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Abstract. Understanding the impacts of land use
changes (LUCCs) on the dynamics of water quantity
and quality is necessary for the identification of mitigation
measures favorable for sustainable watershed management.
Lowland catchments are characterized by a strong inter-
action of streamflow and near-surface groundwater that
intensifies the risk of nutrient pollution. In this study, we
investigated the effects of long-term changes in individual
land use classes on the water and nutrient balance in the low-
land catchment of the upper Stör in northern Germany. To
this end, the hydrological model SWAT (Soil and Water As-
sessment Tool) and partial least squares regression (PLSR)
were used. The SWAT model runs for three different land
use maps (1987, 2010, and 2019) were conducted, and the
outputs were compared to derive changes in water quantity
(i.e., evapotranspiration – ET; surface runoff – SQ; base
flow – BF; water yield – WYLD) and quality variables (i.e.,
sediment yield – SED; load of total phosphorus – TP; load of
total nitrogen – TN). These changes were related to land use
changes at the subbasin scale using PLSR. The major land
use changes that significantly affected water quantity and
quality variables were related to a decrease in arable land
and a respective increase in pasture and urban land during
the period of 1987–2019. Changes in landscape indictors
such as area size, shape, dominance, and aggregation of
each land use class accounted for as much as 61 %–88 %
(75 % on average) of the respective variations in water
quantity and quality variables. The aggregation, contiguity
degrees, and area extent of arable land were found to be
most important for controlling the variations in most water
quantity variables. Increases in arable (PLANDa) and urban
land percent (PLANDu) led to more TP and TN pollution,

sediment export, and surface runoff. The cause–effect results
of this study can provide a quantitative basis for targeting
the most influential change in landscape composition and
configuration to mitigate adverse impacts on water quality in
the future.

1 Introduction

Good water quality and quantity are essential for enhanc-
ing ecological stability and diversity, and both play impor-
tant roles in maintaining sustainable agricultural or economic
development and human health (Lu et al., 2015; Singh et
al., 2017; Antolini et al., 2020; Gleick, 2000; Srinivasan and
Reddy, 2009). The water resources dynamics within a catch-
ment are mainly governed by a combination of climate and
land use, as other catchment characteristics (e.g., topogra-
phy, soil, and lithology) usually do not change in the short
term (Shuster et al., 2005; Farjad et al., 2017; Wagner et al.,
2018). Conversely, hydrology affects land use as well (Wag-
ner and Fohrer, 2019; Wagner and Waske, 2016). In the past
3 decades, land use changes with respect to urbanization, de-
forestation, and agriculture intensification have exerted sig-
nificant effects on water quality or water balance components
(Wagner et al., 2016; Shrestha et al., 2018; Kändler et al.,
2017). They can alter surface roughness, evapotranspiration,
soil infiltration, and the interaction between surface and sub-
surface water (Fiener et al., 2011; Wei et al., 2007; Lei et al.,
2021), and promote or hinder the generation and transporta-
tion of soil particles, chemicals, or metals (Nafi’Shehab et
al., 2021; Taka et al., 2022; Ding et al., 2016). Given the di-
rect and indirect effects of land use changes on hydrological
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processes and contaminant inputs, it is of great practical sig-
nificance to identify key predictor variables to achieve an ef-
fective catchment management of land and water resources.

Earlier studies have often aimed at analyzing land use
change effects using lumped indicators of landscape compo-
sition, e.g., areal percentage of a land use class in the catch-
ment (Kumar et al., 2022; Lei et al., 2021). However, com-
position indicators do not convey any details with respect to
the spatial settings of landscape patterns. The configuration
of the spatial land use distribution is another fundamental
element measured using landscape metrics (i.e., metrics to
quantify the spatial structure of land use patterns within a
defined geographic area). Compared to the composition in-
dicators that refer to the abundance (e.g., areal percent) of
land patches (i.e., homogenous areas of the landscape; Hes-
selbarth et al., 2019) belonging to one certain class with-
out considering their spatial characteristics, landscape con-
figuration metrics describe spatial fragmentation or distribu-
tion of patches, e.g., the shape complexity. Landscape con-
figuration metrics of the dominance, diversity, shape, ag-
gregation, and interconnection of land patches play a crit-
ical part in determining the energy and matter fluxes of,
e.g., solar radiation, temperature, evapotranspiration, surface
runoff, nutrients, and sediments from the landscape ecol-
ogy perspective (Forman, 1995; Wu and Lu, 2021; Lei et
al., 2019; Amiri and Nakane, 2009). They were found to
be more important as descriptors of water quality than com-
position indicators in some case studies. For example, Ding
et al. (2016) observed that poorer water quality was not as
much associated with areal percentage as with higher patch
densities (PDs) of cropland, orchards, and grassland, and a
higher value of the largest patch index (LPI) of urban land,
in a low-order stream-dominated catchment (drainage area
of 35 340 km2) in southeastern China. Despite little consid-
eration of the landscape configuration in the studies of wa-
ter quantity (Shrestha et al., 2018; Anand et al., 2018), the
shape, dominance, or connectivity degree of the land patches
is closely linked to the modification of the hydrological cy-
cle. For example, more fragmented forest patches may fa-
vor the funneling of precipitation (Ghimire et al., 2017); the
hardness and straightness of land patches of farmland, ur-
ban, and natural land uses influence the streamflow rates at
different magnitudes and directions (Riitters, 2019; Shi et al.,
2013); more concentrated grassland patches result in greater
evapotranspiration (Yu et al., 2020). Therefore, it is neces-
sary to assess the influences of changes in different aspects
of a land use class to better understand their impacts on water
resources dynamics.

To quantify the effects of land use changes on water re-
sources, hydrological models are widely used (Gabriels et
al., 2021; Idrissou et al., 2022; Wijesekara et al., 2012),
e.g., SWAT (Soil and Water Assessment Tool; Arnold
et al., 1998), HSPF (Hydrological Simulation Program–
FORTRAN; Bicknell et al., 2001), or DHSVM (Distributed
Hydrology Soil Vegetation Model; Wigmosta et al., 1994).

Models are particularly useful for detecting historic and fu-
ture land use change impacts by applying a scenario anal-
ysis (Aredo et al., 2021; Anand et al., 2018). As a physi-
cally based and semi-distributed hydrological model, SWAT
has proven its suitability for an integrated modeling of wa-
ter, sediment, and nutrient dynamics in different-sized rural
catchments (Aghsaei et al., 2020; Tan et al., 2021). SWAT
has been applied in many catchments worldwide to investi-
gate the hydrological and hydrochemical effects (Amin et al.,
2020; Boongaling et al., 2018; Anand et al., 2018). In low-
land areas, the transport of water and nutrients is strongly in-
fluenced by flat topography and shallow groundwater tables
in addition to the spatially heterogonous land use. The hy-
drological model SWAT has proven its suitability in model-
ing the ecohydrological consequences of spatiotemporal land
use changes in lowland catchments (Guse et al., 2014; Pott
and Fohrer, 2017b). Particularly in several lowland catch-
ments in northern Germany, SWAT was extensively tested
in impact studies. For example, Lam et al. (2012) modeled
the long-term observations of daily streamflow and nitrate
load in the Kielstau catchment and found that diffuse source
pollution (dominated by agriculture) contributed dominantly
(95 %) to nitrate load. In the Upper Stör catchment, Song et
al. (2015) coupled SWAT with HEC-RAS (Hydrologic Engi-
neering Center River Analysis System) to analyze the tem-
poral dynamics of sediment loads in subbasins covered by
heterogonous land use conditions. Despite a high feasibil-
ity of SWAT modeling water quantity and quality, previous
studies illustrated that the original SWAT version sometimes
performed relatively poorly for recession limbs and low flow
periods of streamflow (Guse et al., 2014; Pfannerstill et al.,
2014). In lowland catchments, the groundwater contributes
significantly to low flows and, thus, becomes a dominant
component of streamflow (Pott and Fohrer, 2017b). To more
accurately model low flows, an enhanced version of SWAT,
SWAT3S, was developed in the Kielstau catchment, by con-
ceptually separating the shallow groundwater aquifer of the
original SWAT into a fast and slow shallow aquifer (Pfanner-
still et al., 2014). SWAT3S was successfully used for mod-
eling daily streamflow and nitrogen loads in a few German
lowland catchments (e.g., Kielstau and Treene) by improv-
ing the representation of low flow periods (Pfannerstill et al.,
2014; Haas et al., 2017). Given the aforementioned strength,
SWAT3S is suitable for assessing the impacts of land use
changes on water resources in lowland areas dominated by
groundwater recharge.

