diatom species assemblages inhabit specific moisture domains of the catchment and, consequently, the presence of certain species assemblages in the stream during runoff events offers the potential for recording whether there was hydrological connectivity between these domains or not. In the Weierbach catchment, the transport of aerial diatoms during events suggested a rapid connectivity between the soil surface and the stream.
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Projections of streamflow intermittence under climate change in European drying river networks
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Achieving water budget closure through physical hydrological processes modelling: insights from a large-sample study
Analyzing the generalization capabilities of hybrid hydrological models for extrapolation to extreme events
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric-hydrological model
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Scale-dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
A diversity centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
Exploring the Potential Processes Controls for Changes of Precipitation-Runoff Relationships in Non-stationary Environments
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Long Short-Term Memory Networks for Real-time Flood Forecast Correction: A Case Study for an Underperforming Hydrologic Model
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Catchments do not strictly follow Budyko curves over multiple decades but deviations are minor and predictable
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025, https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small catchments compared to large catchments, and spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show effects. The results can improve estimations of probabilities of extreme floods.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025, https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping to better prepare for and respond to floods.
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024, https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-272, https://doi.org/10.5194/hess-2024-272, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study projects how climate change will affect drying of river segments and stream networks in Europe, using advanced modeling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent, intense and start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists in evaluating the ecological health of river ecosystem.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-230, https://doi.org/10.5194/hess-2024-230, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets, which undermines the robustness of hydrological inferences. This study proposes a Multisource Datasets Correction Framework grounded in Physical Hydrological Processes Modelling to enhance water budget closure, called PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset, and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Eduardo Acuna Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-2147, https://doi.org/10.5194/egusphere-2024-2147, 2024
Short summary
Short summary
Data-driven techniques have shown the potential to outperform process-based models in rainfall-runoff simulations. Hybrid models, combining both approaches, aim to enhance accuracy and maintain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions we test their generalization capabilities for extreme hydrological events.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1464, https://doi.org/10.5194/egusphere-2024-1464, 2024
Short summary
Short summary
Our study conducted a detailed analysis of runoff component and future trend in the Yarlung Tsangpo River basin owing to the existed differences in the published results, and find that the contributions of snowmelt and glacier melt runoff to streamflow were limited, both for ~5 % which were much lower than previous results. The streamflow there will continuously increase in the future, but the overestimated contribution from glacier melt would lead to an underestimation on such increasing trend.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart Lane, and Francesco Comiti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1687, https://doi.org/10.5194/egusphere-2024-1687, 2024
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until an overparametrization limit is reached.
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-169, https://doi.org/10.5194/hess-2024-169, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine-learning models are increasingly being applied for flood forecasting. Such models are typically trained to large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets, that maximise the spatiotemproal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-118, https://doi.org/10.5194/hess-2024-118, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study develops an integrated framework based on the novel Driving index for changes in Precipitation-Runoff Relationships (DPRR) to explore the controls for changes in precipitation-runoff relationships in non-stationary environments. According to the quantitative results of the candidate driving factors, the possible process explanations for changes in the precipitation-runoff relationships are deduced. The main contribution offers a comprehensive understanding of hydrological processes.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2024-1030, https://doi.org/10.5194/egusphere-2024-1030, 2024
Short summary
Short summary
Accurate early warning systems are crucial for reducing damages caused by flooding events. In this study, we demonstrate the potential of Long Short-Term Memory Networks for enhancing the forecast accuracy of hydrologic models employed in operational flood forecasting. The presented approach elevated the investigated hydrologic model’s forecast accuracy for further ahead predictions and at flood event runoff.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-120, https://doi.org/10.5194/hess-2024-120, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko Framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, Recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantified deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Cited articles
adouinot: adouinot/TransitTimeModel: TransferTimeModel V1.0.0 (1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7181809, 2022.
