Articles | Volume 26, issue 19
https://doi.org/10.5194/hess-26-5185-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5185-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
Audrey Douinot
CORRESPONDING AUTHOR
Environmental Research and Innovation Department (ERIN), Luxembourg
Institute of Science and Technology (LIST), Belvaux, Luxembourg
Jean François Iffly
Environmental Research and Innovation Department (ERIN), Luxembourg
Institute of Science and Technology (LIST), Belvaux, Luxembourg
Cyrille Tailliez
Environmental Research and Innovation Department (ERIN), Luxembourg
Institute of Science and Technology (LIST), Belvaux, Luxembourg
Claude Meisch
Administration de la Gestion de l'Eau – Division de l'Hydrologie, 1, avenue du Rock'n'roll, 4361 Esch-sur-Alzette, Luxembourg
Laurent Pfister
Environmental Research and Innovation Department (ERIN), Luxembourg
Institute of Science and Technology (LIST), Belvaux, Luxembourg
Related authors
Judith Eeckman, Hélène Roux, Audrey Douinot, Bertrand Bonan, and Clément Albergel
Hydrol. Earth Syst. Sci., 25, 1425–1446, https://doi.org/10.5194/hess-25-1425-2021, https://doi.org/10.5194/hess-25-1425-2021, 2021
Short summary
Short summary
The risk of flash flood is of growing importance for populations, particularly in the Mediterranean area in the context of a changing climate. The representation of soil processes in models is a key factor for flash flood simulation. The importance of the various methods for soil moisture estimation are highlighted in this work. Local measurements from the field as well as data derived from satellite imagery can be used to assess the performance of model outputs.
Erwin Zehe, Laurent Pfister, Dan Elhanati, and Brian Berkowitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-4656, https://doi.org/10.5194/egusphere-2025-4656, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Travel or transit time distributions play a key role in contaminant leaching from the partially saturated zone into groundwater. Here we show that average travel times are of different water isotopes may differ by 5–10 %. These difference arise in case of imperfect mixing due to trapping of isotope molecules in bottle necks of very small hydraulic conductivity. Molecules with smaller diffusion coefficient stay there for a longer time.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025, https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. These data help predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behaviour and serves as a resource for future environmental studies.
Judith Nijzink, Ralf Loritz, Laurent Gourdol, Davide Zoccatelli, Jean François Iffly, and Laurent Pfister
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-482, https://doi.org/10.5194/essd-2024-482, 2025
Preprint under review for ESSD
Short summary
Short summary
The CAMELS-LUX dataset (Catchment Attributes and MEteorology for Large-sample Studies – LUXembourg) contains hydrologic, meteorologic and thunderstorm formation relevant atmospheric time series of 56 Luxembourgish catchments (2004–2021). These catchments are characterized by a large physiographic variety on a relatively small scale in a homogeneous climate. The dataset can be applied for (regional) hydrological analyses.
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530, https://doi.org/10.5194/egusphere-2025-1530, 2025
Short summary
Short summary
How landscape features affect water storage and release in catchments remains poorly understood. Here we used water stable isotopes in 12 streams to assess the fraction of precipitation reaching streamflow in less than 2 weeks. More recent precipitation was found when streamflow was high and the fraction was linked to the geology (i.e. high when impermeable, low when permeable). Such information is key for better anticipating streamflow responses to a changing climate.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Guilhem Türk, Christoph Johannes Gey, Bernd Reinhard Schöne, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2024-4169, https://doi.org/10.5194/egusphere-2024-4169, 2025
Short summary
Short summary
Past stream flow dynamics can be assessed using the stable isotopes of oxygen (O16/O18) in streams and precipitation from various proxy sources. Here, we show how they are retrieved in precipitation for ~150 years using temperature records and an atmospheric circulation classification scheme. Our robust and assumption-lean approach compares to model performances in the literature, demonstrating atmospheric controls of the temperature influence on precipitation O16/O18 compositions.
Huibin Gao, Laurent Pfister, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-613, https://doi.org/10.5194/egusphere-2025-613, 2025
Short summary
Short summary
Some streams respond to rainfall with flow that peaks twice: a sharp first peak followed by a broad second peak. We analyzed data from a catchment in Luxembourg to better understand the processes behind this phenomenon. Our results show that the first peak is mostly driven directly by rainfall, and the second peak is mostly driven by rain that infiltrates to groundwater. We also show that the relative importance of these two processes depends on how wet the landscape is before the rain falls.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024, https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Short summary
Determining water transit times in aquifers is key to a better understanding of groundwater resources and their sustainable management. For our research, we used high-accuracy tritium data from 35 springs draining the Luxembourg Sandstone aquifer. We assessed the mean transit times of groundwater and found that water moves on average more than 10 times more slowly vertically in the vadose zone of the aquifer (~12 m yr-1) than horizontally in its saturated zone (~170 m yr-1).