While the changes in landscape composition and configu-
ration have a great potential to influence hydrology, soil ero-
sion, or water quality dynamics at different spatial and sea-
sonal scales (Jones et al., 2001; Kändler et al., 2017; Haidary
et al., 2013), some landscape metrics may have a high prob-
ability for collinearity. The collinear landscape metrics carry
redundant information and are not independent predictor
variables (Hargis et al., 1998). They can, therefore, result
in biased or even misleading results when using conven-
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tional multivariate regression techniques like ordinary least
square regression, particularly in the case of a small num-
ber of observations (Shi et al., 2013; Shawul et al., 2019).
Compared to ordinary multivariate statistical methods, par-
tial least squares regression analysis (PLSR) can overcome
the limitation of multicollinearity and achieve a robust per-
formance by using techniques of multivariate statistical pro-
jection (Shi et al., 2013). Based on the powerful technique
of projecting predicted and observed variables onto a new
space and estimating the underlying structure between pro-
jected spaces, PLSR facilitates an unbiased analysis of cause-
+effect relationships between land use changes and water re-
sources components (Shi et al., 2013; Yan et al., 2013; Fer-
reira et al., 2017). Using an integrated approach of PLSR and
hydrological modeling with SWAT, impacts of the land use
changes on various water resources components can be ef-
fectively identified. For example, in the Upper Du catchment,
China, Yan et al. (2013) observed that the farmland positively
influenced streamflow and sediment yield, whereas forest
area showed a negative correlation with them; besides, urban
expansion would cause streamflow to increase as well. Shi
et. al. (2013) indicated that the landscape metrics e.g., Shan-
non’s diversity index (SHDI), the aggregation index (AI),
the largest patch index (LPI), contagion (CONTAG), and the
patch cohesion index (COHESION) were important for con-
trolling soil erosion and sediment yield, contributing 65 %
and 74 % to their variations at subbasin level, respectively.
Gashaw et al. (2018) anticipated that more shrubland would
cause water yield and surface runoff to decrease, while caus-
ing evapotranspiration and groundwater flow to rise; how-
ever, increased cultivated land would result in decreases in
groundwater flow and evapotranspiration in Blue Nile basin,
Ethiopia. In summary, it has been demonstrated that PLSR
is efficient for distinguishing the complex impacts on water
quantity and quality.

The Stör river is the longest tributary of the Elbe river
in the northernmost federal state of Germany, Schleswig-
Holstein. Intensive agricultural activities (e.g., grazing,
tillage, fertilizer, and pesticide application) are common in
the catchment and increase the risk of water quality pollution
(Monaghan et al., 2007). A variety of amelioration measures,
e.g., tile drainage and straightening or canalizing of tribu-
taries, have been implemented in the past century to sustain
agriculture productivity in lowland areas dominated by shal-
low groundwater tables and abundant groundwater recharge.
These activities have brought about changes in the input and
transport of nutrients and in hydrological fluxes. Meanwhile,
the heterogeneity of the landscape pattern has been intensi-
fied due to artificial disturbances (Gu et al., 2007; Goldewijk
and Ramankutty, 2004). We previously found significant re-
lationships between land use patterns and water quality pa-
rameters at the landscape level in the upper Stör catchment
based on measurements (Lei et al., 2021). A modeling ap-
proach allows the modeling of the quantitative contribution
of land use changes on water quality and quantity and facili-

tates the development of informed and practicable strategies
for sustainable land and water management (Ripl et al., 1996;
Pott, 2014).

To identify the key land use changes controlling the spa-
tial and temporal variations in water quantity and quality,
relationships between landscape characteristics of each land
use class and water quality (represented by sediment, total
phosphorus, TP, and total nitrogen, TN) and quantity (repre-
sented by evapotranspiration, surface runoff, base flow, and
water yield) were explored at the subbasin scale in the upper
Stör catchment. To this end, the hydrological model SWAT
and partial least squares regression (PLSR) were employed.
The study aims at (1) calibrating and validating a catchment
model for streamflow, sediment, TP, and TN loads, (2) quan-
tifying the changes in landscape characteristics and water
quality and quantity variables at the subbasin scale, (3) inves-
tigating the relationships (depicted by the contribution and
influence) between land use change (LUCC) and water qual-
ity and quantity dynamics at the subbasin scale.

2 Materials and methods

2.1 Study area

The rural lowland catchment of the Upper Stör is the fo-
cus of this study (Fig. 1). It extends from the origin of
the Stör river in Willingrade to the gauge in Willenscharen
(Fig. 1) and is free of tidal influence. The catchment has a
drainage area of approximately 462 km2, with a total length
of the river network of about 221 km. Its temperate cli-
mate is characterized by an average annual precipitation of
850 mm and a mean temperature of 9.4 ◦C between 1990
and 2019, according to the records by the weather stations
of Neumünster and Padenstedt (DWD, 2020b). The aver-
age daily streamflow measured at the catchment outlet in
Willenscharen was 5.8 m3 s−1 between 1990 and 2019, with
low flows (mean value of 3.8 m3 s−1) in summer (May–
October) and high flows (mean value of 7.9 m3 s−1) in the
winter (November–April) months (LKN, 2020a). Discharge
occurring in the highest flow period (December–March) con-
tributes most (around 50 %) to the total annual amount of
streamflow. The catchment is characterized by a flat topogra-
phy, descending from nearly 60 m a.s.l. in the northeast and
85 m in the western part, towards 20 m in the center and to
5–10 m in the southern part. Sandy soil (Cambisol, Gley-
Podsol, and Podsol) dominates the catchment, particularly in
the central lowland part, while some Gley soils are mainly
distributed in the east, and peat soils can be found in proxim-
ity to streams and near two major wetlands (Pott and Fohrer,
2017a). The catchment is dominated by rural land use com-
posed of arable land (36.1 %) and pasture (31.3 %), followed
by forest (18.7 %), urban areas (12.8 %), and a minor frac-
tion of water and wetland, as indicated by a land use map
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for 2019 (Lei et al., 2021). The main cultivated crops include
winter cereals (wheat, barley, and rye), corn, and rapeseed.

2.2 Land use data and landscape metrics

Land use maps for 1987, 2010, and 2019 were used to char-
acterize the changes in land use and landscape patterns. The
earlier two maps (1987 and 2010) were adapted from Ripl et
al. (1996) and Rathjens et al. (2014), respectively, and were
based on Landsat 5 (TM – Thematic Mapper) image data at
30 m resolution. The land use map for 2019 was derived from
10 m resolution Sentinel-2 satellite images (Lei et al., 2021).
The land use classes were categorized uniformly as (1) arable
land (winter cereals, corn, and winter rape and other crops),
(2) pasture (meadow, field grass, and rangeland), (3) for-
est (deciduous and coniferous forest), (4) urban (residential,
commercial, and industrial areas), (5) water (rivers, ponds,
and lakes), and (6) wetlands (Fig. 1). Water and wetlands are
not considered for further analysis, as they comprise only mi-
nor and mostly constant percentages.

The area percentage of land use class (PLAND) is used
as a measure of land use composition. Configuration metrics
include the largest patch index (LPI), area-weighted mean
shape index (AWMSI), area-weighted mean contiguity in-
dex (CONTIGAW), aggregation index (AI), and intersper-
sion juxtaposition index (IJI), considering the dominance,
shape, and interconnection of the landscape (Ding et al.,
2016; Gémesi et al., 2011). Composition and configuration
indices of pasture, arable land, forest, and urban were se-
lected for subsequent analysis (Table 1). They were derived
with the help of the software Fragstats 4.2. All indices and
their changes were analyzed at the subbasin scale.

2.3 Hydrological and water quality modeling

2.3.1 SWAT model

The Soil and Water Assessment Tool (SWAT) is a process-
based and semi-distributed hydrological model with a con-
tinuous time step (Arnold et al., 1998). It is suitable for the
simulation of streamflow, sediment, nutrients, and ground-
water dynamics in catchments of different sizes (Aghsaei et
al., 2020; Tigabu et al., 2020; Bieger et al., 2014; Haas et al.,
2016). The computation of water routing, nutrient cycles, and
soil erosion is based on hydrologic response units (HRUs)
characterized by the same land use, soil type, and slope in
the same subbasin representing the spatial heterogeneity of
the catchment (Arnold et al., 2013). The HRU-based calcu-
lations for the subbasins are routed through the rivers that
connect the subbasins (Neitsch et al., 2011).

To accurately represent the groundwater dynamics in this
lowland catchment, we applied SWAT3S, an enhanced SWAT
model based on SWAT 2012 revision 582 (Pfannerstill et al.,
2014). In comparison to the standard SWAT model applica-
tion that uses two aquifers, SWAT3S employs three aquifers
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Figure 1. Characteristics of the study area. location of the Upper Stör catchment (a), spatial distributions of the topography (b) (Lverma,
2008) and soil types (c) (Finnern, 1997) of subbasins, weather, and gauging stations, and waste water treatment plants (WWTPs) (d) (Pott,
2014), as well as land use maps (e) (Ripl et al., 1996; Rathjens et al., 2014; Lei et al., 2021).

by subdividing the original shallow aquifer from SWAT into
a fast and a slow aquifer. SWAT3S was developed in the Ger-
man lowland catchment of the Kielstau to better represent
low flow periods of streamflow and groundwater storage and
flow dynamics when compared to the original SWAT version
(Pfannerstill et al., 2014). It was also successfully applied to
the lowland catchment of the Treene, proving its usefulness
for modeling nutrients as well (Haas et al., 2016, 2017).