Asano, Y., Uchida, T., and Tomomura, M.: A Novel Method of Quantifying
Catchment-Wide Average Peak Propagation Speed in Hillslopes: Fast Hillslope
Responses are Detected During Annual Floods in a Steep Humid Catchment,
Water Resour. Res., 56, e2019WR025070, https://doi.org/10.1029/2019WR025070, 2020.
Anderson, A. E., Weiler, M., Alila, Y., and Hudson, R. O.: Subsurface flow
velocities in a hillslope with lateral preferential flow, Water Resour.
Res., 45, W11407, https://doi.org/10.1029/2008WR007121, 2009.
Berghuijs, W. R., Allen, S. T., Harrigan, S., and Kirchner, J. W.: Growing
Spatial Scales of Synchronous River Flooding in Europe, Geophys. Res.
Lett., 46, 1423–1428, https://doi.org/10.1029/2018GL081883, 2019.
Bergstrom, A., Jencso, K., and McGlynn, B.: Spatiotemporal processes that
contribute to hydrologic exchange between hillslopes, valley bottoms, and
streams, Water Resour. Res., 52, 4628–4645,
https://doi.org/10.1002/2015WR017972, 2016.
Braud, I.: Proceedings of the final ANR FloodScale workshop: multi-scale
hydro-meteorological observation and modelling for flash flood understanding
and simulation, in: Séminaire de restitution du projet ANR Floodscale,
Aix-en Provence, France, p. 109, https://hal.inrae.fr/hal-02602293 (last access: 2 July 2020), 2015.
Braud, I., Ayral, P. A., Bouvier, C., Branger, F., Delrieu, G., Dramais, G.,
and Vandervaere, J. P.: Advances in flash floods understanding and modelling
derived from the FloodScale project in south-east France, in: 3rd European
Conference on Flood Risk Management, Innovation, Implementation, Integration
(FLOODrisk 2016), Vol. 7, p. 4005, Lyon, France,
https://doi.org/10.1051/e3sconf/20160704005, 2016.
Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I., Fischer, M.,
Heistermann, M., and Wendi, D.: Forensic hydro-meteorological analysis of an
extreme flash flood: The 2016-05-29 event in Braunsbach, SW Germany, Sci.
Total Environ., 630, 977–991,
https://doi.org/10.1016/j.scitotenv.2018.02.241, 2018.
Bryndal, T.: Local flash floods in Central Europe: A case study of Poland.
Norsk Geogr. Tidsskr., 69,
288–298, https://doi.org/10.1080/00291951.2015.1072242, 2015.
Butzen, V., Seeger, M., Marruedo, A., de Jonge, L., Wengel, R., Ries, J. B.,
and Casper, M. C.: Water repellency under coniferous and deciduous forest –
Experimental assessment and impact on overland flow, Catena, 133, 255–265,
https://doi.org/10.1016/j.catena.2015.05.022, 2015.
Diakakis, M. and Deligiannakis, G.: Flood fatalities in Greece: 1970–2010,
J. Flood Risk Manag., 10, 115–123,
https://doi.org/10.1111/jfr3.12166, 2017.
Doerr, S. H., Shakesby, R. A., and Walsh, R. P. D.: Soil water repellency:
Its causes, characteristics and hydro-geomorphological significance, Earth
Sci. Rev., 51, 33–65,
https://doi.org/10.1016/S0012-8252(00)00011-8, 2000.
Douinot, A., Roux, H., Garambois, P.-A., and Dartus, D.: Using a multi-hypothesis framework to improve the understanding of flow dynamics during flash floods, Hydrol. Earth Syst. Sci., 22, 5317–5340, https://doi.org/10.5194/hess-22-5317-2018, 2018.
Douinot, A., Dalla Torre, A., Martin, J., Iffly, J.-F., Rapin, L., Meisch,
C., Bastian C., and Pfister, L.: Prototype of a LPWA Network for Real-Time
Hydro-Meteorological Monitoring and Flood Nowcasting, in: Ad-Hoc, Mobile,
and Wireless Networks, edited by: Palattella, M. R.,
Scanzio, S., and Coleri Ergen, S., Lecture Notes in Computer Science, vol. 11803, Springer, 566–574, https://doi.org/10.1007/978-3-030-31831-4_40, 2019.
