Articles | Volume 26, issue 9
https://doi.org/10.5194/hess-26-2561-2022
https://doi.org/10.5194/hess-26-2561-2022
Research article
 | 
17 May 2022
Research article |  | 17 May 2022

Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the Stör

Chaogui Lei, Paul D. Wagner, and Nicola Fohrer

Related authors

How well do hydrological models learn from limited discharge data? A comparison of process- and data-driven models
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076,https://doi.org/10.5194/egusphere-2025-1076, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Unveiling hydrological dynamics in data-scarce regions: experiences from the Ethiopian Rift Valley Lakes Basin
Ayenew D. Ayalew, Paul D. Wagner, Dejene Sahlu, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 28, 1853–1872, https://doi.org/10.5194/hess-28-1853-2024,https://doi.org/10.5194/hess-28-1853-2024, 2024
Short summary
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021,https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Identifying the connective strength between model parameters and performance criteria
Björn Guse, Matthias Pfannerstill, Abror Gafurov, Jens Kiesel, Christian Lehr, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 21, 5663–5679, https://doi.org/10.5194/hess-21-5663-2017,https://doi.org/10.5194/hess-21-5663-2017, 2017
Short summary
Process verification of a hydrological model using a temporal parameter sensitivity analysis
M. Pfannerstill, B. Guse, D. Reusser, and N. Fohrer
Hydrol. Earth Syst. Sci., 19, 4365–4376, https://doi.org/10.5194/hess-19-4365-2015,https://doi.org/10.5194/hess-19-4365-2015, 2015
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025,https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025,https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025,https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 903–924, https://doi.org/10.5194/hess-29-903-2025,https://doi.org/10.5194/hess-29-903-2025, 2025
Short summary
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025,https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary

Cited articles

Abdi, H.: Partial least squares regression and projection on latent structure regression (PLS Regression), Wiley Interdiscip. Rev. Comput. Stat., 2, 97–106, https://doi.org/10.1002/wics.51, 2010. 
Aghsaei, H., Dinan, N. M., Moridi, A., Asadolahi, Z., Delavar, M., Fohrer, N., and Wagner, P. D.: Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran, Sci. Total Environ., 712, 136449, https://doi.org/10.1016/j.scitotenv.2019.136449, 2020. 
Amin, M. M., Veith, T. L., Shortle, J. S., Karsten, H. D., and Kleinman, P. J.: Addressing the spatial disconnect between national-scale total maximum daily loads and localized land management decisions, J. Environ. Qual., 49, 613–627, https://doi.org/10.1002/jeq2.20051, 2020. 
Amiri, B. J. and Nakane, K.: Modeling the linkage between river water quality and landscape metrics in the Chugoku district of Japan, Water. Resor. Manage., 23, 931–956, https://doi.org/10.1007/s11269-008-9307-z, 2009. 
Anand, J., Gosain, A. K., and Khosa, R.: Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model, Sci. Total Environ., 644, 503–519, https://doi.org/10.1016/j.scitotenv.2018.07.017, 2018. 
Download
Short summary
We presented an integrated approach to hydrologic modeling and partial least squares regression quantifying land use change impacts on water and nutrient balance over 3 decades. Results highlight that most variations (70 %–80 %) in water quantity and quality variables are explained by changes in land use class-specific areas and landscape metrics. Arable land influences water quantity and quality the most. The study provides insights on water resources management in rural lowland catchments.
Share