2.3.2 Model databases and setup

SWAT requires topography, soil, land use, and hydromete-
orological input data. Topography data were obtained from
a digital elevation model (DEM) in 5 m resolution (Lverma,
2008) and used to delineate the watershed into 21 subbasins.
Soil data and attributes for SWAT were derived by Pott and
Fohrer (2017b) from a soil type map (Finnern, 1997). The
land use map for 2019 was used to build the model. The 3-
year crop rotations (winter wheat/winter wheat/corn; winter
rape/winter wheat/corn; corn/corn/corn) were adapted from
Oppelt et al. (2012) and implemented for the respective land

use classes. Agriculture management schedules and fertiliza-
tion (e.g., application rates of N, P fertilizers, and manure
at different crop growth stages) were determined accord-
ing to the actual guidelines of agriculture practices (LWK,
1991 and 2011; KTBL, 1995 and 2008; Kühling, 2011).
From the DEM, four slope classes (< 1 %, 1 %–2 %, 2 %–
5 %, and > 5 %) were defined. Slope, soil, and land use
classes were combined to obtain 3618 HRUs in the catch-
ment. The HRUs were generated without excluding any
HRUs by thresholds for land use, soil, or slope class percent-
ages to allow for a better spatial representation. To accurately
represent lowland hydrology, drainage tiles were considered
based on the estimated distribution of drained areas in the
catchment (Venohr, 2000). We adapted drainage parame-
ter values for DEP_IMP (1200 mm), DDRAIN (875 mm),
TDRAIN (24 h), and GDRAIN (61 h) from a previous mod-
eling study in the catchment (Pott and Fohrer, 2017b).
Waste water treatment plants (WWTPs) were implemented
as point sources, using data from monthly measurement
campaigns in 2009 and 2010, and WWTP data vary with
space and seasons (Pott, 2014). Daily values of tempera-

https://doi.org/10.5194/hess-26-2561-2022 Hydrol. Earth Syst. Sci., 26, 2561–2582, 2022



2566 C. Lei et al.: Influences of land use changes on the dynamics of water quantity and quality in the Stör catchment

Table 2. Overview of SWAT model calibration and validation.

Calibration Validation

Streamflow Sediment TP load TN load Streamflow Sediment TP load TN load
load load

Evaluation 1990–1991; 30 Oct 2009– 8 Aug 2009– 8 Aug 2009– 1992–2006 19 Oct 2018– 19 Oct 2018– 19 Oct 2018–
period 2007–2019 7 Aug 2011 10 Aug 2011 10 Aug 2011 5 Nov 2019 5 Nov 2019 5 Nov 2019

Simulation 1986–2019 2005–2011 2005–2011 2005–2011 1986–2019 2014–2019 2014–2019 2014–2019
period

Land use 2019 2010 2010 2010 2019 2019 2019 2019
map

Gauges PAD/SAR/WIL WIL WIL WIL PAD/SAR/WIL WIL WIL WIL

Calibration 8000 5000 5000 5000
runs

Performance KGE > 0.75 in 1990–1991; NSE NSE NSE
criteria 2007–2019 and

best KGE among 300
best mean RSR of
FDC on 8 Aug 2009–
10 Aug 2011;
19 Oct 2018–
5 Nov 2019

PAD – Padenstedt; SAR – Sarlhusen; WIL – Willensharen; NSE – Nash–Sutcliffe efficiency; KGE – Kling–Gupta efficiency; RSR – ratio of root mean square error to the standard deviation of the observations; FDC
– flow duration curve.

ture (max and min), solar radiation, humidity, and wind
speed are available from 1990 to 2019 for the climate station
of Padenstedt (DWD, 2020a). Precipitation data are avail-
able for four stations (DWD, 2020a; Fig. 1). Daily stream-
flow was measured at the gauges in Padenstedt (PAD), Sarl-
husen (SAR), and Willenscharen (WIL) from 1990 to 2019
(LKN, 2020a). Daily sediment and nutrient data were both
obtained during two measurement campaigns, i.e., Au-
gust 2009–August 2011 and October 2018–November 2019
in Willenscharen. Daily mixed samples were taken by an au-
tomatic and cooled sampler from a depth of 0.30 m above
the river bed at the central section of the stream. They were
analyzed according to German standard procedure for water
analysis (Deutsches Einheitsverfahren, 1997) in the labora-
tory of the Department of Hydrology and Water Resources
Management at Kiel University. Total suspended sediment
concentration was measured by filtering 1 L of the water sam-
ple through 0.45 µm cellulose acetate filter paper and drying
at 105 ◦C. The concentration of total phosphorus (TP) was
determined by spectrophotometry, according to DEV H36
and DEV D11, while total nitrogen (TN) was measured by
chemiluminescence detection according to DEV H3. Each
measurement of TP or TN concentration from unfiltered sam-
ples was performed based on a blank comparison analysis of
distilled water and triplicate analysis of subsamples. Their
concentrations were determined by the arithmetic mean val-
ues of any two subsamples with the smallest measurement
differences (less than < 10 %). Based on the measurements
of daily concentration and streamflow, the respective daily
load of sediment, TP, and TN were calculated.

2.3.3 Model calibration and validation

The variables of daily streamflow (1), sediment (2), TP (3),
and TN (4) were calibrated separately and stepwise. The
number in the parentheses denotes their respective calibra-
tion order, i.e., streamflow was calibrated first, followed by
sediment, TP, and TN. An overview of the calibration and
validation details for each variable is provided in Table 2.

Preliminary parameter ranges were selected based on ex-
periences with the SWAT model in the Stör catchment (Pott
and Fohrer, 2017b) and other German lowland catchments
(i.e., Kielstau and Treene catchments; Haas et al., 2016; Lam
et al., 2012; Pfannerstill et al., 2014), as well as in relevant
studies from other countries (Aghsaei et al., 2020; Boon-
galing et al., 2018). The final ranges of calibration param-
eters (Table S1 in the Supplement) were determined based
on the sensitivity of the parameters to model outputs as de-
rived from 2000 trial runs following the method used by Guse
et al. (2020), in which model simulations are iteratively re-
peated with successively constrained parameter ranges.

Parameter sets were generated from the derived parame-
ter ranges using Latin Hypercube Sampling in the R pack-
age FME (Soetaert and Petzoldt, 2010). For each of these
8000 (streamflow) and 5000 (sediment, TP, and TN loads) in-
dependent parameter sets, model runs were conducted, with
each involving a warm-up period (4 years), and evaluated us-
ing multiple performance criteria to select the best param-
eter set. To this end, the objective functions of the Nash–
Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE),
and percent bias (PBIAS), which were proposed in Guse et
al. (2014) and Moriasi et al. (2007), were applied. For an ac-
curate representation of all segments of the hydrograph (very
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high, high, middle, low, and very low periods), the additional
signature measure of RSR (ratio of root mean square error to
the standard deviation of the observations) was used (Haas et
al., 2016; Zambrano-Bigiarini, 2020). The definition of each
objective function is provided in Sect. S1 in the Supplement.

First, streamflow was calibrated at three gauges. The two
upstream gauges of Padenstedt (PAD) and Sarlhusen (SAR)
were used to select the best parameter sets for the respec-
tive subcatchments first (Fig. 1). Then, the best parameter
set for the area downstream of PAD and SAR and upstream
of the outlet gauge Willenscharen (WIL) was selected. For
each of the three streamflow gauges, we preselected the
parameter sets that yielded a KGE > 0.75 for the stream-
flow calibration period. To accurately represent the stream-
flow dynamics during the periods of water quality mea-
surements (August 2009–August 2011 and October 2018–
November 2019), the mean RSR for the five flow duration
curve (FDC) segments during these periods was assessed,
and the best 300 streamflow parameter sets indicated by a
low RSR were selected. From these 300 sets, the final pa-
rameter set yielding the highest KGE in these periods was
selected. Calibration and validation periods (Table 2) were
defined based on an equal representation of dry, normal, and
wet years, according to the annual precipitation.

Second, with the derived set of best hydrological parame-
ters, model runs for 5000 different sediment calibration pa-
rameter sets were carried out, and the best model run was
selected based on the highest NSE. Third, this model was
run for 5000 different sets of TP calibration parameters, and
the best model run was similarly selected using the NSE. Fi-
nally, based on the so-far derived best parameters, another
5000 model runs for TN calibration were carried out, and the
best model run indicated by the highest NSE was selected.
To accurately represent peak loads and their dynamics, the
NSE was selected as a single criterion for the water quality
variables. Evaluation and processing of the model data were
carried out in R, using the packages hydroGOF (Zambrano-
Bigiarini, 2020) and zoo (Zeileis and Grothendieck, 2005).

2.3.4 Model application

Applying the best respective parameter sets, the model was
run for three land use scenarios. Each scenario simulation
was run from 1990 to 2019, using one of the three land use
maps (in 1987, 2010, and 2019). As agriculture in 1987 was
generally classified, it was split into corn (12 %), rapeseed
(29 %), and wheat (59 %) randomly distributed in the catch-
ment in SWAT model, according to the statistical data from
the Statistical Office Schleswig-Holstein (1992–2013). For
the three scenario simulations, all other inputs i.e., DEM, soil
data, weather data, waste water quality data, management
practices, and fertilization were kept constant, and the cal-
ibrated parameters were adapted. The respective differences
in the mean annual value of each response variable (i.e., ac-
tual evapotranspiration – ET; surface runoff – SQ; base flow –

BF; water yield – WYLD; sediment – SED; TP or TN load)
were obtained by comparing the results from two scenario
model runs (see Sects. S2 and S3). They can be referred to as
the respective changes driven by land use changes during the
corresponding periods of 1987–2010, 2010–2019, and 1987–
2019. The modeled results were used to explore the influ-
ences of land use changes (LUCCs) on the changes in the re-
sponse variables. Furthermore, the contributions of LUCCs
on changes in ET, SQ, BF, and WYLD, as well as in SED,
TP, and TN, at the subbasin scale were evaluated, and key
impacts from LUCCs were identified.