Du, J., Niu, J., Gao, Z., Chen, X., Zhang, L., Li, X., van Doorn, N. S.,
Luo, Z., and Zhu, Z.: Effects of rainfall intensity and slope on
interception and precipitation partitioning by forest litter layer, CATENA,
172, 711–718, https://doi.org/10.1016/j.catena.2018.09.036, 2019.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A.,
Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P., Belamari, S.,
Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J., Bouin, M.,
Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U.,
Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P.,
Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J.
J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G.,
Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said,
F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M.,
and Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated to Heavy
Precipitation and Flash Flooding in the Northwestern Mediterranean, B.
Am. Meteor. Soc., 95, 1083–1100,
https://doi.org/10.1175/BAMS-D-12-00244.1, 2014.
EM-DAT: CRED/UCLouvain, Brussels, Belgium, https://www.emdat.be/ (last access: 2 July 2020.
Fenicia, F., Kavetski, D., Savenije, H. H. G., Clark, M. P., Schoups, G.,
Pfister, L., and Freer, J.: Catchment properties, function, and conceptual
model representation: is there a correspondence?, Hydrol. Process.,
28, 2451–2467, https://doi.org/10.1002/hyp.9726, 2014.
Gabrielli, C. P., McDonnell, J. J., and Jarvis, W. T.: The role of bedrock
groundwater in rainfall-runoff response at hillslope and catchment scales,
J. Hydrol., 450–451, 117–133,
https://doi.org/10.1016/j.jhydrol.2012.05.023, 2012.
Gaume, E., Borga, M., Llassat, M. C., Maouche, S., Lang, M., and Diakakis,
M.: Mediterranean extreme floods and flash floods, in: The Mediterranean
Region under Climate Change, A Scientific Update, IRD Editions,
133–144, https://hal.archives-ouvertes.fr/hal-01465740 (last access: 2 July 2020), 2016.
Gerke, K. M., Sidle, R. C., and Mallants, D.: Preferential flow mechanisms
identified from staining experiments in forested hillslopes, Hydrol.
Process., 29, 4562–4578, https://doi.org/10.1002/hyp.10468, 2015.
Gomi, T., Sidle, R. C., Ueno, M., Miyata, S., and Kosugi, K.:
Characteristics of overland flow generation on steep forested hillslopes of
central Japan, J. Hydrol., 361, 275–290,
https://doi.org/10.1016/j.jhydrol.2008.07.045, 2008.
Graham, R. C., Rossi, A. M., and Hubbert, K. R.: Rock to regolith
conversion: Producing hospitable substrates for terrestrial ecosystems, GSA
Today, 20, 4–9, https://doi.org/10.1130/GSAT57A.1, 2010.
Hoeffding, W.: A Non-Parametric Test of Independence, Ann. Math. Stat.,
19, 546–557, https://doi.org/10.1214/aoms/1177730150, 1948.
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Malcolm, I. A., and Schoups, G.:
Gamma distribution models for transit time estimation in catchments:
Physical interpretation of parameters and implications for time-variant
transit time assessment, Water Resour. Res., 46, W10536,
https://doi.org/10.1029/2010WR009148, 2010.
Iwasaki, K., Katsuyama, M., and Tani, M.: Contributions of bedrock
groundwater to the upscaling of storm-runoff generation processes in
weathered granitic headwater catchments, Hydrol. Process., 29,
1535–1548, https://doi.org/10.1002/hyp.10279, 2015.
Iwasaki, K., Katsuyama, M., and Tani, M.: Factors affecting dominant
peak-flow runoff-generation mechanisms among five neighbouring granitic
headwater catchments, Hydrol. Process., 34, 1154–1166,
https://doi.org/10.1002/hyp.13656, 2020.
Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J., and Zehe, E.: Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures, Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, 2017.
Jeyakumar, P., Müller, K., Deurer, M., van den Dijssel, C., Mason, K.,
Le Mire, G., and Clothier, B.: A novel approach to quantify the impact of
soil water repellency on run-off and solute loss, Geoderma, 221–222,
121–130, https://doi.org/10.1016/j.geoderma.2014.01.008, 2014.
Kausch, B. and Maquil, R.: Landscapes and Landforms of the Luxembourg
Sandstone, Grand-Duchy of Luxembourg, in: Landscapes and Landforms of
Belgium and Luxembourg, edited by: Demoulin, A., Springer International
Publishing, the Netherlands, 1st ed., 43–62,
https://doi.org/10.1007/978-3-319-58239-9, 2018.
Kendall, M. G.: A new measure of rank correlation, Biometrika, 30,
81–93, 1938.
Kim, J. K., Onda, Y., Kim, M. S., and Yang, D. Y.: Plot-scale study of
surface runoff on well-covered forest floors under different canopy species,
Quaternary Int., 344, 75–85,
https://doi.org/10.1016/j.quaint.2014.07.036, 2014.
Kirnbauer, R., Blöschl, G., Haas, P., Müller, G., and Merz, B.:
Identifying Space-time Patterns of Runoff Generation: A Case Study from the
Löhnersbach Catchment, Austrian Alps, in: Global Change and Mountain
Regions: An Overview of Current Knowledge, edited by: Huber, U. M.,
Bugmann, H. K. M., and Reasoner, M. A., Springer, the Netherlands, 309–320,
https://doi.org/10.1007/1-4020-3508-X_31, 2005.
Llasat, M. C., Marcos, R., Turco, M., Gilabert, J., and Llasat-Botija, M.:
Trends in flash flood events versus convective precipitation in the
Mediterranean region: The case of Catalonia, J. Hydrol., 541,
24–37, https://doi.org/10.1016/j.jhydrol.2016.05.040, 2016.
Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation of
selected extreme flash floods in Europe and implications for flood risk
management, J. Hydrol., 394, 118–133,
https://doi.org/10.1016/j.jhydrol.2010.07.017, 2010.
Martínez-Carreras, N., Hissler, C., Gourdol, L., Klaus, J., Juilleret,
J., Iffly, J. F., and Pfister, L.: Storage controls on the generation of
double peak hydrographs in a forested headwater catchment, J.
Hydrol., 543, 255–269, https://doi.org/10.1016/j.jhydrol.2016.10.004,
2016.
Massari, C., Camici, S., Ciabatta, L., Penna, D., Marra, A. C., and
Panegrossi, G.: Floods in the Mediterranean area: The role of
soil moisture and precipitation, in: Water resources in Mediterranean
region, chap. 8, edited by: Zribi, M., Brocca, L., Tramblay, Y., and Molle, F., Elsevier,
191–218,
https://doi.org/10.1016/B978-0-12-818086-0.00008-X, 2020.
McGlynn, B. L., McDonnell, J. J., Seibert, J., and Kendall, C.: Scale
effects on headwater catchment runoff timing, flow sources, and
groundwater-streamflow relations, Water Resour. Res., 40, W07504,
https://doi.org/10.1029/2003WR002494, 2004.
Miller, D. J. and Dunne, T.: Topographic perturbations of regional stresses
and consequent bedrock fracturing, J. Geophys. Res.-Sol.
Ea., 101, 25523–25536, https://doi.org/10.1029/96JB02531, 1996.
Miyata, S., Kosugi, K., Gomi, T., and Mizuyama, T.: Effects of forest floor
coverage on overland flow and soil erosion on hillslopes in Japanese cypress
plantation forests, Water Resour. Res., 45, W06402,
https://doi.org/10.1029/2008WR007270, 2009.