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laurent Gourdol, Rémi Clément, Jérôme Juilleret, Laurent Pfister, and Christophe Hissler
Hydrol. Earth Syst. Sci., 25, 1785–1812, https://doi.org/10.5194/hess-25-1785-2021, https://doi.org/10.5194/hess-25-1785-2021, 2021
Short summary
Short summary
Electrical resistivity tomography (ERT) is a remarkable tool for characterizing the regolith, but its use over large areas remains cumbersome due to the requirement of small electrode spacing (ES). In this study we document the issues of using oversized ESs and propose a new approach to overcome this limitation. We demonstrate that our protocol significantly improves the accuracy of ERT profiles using large ES and offers a cost-effective means for carrying out large-scale surveys.
Jan Bondy, Jan Wienhöfer, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-174, https://doi.org/10.5194/hess-2021-174, 2021
Manuscript not accepted for further review
Short summary
Short summary
The Budyko curve is a widely-used and simple framework to predict the mean water balance of river catchments. While many catchments are in close accordance with the Budyko curve, others show more or less significant deviations. Our study aims at better understanding the role of soil storage characteristics in the mean water balance and offsets from the Budyko curve. Soil storage proved to be a very sensitive property and potentially explains significant deviations from the curve.
Judith Eeckman, Hélène Roux, Audrey Douinot, Bertrand Bonan, and Clément Albergel
Hydrol. Earth Syst. Sci., 25, 1425–1446, https://doi.org/10.5194/hess-25-1425-2021, https://doi.org/10.5194/hess-25-1425-2021, 2021
Short summary
Short summary
The risk of flash flood is of growing importance for populations, particularly in the Mediterranean area in the context of a changing climate. The representation of soil processes in models is a key factor for flash flood simulation. The importance of the various methods for soil moisture estimation are highlighted in this work. Local measurements from the field as well as data derived from satellite imagery can be used to assess the performance of model outputs.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Cited articles
adouinot: adouinot/TransitTimeModel: TransferTimeModel V1.0.0 (1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7181809, 2022.
Asano, Y., Uchida, T., and Tomomura, M.: A Novel Method of Quantifying
Catchment-Wide Average Peak Propagation Speed in Hillslopes: Fast Hillslope
Responses are Detected During Annual Floods in a Steep Humid Catchment,
Water Resour. Res., 56, e2019WR025070, https://doi.org/10.1029/2019WR025070, 2020.
Anderson, A. E., Weiler, M., Alila, Y., and Hudson, R. O.: Subsurface flow
velocities in a hillslope with lateral preferential flow, Water Resour.
Res., 45, W11407, https://doi.org/10.1029/2008WR007121, 2009.
Berghuijs, W. R., Allen, S. T., Harrigan, S., and Kirchner, J. W.: Growing
Spatial Scales of Synchronous River Flooding in Europe, Geophys. Res.
Lett., 46, 1423–1428, https://doi.org/10.1029/2018GL081883, 2019.
Bergstrom, A., Jencso, K., and McGlynn, B.: Spatiotemporal processes that
contribute to hydrologic exchange between hillslopes, valley bottoms, and
streams, Water Resour. Res., 52, 4628–4645,
https://doi.org/10.1002/2015WR017972, 2016.
Braud, I.: Proceedings of the final ANR FloodScale workshop: multi-scale
hydro-meteorological observation and modelling for flash flood understanding
and simulation, in: Séminaire de restitution du projet ANR Floodscale,
Aix-en Provence, France, p. 109, https://hal.inrae.fr/hal-02602293 (last access: 2 July 2020), 2015.
Braud, I., Ayral, P. A., Bouvier, C., Branger, F., Delrieu, G., Dramais, G.,
and Vandervaere, J. P.: Advances in flash floods understanding and modelling
derived from the FloodScale project in south-east France, in: 3rd European
Conference on Flood Risk Management, Innovation, Implementation, Integration
(FLOODrisk 2016), Vol. 7, p. 4005, Lyon, France,
https://doi.org/10.1051/e3sconf/20160704005, 2016.
Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I., Fischer, M.,
Heistermann, M., and Wendi, D.: Forensic hydro-meteorological analysis of an
extreme flash flood: The 2016-05-29 event in Braunsbach, SW Germany, Sci.
Total Environ., 630, 977–991,
https://doi.org/10.1016/j.scitotenv.2018.02.241, 2018.
Bryndal, T.: Local flash floods in Central Europe: A case study of Poland.
Norsk Geogr. Tidsskr., 69,
288–298, https://doi.org/10.1080/00291951.2015.1072242, 2015.
Butzen, V., Seeger, M., Marruedo, A., de Jonge, L., Wengel, R., Ries, J. B.,
and Casper, M. C.: Water repellency under coniferous and deciduous forest –
Experimental assessment and impact on overland flow, Catena, 133, 255–265,
https://doi.org/10.1016/j.catena.2015.05.022, 2015.
Diakakis, M. and Deligiannakis, G.: Flood fatalities in Greece: 1970–2010,
J. Flood Risk Manag., 10, 115–123,
https://doi.org/10.1111/jfr3.12166, 2017.
Doerr, S. H., Shakesby, R. A., and Walsh, R. P. D.: Soil water repellency:
Its causes, characteristics and hydro-geomorphological significance, Earth
Sci. Rev., 51, 33–65,
https://doi.org/10.1016/S0012-8252(00)00011-8, 2000.
Douinot, A., Roux, H., Garambois, P.-A., and Dartus, D.: Using a multi-hypothesis framework to improve the understanding of flow dynamics during flash floods, Hydrol. Earth Syst. Sci., 22, 5317–5340, https://doi.org/10.5194/hess-22-5317-2018, 2018.
Douinot, A., Dalla Torre, A., Martin, J., Iffly, J.-F., Rapin, L., Meisch,
C., Bastian C., and Pfister, L.: Prototype of a LPWA Network for Real-Time
Hydro-Meteorological Monitoring and Flood Nowcasting, in: Ad-Hoc, Mobile,
and Wireless Networks, edited by: Palattella, M. R.,
Scanzio, S., and Coleri Ergen, S., Lecture Notes in Computer Science, vol. 11803, Springer, 566–574, https://doi.org/10.1007/978-3-030-31831-4_40, 2019.
Du, J., Niu, J., Gao, Z., Chen, X., Zhang, L., Li, X., van Doorn, N. S.,
Luo, Z., and Zhu, Z.: Effects of rainfall intensity and slope on
interception and precipitation partitioning by forest litter layer, CATENA,
172, 711–718, https://doi.org/10.1016/j.catena.2018.09.036, 2019.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A.,
Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P., Belamari, S.,
Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J., Bouin, M.,
Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U.,
Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P.,
Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J.
J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G.,
Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said,
F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M.,
and Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated to Heavy
Precipitation and Flash Flooding in the Northwestern Mediterranean, B.
Am. Meteor. Soc., 95, 1083–1100,
https://doi.org/10.1175/BAMS-D-12-00244.1, 2014.
EM-DAT: CRED/UCLouvain, Brussels, Belgium, https://www.emdat.be/ (last access: 2 July 2020.
Fenicia, F., Kavetski, D., Savenije, H. H. G., Clark, M. P., Schoups, G.,
Pfister, L., and Freer, J.: Catchment properties, function, and conceptual
model representation: is there a correspondence?, Hydrol. Process.,
28, 2451–2467, https://doi.org/10.1002/hyp.9726, 2014.
Gabrielli, C. P., McDonnell, J. J., and Jarvis, W. T.: The role of bedrock
groundwater in rainfall-runoff response at hillslope and catchment scales,
J. Hydrol., 450–451, 117–133,
https://doi.org/10.1016/j.jhydrol.2012.05.023, 2012.
Gaume, E., Borga, M., Llassat, M. C., Maouche, S., Lang, M., and Diakakis,
M.: Mediterranean extreme floods and flash floods, in: The Mediterranean
Region under Climate Change, A Scientific Update, IRD Editions,
133–144, https://hal.archives-ouvertes.fr/hal-01465740 (last access: 2 July 2020), 2016.
Gerke, K. M., Sidle, R. C., and Mallants, D.: Preferential flow mechanisms
identified from staining experiments in forested hillslopes, Hydrol.
Process., 29, 4562–4578, https://doi.org/10.1002/hyp.10468, 2015.