2.4 Partial least squares regression

Combining the features of principal component and multi-
ple linear regression analyses, partial least squares regres-
sion (PLSR) is a robust multivariate analysis method for de-
termining the relationship between two sets of variables. It is
powerful enough to deal with multi-collinear predictor vari-
ables. The principle of PLSR is to extract a few latent com-
ponents from original predictor variables that carry as much
variation as possible and which are, meanwhile, most likely
to predict the variation in the response variable. Detailed in-
formation on the underlying theory and algorithms of PLSR
is available in Abdi (2010).

In this study, PLSR was used to reveal the contribution
of changes in land use classes on the variation in ET, SQ,
BF, WYLD, SED, TP, and TN across three time steps (1987,
2010, and 2019). The predictor variables were the abso-
lute changes in area percent (PLAND) and landscape met-
rics (LPI, AWMSI, AI, CONTIGAW, and IJI) of four main
land use classes (arable land, pasture, forest, and urban). The
response variables included the absolute changes in the mean
annual values of ET, SQ, BF, WYLD, SED, TP, and TN loads
at the subbasin scale modeled under different land use condi-
tions in 1987, 2010, and 2019. PLSR models for all of these
response variables were constructed. The absolute change
in each land use indicator was calculated using Eqs. (5)–
(7), while that in each response variable was calculated us-
ing Eqs. (8)–(10), as shown in Sect. S3. A cross-validation
was performed with 50 random repetitions on 10 equal seg-
ments of the data set. It was used to determine the number
of optimal components of the PLSR model to obtain a de-
sirable balance between the explained variation in the re-
sponse (R2) and predictive power of the model (measured
as cross-validated goodness of the prediction, Q2). The cu-
mulative predictive ability (cumulative goodness of predic-
tion, Q2 cumul.) and the cross-validated root mean squared
error (RMSECV), as the difference between actual and pre-
dicted values, were determined for each model (Yan et al.,
2013). The regression coefficients (RCs) signify the direc-
tion and extent of the effect of LUCC predictor variables.
The variable importance for the projection (VIP) quantifies
the importance of the predictors. According to Wold’s as-
sessment criterion, a predictor with VIP < 0.8 is assessed
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Figure 2. Comparison of measured and modeled daily streamflow during the calibration and validation periods in Willenscharen.

Table 3. Performance metrics for the model calibration and validation periods.

Index Calibration Validation

Streamflow Sediment TP load TN load Streamflow Sediment TP load TN load
(PAD/SAR/WIL) load (PAD/SAR/WIL) load

Period 1990–1991; 30 Oct 2009– 8 Aug 2009– 8 Aug 2009– 1992–2006 19 Oct 2018– 19 Oct 2018– 19 Oct 2018–
2007–2019 7 Aug 2011 10 Aug 2011 10 Aug 2011 5 Nov 2019 5 Nov 2019 5 Nov 2019

KGE 0.85/0.82/0.88 0.58 0.65 0.71 0.84/0.85/0.87 0.59 0.22 0.91

NSE 0.76/0.78/0.79 0.54 0.56 0.64 0.81/0.81/0.79 0.65 0.29 0.86

PBIAS (%) 5.6/− 2.2/0.3 12 −4.7 −11.5 0.7/10.6/7.2 −22.2 −46.2 5

as being less important (Boongaling et al., 2018; Wold et
al., 2001). To achieve model parsimony, the following PLSR
modeling procedures were conducted: First, an initial simu-
lation of PLSR is run using all predictors. Next, new PLSR
models are run by iteratively excluding the predictor with
small variable importance (VIP) until the modeling proce-
dure resulted in acceptable variable importance or only two
predictors remained. The number of components of candi-
date PLSR model was determined so that the Q2 cumul. is
maximized (Shi et al., 2013).

All the PLSR analyses were performed with the R pack-
ages of pls (Mevik et al., 2020) and mdatools (Kuch-
eryavskiy, 2020).

3 Results and discussion

3.1 Model performances for calibration and validation
periods

As shown in Table 3, for streamflow, the model obtains NSE
and KGE values above 0.75 and absolute PBIAS values be-
low or slightly above 10 %. These values indicate a good to
very good model performance for depicting daily streamflow
in the catchment according to the criteria for model evalua-
tion (Moriasi et al., 2007). For the daily TN load, the model

shows a satisfactory to very good performance, as indicated
by an NSE between 0.64 and 0.86 and absolute PBIAS val-
ues below 15 %. For the sediment load, the model achieves a
satisfactory to good performance, as indicated by NSE (0.54–
0.65) and PBIAS (−22.2 % to 12 %) values. The model sim-
ulates TP load with an unsatisfactory (validation) to satisfac-
tory (calibration) performance, which is assessed by NSE be-
low and above 0.5, respectively. The worse TP model perfor-
mance may be due to the short and possibly different condi-
tions during calibration and validation periods. Nevertheless,
PBIAS for TP model is still within the acceptable perfor-
mance range (±40≤ PBIAS <±70; Moriasi et al., 2007). It
should be noted that the performance ranges from Moriasi
et al. (2007) refer to a monthly time step, whereas we used a
finer temporal scale (daily step), on which it is usually harder
to achieve a good model representation (Tan et al., 2021;
Pfannerstill et al., 2014; Pott and Fohrer, 2017a). We, there-
fore, conclude that, even for daily TP, the model performance
is acceptable, particularly with regard to the study purpose of
analyzing long-term changes in the water and matter balance.

Overall, modeled and measured daily values show clear
consistency in their dynamics (Figs. 2 and 3). Differences
mainly appear for low flow periods in summer and particu-
larly for a few peak flows in winter. Specifically, a few flood
peaks are underestimated in winter, e.g. on 27–28 Febru-
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Figure 3. Comparisons between measured and modeled daily loads of sediment, total phosphorus (TP), and total nitrogen (TN), respectively,
for calibration (a, c, e) and validation (b, d, f) periods.

ary 2002, 5–6 January 2012, and 24–25 December 2014. This
might be related to an insufficient representation of snow and
the deficiencies in single-event flood routing in the model
(Lam et al., 2012). The underestimation of peak streamflow
in winter was also observed in other rural lowland catch-
ments of Treene (Haas et al., 2016) and Kielstau (Lam et
al., 2010) in northern Germany. Sediment loads are overes-
timated during the calibration period and slightly underesti-
mated during the validation period, mainly for a few peak
values. The incorrect estimation might be due to the fact that
the river sediment load is also influenced by tile drains and
bank erosion in lowland catchments (Kiesel et al., 2009),
while SWAT primarily takes into account sheet erosion. Nev-
ertheless, some peaks, e.g., in November and December 2009
and March 2019, are very well depicted. A similar behavior
is observed for modeling the TP load, with a slight overes-
timation of TP in summer (April–June in 2009 and 2019)
and an underestimation of a few peaks in winter (November–

March). TN is generally well represented, except for only a
few underestimations of extreme peaks in winter (e.g., early
March or November 2010). Overall, the underestimation of
some peak loads of sediment, TP, and TN might be attributed
to the underestimation of corresponding peak flows.

3.2 Characteristics of land use change

Land use changes between 1987 and 2019 vary across the
catchment (Fig. 4). This is indicated by the individual dy-
namics in the four main land use classes of arable land,
pasture, forest, and settlement area. Arable land has been
decreasing and has primarily been replaced by pasture (by
16.2 % of the catchment; dark cyan in Fig. 4). The decrease
in arable land in the northeast (e.g., subbasins 3 and 9–11) is
more pronounced than in the northwest (e.g., subbasins 2, 4,
6, and 8), where pasture was sometimes converted to arable
land (dark pink; Fig. 4). Conversely, pasture shows an in-
creasing trend over the period of observation. The increase
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Figure 4. Spatial distribution of land use changes between 1987 and 2019 in the Stör catchment. Individual land use change types are
marked by different colors. The percentage of each change type, calculated as percentage of the catchment area, is given in the parentheses.
The strongest change is marked in bold.

Figure 5. Spatial distribution patterns of the changes in each land use type between the years 1987, 2010, and 2019.
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Figure 6. Changes in land use metrics between the years 1987, 2010, and 2019 in the Stör catchment.

in the east is stronger compared to the west of the catchment
(Figs. 4 and 5). The change in pasture is, in part, associated
with the stream restoration, including stabilizing the river
shore and increasing riparian vegetation (Dickhaut, 2005;
Gessner et al., 2010). Besides, agricultural grasses may have
been included in the pasture class due to the classification
approach. Forest areas also show an increasing trend, as in-
dicated by green colors in Fig. 4, with a strong increase in
the lowlands of the middle (subbasins 6 and 13) and south-
ern parts (subbasin 17; Fig. 5). The urban area has expanded
mainly around the city of Neumünster (subbasin 15 and 17;
Fig. 5).