Molnar, P.: Interactions among topographically induced elastic stress,
static fatigue, and valley incision, J. Geophys. Res.-Earth, 109, F02010, https://doi.org/10.1029/2003JF000097, 2004.
Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G.,
Silveira, A., Waterloo, M., and Saleska, S.: Height Above the Nearest
Drainage – a hydrologically relevant new terrain model, J.
Hydrol., 404, 13–29,
https://doi.org/10.1016/j.jhydrol.2011.03.051, 2011.
Onda, Y., Tsujimura, M., Fujihara, J., and Ito, J.: Runoff generation
mechanisms in high-relief mountainous watersheds with different underlying
geology, J. Hydrol., 331, 659–673,
https://doi.org/10.1016/j.jhydrol.2006.06.009, 2006.
Padilla, C., Onda, Y., and Iida, T.: Interaction between runoff – bedrock
groundwater in a steep headwater catchment underlain by sedimentary bedrock
fractured by gravitational deformation, Hydrol. Process., 29,
4398–4412, https://doi.org/10.1002/hyp.10498, 2015.
Payrastre, O., NAULIN, J. P., Nguyen, C. C., and Gaume, E.: Analyse
hydrologique des crues de juin 2010 dans le Var, IFSTTAR – Institut
Français des Sciences et Technologies des Transports, de
l'Aménagement et des Réseaux, 33 pp., https://hal.archives-ouvertes.fr/hal-01272025/file/doc00023875.pdf
(last access: 1 September 2021),
2012.
Pereira, S., Diakakis, M., Deligiannakis, G., and Zêzere, J. L.:
Comparing flood mortality in Portugal and Greece (Western and Eastern
Mediterranean), Int. J. Disast. Risk, 22,
147–157, https://doi.org/10.1016/j.ijdrr.2017.03.007, 2017.
Pfister, L., Humbert, J., and Hoffmann, L.: Recent Trends in Rainfall-Runoff
Characteristics in the Alzette River Basin, Luxembourg, Climatic Change,
45, 323–337, https://doi.org/10.1023/A:1005567808533, 2000.
Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G.
E., Stewart, M. K., and McDonnell, J. J.: Bedrock geology controls on
catchment storage, mixing, and release: A comparative analysis of 16 nested
catchments, Hydrol. Process., 31, 1828–1845,
https://doi.org/10.1002/hyp.11134, 2017.
Pfister, L., Bastian, C., Faber O., Gölhausen, D., Hostache R., Iffly
J.F., Matgen P., Meisch C., Minette F., Patz, N., and Trebs, I.: La crue
éclair du 22 juillet 2016 dans la région de Larochette: Etude
mécanistique et fréquentielle, LIST, Luxembourg, 20 pp.,
https://gouvernement.lu/fr/publications.gouv_eau+fr+services-aux-citoyens+publications+2021+brochures+Crue-eclair-du-22-juillet-2016.html
(last access: 20 February 2021),
2018.
Pfister, L. Bastian, C., Douinot A., Gilbertz, C., Göhlhausen, D.,
Hostache R., Iffly J. F., Matgen P., Meisch C., Minette F., and Patz, N.:
Etude mécanistique et fréquentielle des crues subites de 2018 au
Luxembourg, LIST, technical report, Luxembourg, 24 pp., https://gouvernement.lu/fr/publications.gouv_eau+fr+services-aux-citoyens+publications+2021+brochures+Crues-subites-2018.html
(last access: 1 June 2021),
2020.
Ruiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., and Ehret, U.: Extreme flood response to short-duration convective rainfall in South-West Germany, Hydrol. Earth Syst. Sci., 16, 1543–1559, https://doi.org/10.5194/hess-16-1543-2012, 2012.
Saber, M., and Yilmaz, K. K.: Evaluation and Bias Correction of
Satellite-Based Rainfall Estimates for Modelling Flash Floods over the
Mediterranean region: Application to Karpuz River Basin, Turkey, Water,
10, 657, https://doi.org/10.3390/w10050657, 2018.