Gomi, T., Sidle, R. C., Ueno, M., Miyata, S., and Kosugi, K.:
Characteristics of overland flow generation on steep forested hillslopes of
central Japan, J. Hydrol., 361, 275–290,
https://doi.org/10.1016/j.jhydrol.2008.07.045, 2008.
Graham, R. C., Rossi, A. M., and Hubbert, K. R.: Rock to regolith
conversion: Producing hospitable substrates for terrestrial ecosystems, GSA
Today, 20, 4–9, https://doi.org/10.1130/GSAT57A.1, 2010.
Hoeffding, W.: A Non-Parametric Test of Independence, Ann. Math. Stat.,
19, 546–557, https://doi.org/10.1214/aoms/1177730150, 1948.
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Malcolm, I. A., and Schoups, G.:
Gamma distribution models for transit time estimation in catchments:
Physical interpretation of parameters and implications for time-variant
transit time assessment, Water Resour. Res., 46, W10536,
https://doi.org/10.1029/2010WR009148, 2010.
Iwasaki, K., Katsuyama, M., and Tani, M.: Contributions of bedrock
groundwater to the upscaling of storm-runoff generation processes in
weathered granitic headwater catchments, Hydrol. Process., 29,
1535–1548, https://doi.org/10.1002/hyp.10279, 2015.
Iwasaki, K., Katsuyama, M., and Tani, M.: Factors affecting dominant
peak-flow runoff-generation mechanisms among five neighbouring granitic
headwater catchments, Hydrol. Process., 34, 1154–1166,
https://doi.org/10.1002/hyp.13656, 2020.
Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J., and Zehe, E.: Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures, Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, 2017.
Jeyakumar, P., Müller, K., Deurer, M., van den Dijssel, C., Mason, K.,
Le Mire, G., and Clothier, B.: A novel approach to quantify the impact of
soil water repellency on run-off and solute loss, Geoderma, 221–222,
121–130, https://doi.org/10.1016/j.geoderma.2014.01.008, 2014.
Kausch, B. and Maquil, R.: Landscapes and Landforms of the Luxembourg
Sandstone, Grand-Duchy of Luxembourg, in: Landscapes and Landforms of
Belgium and Luxembourg, edited by: Demoulin, A., Springer International
Publishing, the Netherlands, 1st ed., 43–62,
https://doi.org/10.1007/978-3-319-58239-9, 2018.
Kendall, M. G.: A new measure of rank correlation, Biometrika, 30,
81–93, 1938.
Kim, J. K., Onda, Y., Kim, M. S., and Yang, D. Y.: Plot-scale study of
surface runoff on well-covered forest floors under different canopy species,
Quaternary Int., 344, 75–85,
https://doi.org/10.1016/j.quaint.2014.07.036, 2014.
Kirnbauer, R., Blöschl, G., Haas, P., Müller, G., and Merz, B.:
Identifying Space-time Patterns of Runoff Generation: A Case Study from the
Löhnersbach Catchment, Austrian Alps, in: Global Change and Mountain
Regions: An Overview of Current Knowledge, edited by: Huber, U. M.,
Bugmann, H. K. M., and Reasoner, M. A., Springer, the Netherlands, 309–320,
https://doi.org/10.1007/1-4020-3508-X_31, 2005.
Llasat, M. C., Marcos, R., Turco, M., Gilabert, J., and Llasat-Botija, M.:
Trends in flash flood events versus convective precipitation in the
Mediterranean region: The case of Catalonia, J. Hydrol., 541,
24–37, https://doi.org/10.1016/j.jhydrol.2016.05.040, 2016.
Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation of
selected extreme flash floods in Europe and implications for flood risk
management, J. Hydrol., 394, 118–133,
https://doi.org/10.1016/j.jhydrol.2010.07.017, 2010.
Martínez-Carreras, N., Hissler, C., Gourdol, L., Klaus, J., Juilleret,
J., Iffly, J. F., and Pfister, L.: Storage controls on the generation of
double peak hydrographs in a forested headwater catchment, J.
Hydrol., 543, 255–269, https://doi.org/10.1016/j.jhydrol.2016.10.004,
2016.
Massari, C., Camici, S., Ciabatta, L., Penna, D., Marra, A. C., and
Panegrossi, G.: Floods in the Mediterranean area: The role of
soil moisture and precipitation, in: Water resources in Mediterranean
region, chap. 8, edited by: Zribi, M., Brocca, L., Tramblay, Y., and Molle, F., Elsevier,
191–218,
https://doi.org/10.1016/B978-0-12-818086-0.00008-X, 2020.