In addition, the subbasin-scale land use metrics varied
substantially between 1987, 2010, and 2019 (Fig. 6). The
mean area percent (PLAND) per subbasin declined for
arable land (PLANDa) by 16 % and 3 % during the pe-
riods of 1987–2010 and 2010–2019, respectively. In con-
trast, subbasin-averaged pasture (PLANDp) increased for
the period of 1987–2010 by 12 % but decreased slightly
from 2010 to 2019 by 0.8 %. Both forest (PLANDf) and ur-
ban (PLANDu) areas have steadily increased from 1987 and
over 2010 to 2019. Similar trends are found in the metrics

of the percentage of largest patch index (LPI) and the in-
terspersion juxtaposition index (IJI). The subbasin average
of LPI for arable land has decreased by 20 % from 1987
to 2019, whereas the LPI of other land use classes shows
a slight and stable increase. The IJI of arable land displays
an overall slight increase from 1987 to 2019, while the IJI
values of other land uses have steadily and notably increased
(with a net increase up to over 20 %). Both the area-weighted
mean contiguity (CONTIGAW) and aggregation (AI) of each
land use class have decreased over time, whereas the area-
weighted mean shape index (AWMSI) has increased contin-
uously and slightly. Despite similar changing directions of
the land use patterns in the periods of 1987–2010 and 2010–
2019, land use has been subject to more alterations in the
former period than in the latter. Additionally, CONTIGAW,
AI, and IJI of arable land exhibit opposite trends in the two
periods, with a decrease from 1987 to 2010 and a slight in-
crease from 2010 to 2019.
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Figure 7. Spatial distribution of changes in water quantity and water quality variables during the periods of 1987–2010, 2010–2019,
and 1987–2019 at the subbasin scale.

3.3 Differences in changes in water quantity and
quality

Using the results from the three different scenario model runs
based on three land use maps of 1987, 2010, and 2019, we
calculated changes in water quantity and quality. The spatial

distribution of the variations in the modeled subbasin-scale
actual evapotranspiration (ET), surface runoff (SQ), base
flow (BF), water yield (WYLD), loads of sediment (SED),
total phosphorus (TP), and total nitrogen (TN) between 1987,
2010, and 2019 are shown in Fig. 7. ET and SQ are mostly
characterized by increases of up to 10.8 and 11.4 mm, re-
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spectively, from 1987 to 2019, with slight decreases by up
to 3.8 mm in several subbasins between 2010 and 2019. The
most significant increase in ET occurs in subbasins which
show a larger increase in forest from 1987 to 2019, such as
subbasins 8, 12, and 17 (Fig. 5). SQ shows a stronger in-
crease in the middle–western subbasins that experienced a
larger expansion of urban areas (Fig. 5), with the strongest
increase of SQ occurring in subbasins 15 and 17 that ex-
perienced the largest increase in urban area between 1987
and 2019. This might be attributed to the increased impervi-
ous surface which facilitates the generation of surface runoff
and reduces confluence time (Anand et al., 2018; Sood et al.,
2021). Contrarily, BF and WYLD have decreased by up to
20 and 13 mm, respectively, in most subbasins in the peri-
ods 1987–2010 and 1987–2019. However, a few subbasins
in the central part of the catchment exhibit a slight increase
in base flow, which is probably attributed to a greater con-
tribution of shallow groundwater in the central lowland ar-
eas to low flow periods than in the steeper eastern and west-
ern steeper areas. The loads of SED, TP, and TN show no-
table decreasing trends from 1987 to 2019. Pronounced re-
ductions in SED (7.8–18.2 t km−2) occur in the relatively
steeper northeastern corner (e.g., subbasins 3 and 9–10) and
the southwestern corner (e.g., subbasins 5 and 12) and sub-
basin 17, while the decrease is weaker in the midwest. Over-
all, the changes in TP and TN loads show a weak decrease
in the (mid-) west, and more pronounced decreases are in
the east and steeper areas in the southwest of the catchment
(Fig. 7). The spatial differences may be related to the more
intense exchange between groundwater and surface water
and a higher contribution of nutrients from groundwater to
the stream in the lowland. The most pronounced net decrease
in TP and TN loads are observed in subbasins 12 and 17, cor-
responding to the largest decrease of arable land percentage
(50 % in subbasin 17; 30 % in subbasin 12) between 1987
and 2019. The single subbasin that has experienced a slight
increase in sediment or TP load is subbasin 1, which is char-
acterized by the lowest reduction in arable land and a minor
decrease in forest. The most significant decrease in nutrients
and sediment has occurred in subbasins which have experi-
enced notable increases in pasture or forest and a decrease in
arable land, e.g., subbasins 12 and 17 (Fig. 5). Overall, varia-
tions in surface runoff, sediment, TP, and TN are depicted by
spatially explicit patterns on the subbasin scale. It is neces-
sary to consider this spatial heterogeneity, when establishing
management measures, in order to improve water quality.

3.4 Influences of changes in land use metrics on water
quantity and quality

3.4.1 Contributions of LUCC to changes in water
quantity and quality

A summary of the PLSR models separately constructed
for ET, SQ, BF, WYLD, SED, TP, and TN is provided

in Table 4. The prediction plots for the seven variables,
by applying the PLSR models, are shown in Fig. 8. The
changes in water quantity and quality could be reasonably ex-
plained by the constructed PLSR models (0.61 < R2 < 0.88
and 0.57 < Q2 < 0.85; Table 4). The comparison of the ac-
tual and predicted values (in Fig. 8) illustrates the accu-
racy of the model calibration and cross-validation. For the
ET and WYLD models, the percentage of the unexplained
variation decreases with increasing number of components,
whereas the prediction error of cross-validated observations
(indicated by cross-validated root mean squared error – RM-
SECV) is minimal, with one or two components, respec-
tively. This indicates that adding more components does not
improve the correlation with the residuals of the response
variables (Onderka et al., 2012). Overall, 60.5 % and 68.3 %
of the variations in the changes in ET and WYLD can be ex-
plained by the first component and the first two components,
respectively. Adding other components does not strongly in-
crease the cumulative explained variations (only by +4.2 %
to 5.4 %) in ET, and WYLD changes from 1987 to 2019 (Ta-
ble 4). For SQ, two components are extracted for the PLSR
model, with 58.9 % of variation being explained with the first
component, and cumulative explained variations increase to
81.3 % when adding the second component. For all other
variables, the minimum RMSECV is achieved with models
using five components. For base flow, 37.4 % of the variation
in the dynamics is explained by the first component, cumula-
tively 64.2 %, adding the second component, and ultimately
87.7 %, with a consecutive addition of the third, fourth, and
fifth component. For the changes in loads of sediment, TP,
and TN, the first component of the models always explains
the majority of the variation (43.7 %–63 %; Table 4). With
all water quality variables together, approximately 75 % of
the changes is accurately explained, on average.

Approximately 70 %–80 % of the variations in water quan-
tity and quality dynamics were explained by LUCC, un-
derlining the importance of LUCC for catchment water re-
sources. Better explanations (over 81 %) of SQ and BF by
LUCC confirmed the significant influences of landscape het-
erogeneity on surface runoff and groundwater dynamics (Xu
et al., 2020; Kändler et al., 2017; Zhang and Schilling, 2006).
Only a quarter of the variations in sediment, TP, or TN cannot
be interpreted by LUCC, which demonstrates that changes in
rural landscape patterns are essentially important in control-
ling nutrient pollution. The proportion and spatial arrange-
ment of agricultural land play an important role in the gener-
ation and transportation of nutrient pollutants, as previously
reported in different catchments worldwide. For example,
Zhang et al. (2020b) found that agricultural cultivation on
steeper hillsides intensified N and P entries in ponds in the
hilly Tianmu Lake catchment in eastern China. Gémesi et
al. (2011) identified that the cohesion and contagion of crop-
land were more important than other land use indicators to
account for the variability in TN and TP in the relatively plain
lake catchment in Iowa in the central USA. The minor un-
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Figure 8. Comparison of subbasin-scale changes in evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield (WYLD),
sediment (SED), total phosphorus (TP), and total nitrogen (TN), as derived from the SWAT model and the predicted values from the PLSR
models. The changes were obtained based on land use changes between 1987 and 2010, 2010 and 2019, and between 1987 and 2019,
respectively. Cal indicates calibration. CV indicates cross-validation.

explained fraction may be attributed to potential changes in
waste water treatment, which sometimes remained constant
in our modeling approach. A lower explanation of TP may,
additionally, be due to the lower SWAT model performance
for TP, the susceptibility of P to soil or geomorphology prop-
erties (Maranguit et al., 2017; Noe et al., 2013). More than
60 % of the variations in ET and WYLD are explained by
LUCC. The unexplained fraction may be attributed to the dif-
ferent contributions from specific crops (included in SWAT)
and the lumped agriculture class, as well as the compensating
effect of subbasins (Wagner et al., 2013).