Sato, Y., Kumagai, T., Kume, A., Otsuki, K., and Ogawa, S.: Experimental
analysis of moisture dynamics of litter layers – the effects of rainfall
conditions and leaf shapes, Hydrol. Process., 18, 3007–3018,
https://doi.org/10.1002/hyp.5746, 2004.
Scaini, A., Hissler, C., Fenicia, F., Juilleret, J., Iffly, J. F., Pfister,
L., and Beven, K.: Hillslope response to sprinkling and natural rainfall
using velocity and celerity estimates in a slate-bedrock catchment, J.
Hydrol., 558, 366–379, https://doi.org/10.1016/j.jhydrol.2017.12.011,
2018.
Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., and
Shimizu, T.: Stormflow generation in steep forested headwaters: a linked
hydrogeomorphic paradigm, Hydrol. Process., 14, 369–385,
https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P, 2000.
Sidle, R. C., Hirano, T., Gomi, T., and Terajima, T.: Hortonian overland
flow from Japanese forest plantations – an aberration, the real thing, or
something in between?, Hydrol. Process., 21, 3237–3247,
https://doi.org/10.1002/hyp.6876, 2007.
Slim, M., Perron, J. T., Martel, S. J., and Singha, K.: Topographic stress
and rock fracture: a two-dimensional numerical model for arbitrary
topography and preliminary comparison with borehole observations, Earth
Surf. Proc. Land., 40, 512–529,
https://doi.org/10.1002/esp.3646, 2015.
Teschemacher, S., Rieger, W., and Disse, M.: Experimental Investigation of
Lateral Subsurface Flow Depending on Land Use and Soil Cultivation, Water,
11, 766, https://doi.org/10.3390/w11040766, 2019.
Tramblay, Y., Bouvier, C., Martin, C., Didon-Lescot, J.-F., Todorovik, D.,
and Domergue, J.-M.: Assessment of initial soil moisture conditions for
event-based rainfall–runoff modelling, J. Hydrol., 387,
176–187, https://doi.org/10.1016/j.jhydrol.2010.04.006, 2010.
Van Campenhout, J., Hallot, E., Houbrechts, G., Peeters, A., Levecq, Y.,
Gérard, P., and Petit, F.: Flash floods and muddy floods in Wallonia:
recent temporal trends, spatial distribution and reconstruction of the
hydrosedimentological fluxes using flood marks and sediment deposits,
Belgeo, Revue Belge de Géographie, 1, 3,
https://doi.org/10.4000/belgeo.16409, 2015.
Vannier, O., Braud, I., and Anquetin, S.: Regional estimation of
catchment-scale soil properties by means of streamflow recession analysis
for use in distributed hydrological models, Hydrol. Process., 28, 6276–6291,
https://doi.org/10.1002/hyp.10101, 2013.
Westhoff, M. C., Bogaard, T. A., and Savenije, H. H. G.: Quantifying spatial and temporal discharge dynamics of an event in a first order stream, using distributed temperature sensing, Hydrol. Earth Syst. Sci., 15, 1945–1957, https://doi.org/10.5194/hess-15-1945-2011, 2011.
Wrede, S., Fenicia, F., Martínez-Carreras, N., Juilleret, J., Hissler,
C., Krein, A., Savenije, H. H. G., Uhlenbrook, S., Kavetski, D., and
Pfister, L.: Towards more systematic perceptual model development: a case
study using 3 Luxembourgish catchments, Hydrol. Process., 29,
2731–2750, https://doi.org/10.1002/hyp.10393, 2015.
Zavala, L. M., González, F. A., and Jordán, A.: Intensity and
persistence of water repellency in relation to vegetation types and soil
parameters in Mediterranean SW Spain, Geoderma, 152, 361–374, https://doi.org/10.1016/j.geoderma.2009.07.011, 2009.
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
The objective of the paper is to highlight the seasonal and singular shift of the transfer time...