McGlynn, B. L., McDonnell, J. J., Seibert, J., and Kendall, C.: Scale
effects on headwater catchment runoff timing, flow sources, and
groundwater-streamflow relations, Water Resour. Res., 40, W07504,
https://doi.org/10.1029/2003WR002494, 2004.
Miller, D. J. and Dunne, T.: Topographic perturbations of regional stresses
and consequent bedrock fracturing, J. Geophys. Res.-Sol.
Ea., 101, 25523–25536, https://doi.org/10.1029/96JB02531, 1996.
Miyata, S., Kosugi, K., Gomi, T., and Mizuyama, T.: Effects of forest floor
coverage on overland flow and soil erosion on hillslopes in Japanese cypress
plantation forests, Water Resour. Res., 45, W06402,
https://doi.org/10.1029/2008WR007270, 2009.
Molnar, P.: Interactions among topographically induced elastic stress,
static fatigue, and valley incision, J. Geophys. Res.-Earth, 109, F02010, https://doi.org/10.1029/2003JF000097, 2004.
Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G.,
Silveira, A., Waterloo, M., and Saleska, S.: Height Above the Nearest
Drainage – a hydrologically relevant new terrain model, J.
Hydrol., 404, 13–29,
https://doi.org/10.1016/j.jhydrol.2011.03.051, 2011.
Onda, Y., Tsujimura, M., Fujihara, J., and Ito, J.: Runoff generation
mechanisms in high-relief mountainous watersheds with different underlying
geology, J. Hydrol., 331, 659–673,
https://doi.org/10.1016/j.jhydrol.2006.06.009, 2006.
Padilla, C., Onda, Y., and Iida, T.: Interaction between runoff – bedrock
groundwater in a steep headwater catchment underlain by sedimentary bedrock
fractured by gravitational deformation, Hydrol. Process., 29,
4398–4412, https://doi.org/10.1002/hyp.10498, 2015.
Payrastre, O., NAULIN, J. P., Nguyen, C. C., and Gaume, E.: Analyse
hydrologique des crues de juin 2010 dans le Var, IFSTTAR – Institut
Français des Sciences et Technologies des Transports, de
l'Aménagement et des Réseaux, 33 pp., https://hal.archives-ouvertes.fr/hal-01272025/file/doc00023875.pdf
(last access: 1 September 2021),
2012.
Pereira, S., Diakakis, M., Deligiannakis, G., and Zêzere, J. L.:
Comparing flood mortality in Portugal and Greece (Western and Eastern
Mediterranean), Int. J. Disast. Risk, 22,
147–157, https://doi.org/10.1016/j.ijdrr.2017.03.007, 2017.
Pfister, L., Humbert, J., and Hoffmann, L.: Recent Trends in Rainfall-Runoff
Characteristics in the Alzette River Basin, Luxembourg, Climatic Change,
45, 323–337, https://doi.org/10.1023/A:1005567808533, 2000.
Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G.
E., Stewart, M. K., and McDonnell, J. J.: Bedrock geology controls on
catchment storage, mixing, and release: A comparative analysis of 16 nested
catchments, Hydrol. Process., 31, 1828–1845,
https://doi.org/10.1002/hyp.11134, 2017.
Pfister, L., Bastian, C., Faber O., Gölhausen, D., Hostache R., Iffly
J.F., Matgen P., Meisch C., Minette F., Patz, N., and Trebs, I.: La crue
éclair du 22 juillet 2016 dans la région de Larochette: Etude
mécanistique et fréquentielle, LIST, Luxembourg, 20 pp.,
https://gouvernement.lu/fr/publications.gouv_eau+fr+services-aux-citoyens+publications+2021+brochures+Crue-eclair-du-22-juillet-2016.html
(last access: 20 February 2021),
2018.
Pfister, L. Bastian, C., Douinot A., Gilbertz, C., Göhlhausen, D.,
Hostache R., Iffly J. F., Matgen P., Meisch C., Minette F., and Patz, N.:
Etude mécanistique et fréquentielle des crues subites de 2018 au
Luxembourg, LIST, technical report, Luxembourg, 24 pp., https://gouvernement.lu/fr/publications.gouv_eau+fr+services-aux-citoyens+publications+2021+brochures+Crues-subites-2018.html
(last access: 1 June 2021),
2020.
Ruiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., and Ehret, U.: Extreme flood response to short-duration convective rainfall in South-West Germany, Hydrol. Earth Syst. Sci., 16, 1543–1559, https://doi.org/10.5194/hess-16-1543-2012, 2012.
Saber, M., and Yilmaz, K. K.: Evaluation and Bias Correction of
Satellite-Based Rainfall Estimates for Modelling Flash Floods over the
Mediterranean region: Application to Karpuz River Basin, Turkey, Water,
10, 657, https://doi.org/10.3390/w10050657, 2018.
Sato, Y., Kumagai, T., Kume, A., Otsuki, K., and Ogawa, S.: Experimental
analysis of moisture dynamics of litter layers – the effects of rainfall
conditions and leaf shapes, Hydrol. Process., 18, 3007–3018,
https://doi.org/10.1002/hyp.5746, 2004.
Scaini, A., Hissler, C., Fenicia, F., Juilleret, J., Iffly, J. F., Pfister,
L., and Beven, K.: Hillslope response to sprinkling and natural rainfall
using velocity and celerity estimates in a slate-bedrock catchment, J.
Hydrol., 558, 366–379, https://doi.org/10.1016/j.jhydrol.2017.12.011,
2018.
Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., and
Shimizu, T.: Stormflow generation in steep forested headwaters: a linked
hydrogeomorphic paradigm, Hydrol. Process., 14, 369–385,
https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P, 2000.
Sidle, R. C., Hirano, T., Gomi, T., and Terajima, T.: Hortonian overland
flow from Japanese forest plantations – an aberration, the real thing, or
something in between?, Hydrol. Process., 21, 3237–3247,
https://doi.org/10.1002/hyp.6876, 2007.
Slim, M., Perron, J. T., Martel, S. J., and Singha, K.: Topographic stress
and rock fracture: a two-dimensional numerical model for arbitrary
topography and preliminary comparison with borehole observations, Earth
Surf. Proc. Land., 40, 512–529,
https://doi.org/10.1002/esp.3646, 2015.
Teschemacher, S., Rieger, W., and Disse, M.: Experimental Investigation of
Lateral Subsurface Flow Depending on Land Use and Soil Cultivation, Water,
11, 766, https://doi.org/10.3390/w11040766, 2019.
Tramblay, Y., Bouvier, C., Martin, C., Didon-Lescot, J.-F., Todorovik, D.,
and Domergue, J.-M.: Assessment of initial soil moisture conditions for
event-based rainfall–runoff modelling, J. Hydrol., 387,
176–187, https://doi.org/10.1016/j.jhydrol.2010.04.006, 2010.
Van Campenhout, J., Hallot, E., Houbrechts, G., Peeters, A., Levecq, Y.,
Gérard, P., and Petit, F.: Flash floods and muddy floods in Wallonia:
recent temporal trends, spatial distribution and reconstruction of the
hydrosedimentological fluxes using flood marks and sediment deposits,
Belgeo, Revue Belge de Géographie, 1, 3,
https://doi.org/10.4000/belgeo.16409, 2015.
Vannier, O., Braud, I., and Anquetin, S.: Regional estimation of
catchment-scale soil properties by means of streamflow recession analysis
for use in distributed hydrological models, Hydrol. Process., 28, 6276–6291,
https://doi.org/10.1002/hyp.10101, 2013.
Westhoff, M. C., Bogaard, T. A., and Savenije, H. H. G.: Quantifying spatial and temporal discharge dynamics of an event in a first order stream, using distributed temperature sensing, Hydrol. Earth Syst. Sci., 15, 1945–1957, https://doi.org/10.5194/hess-15-1945-2011, 2011.
Wrede, S., Fenicia, F., Martínez-Carreras, N., Juilleret, J., Hissler,
C., Krein, A., Savenije, H. H. G., Uhlenbrook, S., Kavetski, D., and
Pfister, L.: Towards more systematic perceptual model development: a case
study using 3 Luxembourgish catchments, Hydrol. Process., 29,
2731–2750, https://doi.org/10.1002/hyp.10393, 2015.
Zavala, L. M., González, F. A., and Jordán, A.: Intensity and
persistence of water repellency in relation to vegetation types and soil
parameters in Mediterranean SW Spain, Geoderma, 152, 361–374, https://doi.org/10.1016/j.geoderma.2009.07.011, 2009.
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
The objective of the paper is to highlight the seasonal and singular shift of the transfer time...