3.4.2 Effects of LUCC predictors on water quantity
and quality

According to the PLSR results, each category of the
landscape indices, including percentage (PLAND), largest
patch (LPI), shape (AWMSI), contiguity (CONTIGAW),
aggregation (AI), or interspersion (IJI), plays an essential
role in influencing as least one water quantity or qual-
ity variable (Table 5). The effects on the changes in ET,
SQ, BF, WYLD, SED, TP, and TN are measured using
weights, regression coefficients (RCs), and VIP values in
the PLSR models. VIPs for predictors included into the
models are greater than 0.8. For the ET model, the high-
est VIPs are obtained from the predictors aggregation in-
dex for arable land (AIa) and the contiguity index for
arable land (CONTIGAWa; VIP= 1.25; RCs=−0.122), fol-
lowed by PLANDa (VIP= 1.037; RC=−0.101) and AIu
(VIP= 1.0; RC=−0.1). ET tends to decrease with larger ag-
gregation (AIa) and contiguity (CONTIGAWa) indices, and

arable land percent (PLANDa; negative RCs), whereas it in-
creases with more pasture (PLANDp; positive RC). In the
case of surface runoff, the first and second components of
the model are dominated by PLANDu on the positive side,
with a minor positive effect from PLANDa on the second
component (Table 5). The urban area percent (PLANDu) ob-
tains the largest VIP of 1.173 and is identified as the most
important influencing the change in surface runoff. Surface
runoff increases with an increase in arable (PLANDa) and ur-
ban areas (PLANDu; RCs= 0.403 and 1.161, respectively).
For base flow, in addition to arable land, pasture plays a
key role in explaining its variation. Arable land (PLANDa),
pasture (PLANDp) percent, and the area-weighted shape in-
dex of pasture (AWMSIp) obtain the largest VIPs of 1.259,
1.03, and 1.063, respectively. All show negative correlations
with base flow. AIa and CONTIGAMa are important predic-
tors for water yield, with large VIPs of 1.226 and 1.218,
respectively. Their higher values result in an increase in
water yield. For sediment, TP or TN models, the selected
components are dominated by areal percentages of arable
land and pasture, in addition to the landscape metrics of
arable land. The models obtain the largest regression coef-
ficients or VIPs for PLANDa, LPIa, or PLANDp. They have
VIPs of 1.0113–1.173 for sediment, 1.089–1.305 for TP, and
1.005–1.232 for TN, respectively. Inferred by the RCs, an in-
crease in sediment, TP, or TN occurs with increasing arable
land (RCs of 0.602–0.884), while a decrease may occur with
higher percentage of arable land in the largest patches (LPIa;
RCs of −0.74 to −0.225) or with more pasture area (RCs
of −0.693 to −0.122).
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Table 4. Summary of the PLSR models of evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield (WYLD), sediment
yield (SED), total phosphorus load (TP), and total nitrogen load (TN) at the subbasin scale.

Response R2 Q2 Component Explained Cumulative RMSECV Q2
cumul.

variable variability explained
Y in Y (%) variability

in Y (%)

ET 0.61 0.57 1 60.5 60.5 2.32 (mm) 0.568
2 2.4 62.9 2.35 (mm) 0.558
3 1.2 64.1 2.44 (mm) 0.524
4 0.2 64.3 2.41 (mm) 0.535
5 0.4 64.7 2.41 (mm) 0.534

SQ 0.81 0.78 1 58.9 58.9 1.70 (mm) 0.561
2 22.4 81.3 1.20 (mm) 0.783

BF 0.88 0.85 1 37.4 37.4 4.61 (mm) 0.230
2 26.8 64.2 3.92 (mm) 0.442
3 9.7 73.9 3.15 (mm) 0.640
4 8.8 82.7 2.59 (mm) 0.757
5 5.0 87.7 2.05 (mm) 0.847

WYLD 0.68 0.61 1 64.6 64.6 2.43 (mm) 0.611
2 3.7 68.3 2.43 (mm) 0.614
3 0.9 69.2 2.46 (mm) 0.602
4 0.4 69.6 2.47 (mm) 0.598
5 0.4 70.0 2.49 (mm) 0.592

SED 0.77 0.67 1 43.7 43.7 2.76 (t km−2) 0.382
2 19.2 62.9 2.50 (t km−2) 0.493
3 11.1 74.0 2.13 (t km−2) 0.630
4 1.6 75.6 2.08 (t km−2) 0.650
5 1.0 76.6 2.03 (t km−2) 0.667

TP 0.76 0.65 1 51.5 51.5 12.03 (kg km−2) 0.468
2 10.7 62.2 11.14 (kg km−2) 0.544
3 10.4 72.6 10.32 (kg km−2) 0.608
4 3.0 75.6 9.80 (kg km−2) 0.647
5 0.7 76.3 9.71 (kg km−2) 0.653

TN 0.73 0.68 1 63.0 63.0 43.04 (kg km−2) 0.597
2 5.8 68.8 40.56 (kg km−2) 0.643
3 3.1 72.1 39.20 (kg km−2) 0.666
4 0.5 72.6 38.90 (kg km−2) 0.671
5 0.7 73.3 38.51 (kg km−2) 0.678

Note: R2 indicates the goodness of fit of the model, Q2 indicates the cross-validated goodness of prediction, RMSECV indicates
cross-validated root mean squared error, and Q2

cumul. indicates the cumulative cross-validated goodness of predication over all the
selected PLSR components. The components selected for each model are highlighted in bold.

LPIa, AIa, and CONTIGAWa are the most important land-
scape structure indicators affecting water quantity or quality
(VIP≥ 1 most of the time; Table 5). AIa and CONTIGAWa
have positive impacts on WYLD, while there are negative
impacts on ET. By definition, AIa and CONTIGAWa would
increase, respectively, when arable landscape patches are
more clumped and contiguous (Shi et al., 2013; Uuemaa et
al., 2009). Agriculture in more clumped and connected land
patches with fewer edges has been proven to show a higher

capability of reducing the infiltration, compared to small
scattered patches (Boongaling et al., 2018), which may result
in the increase in the water yield. Our results also corroborate
with Ayivi and Jha (2018), who reported that increased water
yield and base flow occur with increasing cohesive and ag-
gregated agriculture in a moderate-altitude catchment (i.e.,
Reedy Fork–Buffalo Creek catchment, USA). Negative im-
pacts on ET may be explained by the interactive changes
between arable land and pasture, i.e., arable land has been

https://doi.org/10.5194/hess-26-2561-2022 Hydrol. Earth Syst. Sci., 26, 2561–2582, 2022



2576 C. Lei et al.: Influences of land use changes on the dynamics of water quantity and quality in the Stör catchment

Table
5.R

egression
coefficients

(R
C

s),V
IP,and

w
eightvalues

ofeach
PL

SR
m

odel.

Predictors
E

T
SQ

B
F

W
Y

L
D

R
C

V
IP

W
∗
(1

)
R

C
V

IP
W
∗
(1

)
W
∗
(2

)
R

C
V

IP
W
∗
(1

)
W
∗
(2

)
W
∗
(3

)
W
∗
(4

)
W
∗
(5

)
R

C
V

IP
W
∗
(1

)
W
∗
(2

)

PL
A

N
D

a
−

0
.101

1.037
−

0
.017

0.403
0.790

−
0
.048

0.189
−

1
.654

1.259
−

0
.001

–0.128
–0.135

–0.208
–0.201

0.043
0.882

0.017
−

0
.042

PL
A

N
D

p
0.089

0.918
0.015

−
1
.474

1.030
−

0
.034

0.024
–0.117

–0.304
–0.256

0.011
0.866

−
0
.015

0.072
PL

A
N

D
f

−
0
.575

0.915
−

0
.035

−
0
.074

−
0
.072

−
0
.045

0.092
PL

A
N

D
u

0.080
0.818

0.013
1.161

1.173
0.090

0.173
L

PIa
−

0
.088

0.906
−

0
.015

A
W

M
SIp

−
0
.143

1.063
−

0
.052

−
0
.058

0.059
0.093

−
0
.013

A
W

M
SIf

0.085
0.870

0.014
−

0
.039

0.837
−

0
.016

0.041
A

Ia
−

0
.122

1.254
−

0
.020

0.187
1.226

0.024
0.025

A
Ip

−
0
.094

0.961
−

0
.016

0.100
0.924

0.018
−

0
.009

A
Iu

−
0
.100

1.030
−

0
.017

0.212
1.068

0.020
0.058

C
O

N
T

IG
A

W
a
−

0
.122

1.251
−

0
.020

0.184
1.218

0.024
0.024

C
O

N
T

IG
A

W
p
−

0
.087

0.891
−

0
.015

0.112
0.880

0.018
0.004

C
O

N
T

IG
A

W
u
−

0
.094

0.959
−

0
.016

0.281
0.805

0.040
0.029

−
0
.078

0.064
0.011

0.198
1.007

0.019
0.054

IJIa
0.038

0.859
0.040

0.024
0.098

–0.142
−

0
.091

Predictors
SE

D
T

P
T

N

R
C

V
IP

W
∗
(1

)
W
∗
(2

)
W
∗
(3

)
W
∗
(4

)
W
∗
(5

)
R

C
V

IP
W
∗
(1

)
W
∗
(2

)
W
∗
(3

)
W
∗
(4

)
W
∗
(5

)
R

C
V

IP
W
∗
(1

)
W
∗
(2

)
W
∗
(3

)
W
∗
(4

)
W
∗
(5

)

PL
A

N
D

a
0.602

1.165
0.027

0.038
0.106

0.037
0.040

0.755
1.305

0.029
0.031

0.117
0.142

0.059
0.884

1.232
0.033

0.103
0.133

0.166
0.333

PL
A

N
D

p
−

0
.693

1.173
−

0
.026

−
0
.022

–0.124
−

0
.096

−
0
.099

−
0
.499

1.089
−

0
.025

−
0
.007

−
0
.099

−
0
.074

0.002
−

0
.122

1.005
−

0
.030

−
0
.054

−
0
.049

0.031
0.324

PL
A

N
D

u
0.013

0.908
−

0
.022

−
0
.033

0.020
0.097

0.116
−

0
.045

1.038
−

0
.025

−
0
.033

0.005
0.057

0.137
0.028

1.013
−

0
.024

−
0
.032

0.052
0.197

0.093

PL
A

N
D

f
−

0
.009

0.821
−

0
.016

−
0
.053

0.061
0.047

0.004
L

PIa
−

0
.632

1.113
0.015

−
0
.095

–0.117
−

0
.037

−
0
.070

−
0
.740

1.205
0.017

−
0
.064

−
0
.208

−
0
.091

−
0
.057

−
0
.225

0.945
0.023

−
0
.054

–0.209
0.028

0.019
L

PIp
0.397

0.819
−

0
.009

0.075
0.086

−
0
.043

0.020
A

W
M

SIa
0.472

0.902
0.007

0.103
−

0
.017

0.073
0.080

0.492
0.817

0.008
0.087

0.020
0.093

0.085
A

W
M

SIp
−

0
.445

1.087
−

0
.023

−
0
.077

−
0
.050

−
0
.022

0.107
−

0
.152

0.872
−

0
.019

−
0
.031

−
0
.057

0.127
−

0
.001

C
O

N
T

IG
A

W
a

0.039
0.877

0.023
−

0
.001

−
0
.042

−
0
.024

0.075
0.079

0.864
0.021

−
0
.027

−
0
.013

0.015
0.069

0.114
0.840

0.022
−

0
.072

0.037
0.019

0.077
A

Ia
−

0
.053

0.876
0.022

−
0
.006

−
0
.055

−
0
.039

0.041
0.008

0.856
0.021

−
0
.030

−
0
.025

0.000
0.052

−
0
.034

0.833
0.022

−
0
.081

0.015
−

0
.024

−
0
.038

N
ote:V

IP
values

greaterthan
1

w
ere

m
arked

in
bold.T

he
absolute

w
eights

greaterthan
0.1

w
ere

m
arked

in
italics.

Hydrol. Earth Syst. Sci., 26, 2561–2582, 2022 https://doi.org/10.5194/hess-26-2561-2022



C. Lei et al.: Influences of land use changes on the dynamics of water quantity and quality in the Stör catchment 2577

increased at the expense of pasture and vice versa. Likewise,
Shawul et al. (2019) observed that reduction in pasture would
result in a decrease in ET in an agriculture-dominated and
moderate-altitude catchment (the Upper Awash catchment,
Ethiopia). The negative effect of AWMSIp on base flow im-
plies that the coarse grass landscape has a higher capacity
of absorbing and intercepting rainfall, thereby resulting in
a lower base flow. Though landscape metrics are more of-
ten used to explain water quantity than quality variables (Ta-
ble 5), the negative influences of LPIa on sediment and nu-
trients, and positive influences of AWMSIa on sediment and
TP cannot be overlooked. Similar findings were observed in
hilly catchments, where scattered and complicated agricul-
ture patches are susceptible to soil erosion and, thus, water
quality deterioration (Yan et al., 2013; Nafi’Shehab et al.,
2021).

The change in the percentage of arable land is most re-
sponsible for water quantity and quality dynamics, with VIP
values greater than 1 for all response variables but WYLD.
This may be explained by the fact that the decrease in arable
land is the strongest. The negative correlations between
PLANDa and evapotranspiration (ET) and base flow (BF)
imply that conversion of arable land to, e.g., pasture or forest
would result in increased ET and BF, due to the higher ca-
pability of plant evapotranspiration and slower water trans-
mission, which is in agreement with previous findings that
perennial vegetation is more likely to increase ET (Peel et
al., 2010; Li et al., 2017), and the decrease in agriculture
leads to increased annual base flow (Basuki et al., 2019). Less
interception by crops and additional surface runoff result-
ing from the implementation of tillage practices (e.g., tractor
roads) can result in increased surface runoff (SQ). The lower
ET amount of crops compared to pasture and forest is in part
responsible for the increase in WYLD. Soil erosion might be
accelerated due to uncovered and fragile soil by tillage prac-
tices implemented in cultivated areas and the increased sur-
face runoff. N and P pollution is prone to occurring in arable
areas, which have a high risk of generating nutrient pollu-
tants from excessive fertilizer or manure and eroded soil par-
ticles. The positive relationships between arable land percent
and SQ, WYLD, SED, TP, and TN loads are found in other
studies around the world as well (Sood et al., 2021; Wang et
al., 2019; Wagner et al., 2013; Mirghaed et al., 2018; Zhang
et al., 2020a). Pasture shows a positive influence on ET and
negative influences on sediment, TP, and TN. This also illus-
trates that more grassland (or rangeland) would increase the
plant evapotranspiration process. Pasture can improve water
quality due to reduced soil erosion and nutrient transporta-
tion rate and the high uptake and infiltration of nutrients by
vegetation cover. Relevant studies (Li et al., 2008; Hatano et
al., 2005; Ding et al., 2016; Zhang et al., 2020a) have often
observed that semi-natural vegetation (e.g., forest, bushland,
or grassland) is beneficial for good water quality in river- or
lake-dominated catchments, due to the higher capability of

filtering contaminants and reducing their inputs and decreas-
ing surface runoff.

By applying the quantitative results that the increases in
arable or pasture areas most significantly intensify or re-
duce the risk of soil erosion and nutrient pollution, respec-
tively, individual subbasins can be identified as nutrient pol-
lution sources or sinks. Based on these results, it is pos-
sible to develop a set of more targeted strategies to effec-
tively control diffuse pollution at a spatial scale. At the same
time, the best management practices, such as proper fertil-
ization, abatement of traditional tillage, crop rotation, and
vegetation buffers, are important for improving water qual-
ity in rural catchments (Haas et al., 2017; Pott and Fohrer,
2017a). Urban expansion is most important in influencing
surface runoff, as the increase in urban area percent re-
sults in an increase of it (regression coefficient value > 1.16;
Table 5). Similar results have been found, e.g., by Shi et
al. (2007), who discovered that increased urbanized land led
to increased surface runoff, by increasing flood peaks and de-
creasing surface runoff confluence time, in a typical urban-
ized region (Shenzhen) in China. Unlike previous findings
(Yan et al., 2013; Wang et al., 2018), forest properties have
not exerted significant influences, probably due to only mi-
nor temporal changes in some landscape metrics, e.g., area
percent (PLAND), dominance (LPI), and shape (AWMSI) of
forest (Fig. 6).

4 Conclusion

In this study, the separate contributions of changes in land
use on the dynamics of seven water quantity and qual-
ity variables, i.e., actual evapotranspiration (ET), surface
runoff (SQ), base flow (BF), water yield (WYLD), sedi-
ment (SED), total phosphorus (TP), and total nitrogen (TN)
loads were quantified by applying an integrated approach of
hydrological modeling (SWAT) and partial least squares re-
gression (PLSR). The influences of the changes in individual
land use indicators on changes in water quantity and quality
were measured and identified using a scenario analysis for
three different land use maps of the past.

The modeling analysis of the effects of past land use
changes showed that water quality and quantity variables var-
ied in different ways on the subbasin scale. SED, TP, and
TN decreased more strongly in the eastern and western parts
than in the middle lowlands, implying that a higher contribu-
tion of nutrients by groundwater can mediate the influences
of land use change. Based on a PLSR analysis, about 75 %
of the modeled variations in water quality and quantity vari-
ables can be accurately explained by land use indicators. The
change in arable land is inferred to be most important for wa-
ter quality and quantity dynamics, as arable land indicators
mostly showed a greater importance (measured by VIP > 1)
for more response variables compared to other indicators.
Looking at the most significant impacts, the expansion of
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arable land (PLANDa) caused BF to decrease, and urban-
ization expansion resulted in increased SQ. More aggregated
and connected arable land patches led to a decrease in ET and
an increase in WYLD. Arable land expansion exacerbated
soil erosion and P and N pollution, whereas an increase in
pasture helped to relieve nutrient pollution problems. These
results underline that water quality and quantity variables are
affected by land use changes in different ways. To achieve
good water quality, the dynamics in the extent and the spa-
tial configuration of arable land require special attention. The
spatial assessment of changes in water quantity and quality
variables in this study provides a basis for an informed and
location-specific management of land and water resources.

Code availability. SWAT is an open-source hydrological model.
The source code of is freely available at https://swat.tamu.
edu/software/swat-executables/ (Arnold et al., 2019). SWAT3s is
an adapted version of SWAT, and its code was compiled by
Matthias Pfannerstill (Pfannerstill et al., 2014). The code of PLSR
used in this study may be available upon request to the correspond-
ing author.
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are proprietary data. The land use map for 1987 was adapted from
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Dostál, T., Krása, J., Vitvar, T., and Štich, M.: Impact of land
use on water quality in the upper Nisa catchment in the Czech
Republic and in Germany, Sci. Total Environ., 586, 1316–1325,
https://doi.org/10.1016/j.scitotenv.2016.10.221, 2017.

Kiesel, J., Schmalz, B., and Fohrer, N.: SEPAL – a simple GIS-
based tool to estimate sediment pathways in lowland catchments,
Adv. Geosci., 21, 25–32, https://doi.org/10.5194/adgeo-21-25-
2009, 2009.

KTBL: Kuratorium für Technik und Bauwesen in der Land-
wirtschaft, Betriebsplanung Landwirtschaft 1995/1996
and 2008/2009, 14. and 21. Edn., KTBL, Darmstadt,
ISBN 9783784319346, ISBN 9783939371663, 1995 and
2008.

Kucheryavskiy, S.: mdatools – R package for chemo-
metrics, Chemom. Intel. Lab. Syst., 198, 103937,
https://doi.org/10.1016/j.chemolab.2020.103937, 2020.

Kühling, I.: Modellierung und räumliche Analyse der Phosphatein-
tragspfade im Einzugsgebiet eines norddeutschen Tiefland-
baches, Master thesis, Christian-Albrechts-University Kiel, Kiel,
Germany, 2011.

Kumar, S., Getirana, A., Libonati, R., Hain, C., Mahanama, S., and
Andela, N.: Changes in land use enhance the sensitivity of trop-

ical ecosystems to fire-climate extremes, Sci. Rep., 12, 1–11,
https://doi.org/10.1038/s41598-022-05130-0, 2022.

Lam, Q., Schmalz, B., and Fohrer, N.: Modelling point and dif-
fuse source pollution of nitrate in a rural lowland catchment
using the SWAT model, Agr. Water Manage., 97, 317–325,
https://doi.org/10.1016/j.agwat.2009.10.004, 2010.

Lam, Q., Schmalz, B., and Fohrer, N.: Assessing the spa-
tial and temporal variations of water quality in low-
land areas, Northern Germany, J. Hydrol., 438, 137–147,
https://doi.org/10.1016/j.jhydrol.2012.03.011, 2012.

Lei, C., Wagner, P. D., and Fohrer, N.: Identifying the most impor-
tant spatially distributed variables for explaining land use pat-
terns in a rural lowland catchment in Germany, J. Geogr. Sci., 29,
1788–1806, https://doi.org/10.1007/s11442-019-1690-2, 2019.

Lei, C., Wagner, P. D., and Fohrer, N.: Effects of land cover,
topography, and soil on stream water quality at multiple spatial
and seasonal scales in a German lowland catchment, Ecol. Indic.,
120, 106940, https://doi.org/10.1016/j.ecolind.2020.106940,
2021.

Li, G., Zhang, F., Jing, Y., Liu, Y., and Sun, G.: Response of evap-
otranspiration to changes in land use and land cover and climate
in China during 2001–2013, Sci. Total Environ., 596, 256–265,
https://doi.org/10.1016/j.scitotenv.2017.04.080, 2017.

Li, S., Gu, S., Liu, W., Han, H., and Zhang, Q.: Wa-
ter quality in relation to land use and land cover in
the upper Han River Basin, China, Catena, 75, 216–222,
https://doi.org/10.1016/j.catena.2008.06.005, 2008.

LKN: Landesbetrieb für Küstenschutz, Nationalpark und Meer-
esschutz Schleswig-Holstein, Discharge data from gauges
Padenstedt (https://www.umweltdaten.landsh.de/pegel/jsp/
pegel.jsp?gui=ganglinie&thema=q&mstnr=114200, last access:
3 April 2020), Sarlhusen (https://www.umweltdaten.landsh.de/
pegel/jsp/pegel.jsp?gui=ganglinie&thema=q&mstnr=114131,
last access: 25 March 2020) and Willenscharen
https://www.umweltdaten.landsh.de/pegel/jsp/pegel.jsp?
gui=ganglinie&thema=q&mstnr=114135, last access:
25 March 2020), 2020a.

LKN: Landesbetrieb für Küstenschutz, Nationalpark und Meer-
esschutz Schleswig-Holstein, Discharge data, http://www.
umweltdaten.landsh.de (last access: 3 April 2020), 2020b.

Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenk-
ins, A., Ferrier, R. C., Li, H., and Luo, W.: Impacts of soil and
water pollution on food safety and health risks in China, Envi-
ron. Int., 77, 5–15, https://doi.org/10.1016/j.envint.2014.12.010,
2015.

LvermA: Digitales Geländenmodell (ATKIS-DGM LiDAR), Git-
terweite 5× 5 m, Land survey office, Schleswig-Holstein, Kiel,
Germany, 2008.

LWK: Landwirtschaftskammer Schleswig-Holstein. Richtwerte für
die Düngung 1991 and 2011, 13. and 21 Edn., LWK, Rendsburg,
1991 and 2011.

Maranguit, D., Guillaume, T., and Kuzyakov, Y.: Land-
use change affects phosphorus fractions in highly
weathered tropical soils, Catena, 149, 385–393,
https://doi.org/10.1016/j.catena.2016.10.010, 2017.

Mevik, B.-H., Wehrens, R., and Liland, K. H.: pls: Partial
least squares and principal component regression, R package
version 2, http://CRAN.R-project.org/package=pls, last access:
20 December 2020.

Hydrol. Earth Syst. Sci., 26, 2561–2582, 2022 https://doi.org/10.5194/hess-26-2561-2022

https://doi.org/10.1016/j.jhydrol.2016.03.001
https://doi.org/10.1016/j.jenvman.2017.02.060
https://doi.org/10.1007/s11269-013-0284-5
https://doi.org/10.1016/j.ecoleng.2005.01.011
https://doi.org/10.1111/ecog.04617
https://doi.org/10.3390/hydrology9010012
https://doi.org/10.1023/A:1011175013278
https://doi.org/10.1016/j.scitotenv.2016.10.221
https://doi.org/10.5194/adgeo-21-25-2009
https://doi.org/10.5194/adgeo-21-25-2009
https://doi.org/10.1016/j.chemolab.2020.103937
https://doi.org/10.1038/s41598-022-05130-0
https://doi.org/10.1016/j.agwat.2009.10.004
https://doi.org/10.1016/j.jhydrol.2012.03.011
https://doi.org/10.1007/s11442-019-1690-2
https://doi.org/10.1016/j.ecolind.2020.106940
https://doi.org/10.1016/j.scitotenv.2017.04.080
https://doi.org/10.1016/j.catena.2008.06.005
https://www.umweltdaten.landsh.de/pegel/jsp/pegel.jsp?gui=ganglinie&thema=q&mstnr=114200
https://www.umweltdaten.landsh.de/pegel/jsp/pegel.jsp?gui=ganglinie&thema=q&mstnr=114200
https://www.umweltdaten.landsh.de/pegel/jsp/pegel.jsp?gui=ganglinie&thema=q&mstnr=114131
https://www.umweltdaten.landsh.de/pegel/jsp/pegel.jsp?gui=ganglinie&thema=q&mstnr=114131
https://www.umweltdaten.landsh.de/pegel/jsp/pegel.jsp?gui=ganglinie&thema=q&mstnr=114135
https://www.umweltdaten.landsh.de/pegel/jsp/pegel.jsp?gui=ganglinie&thema=q&mstnr=114135
http://www.umweltdaten.landsh.de
http://www.umweltdaten.landsh.de
https://doi.org/10.1016/j.envint.2014.12.010
https://doi.org/10.1016/j.catena.2016.10.010
http://CRAN.R-project.org/package=pls


C. Lei et al.: Influences of land use changes on the dynamics of water quantity and quality in the Stör catchment 2581

Mirghaed, F. A., Souri, B., Mohammadzadeh, M., Salmanmahiny,
A., and Mirkarimi, S. H.: Evaluation of the relationship be-
tween soil erosion and landscape metrics across Gorgan Wa-
tershed in northern Iran, Environ. Monit. Assess., 190, 1–14,
https://doi.org/10.1007/s10661-018-7040-5, 2018.

Monaghan, R., Wilcock, R., Smith, L., Tikkisetty, B., Thorrold,
B., and Costall, D.: Linkages between land management activ-
ities and water quality in an intensively farmed catchment in
southern New Zealand, Agr. Ecosyst. Environ., 118, 211–222,
https://doi.org/10.1016/j.agee.2006.05.016, 2007.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L.,
Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for
systematic quantification of accuracy in watershed simulations,
T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153,
2007.

Nafi’Shehab, Z., Jamil, N. R., Aris, A. Z., and Shafie,
N. S.: Spatial variation impact of landscape patterns and
land use on water quality across an urbanized water-
shed in Bentong, Malaysia, Ecol. Indic., 122, 107254,
https://doi.org/10.1016/j.ecolind.2020.107254, 2021.

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J.
R.: Soil and water assessment tool theoretical documentation
version 2009, Texas Water Resources Institute, https://swat.
tamu.edu/media/99192/swat2009-theory.pdf (last access: 1 Jan-
uary 2019), 2011.

Noe, G. B., Hupp, C. R., and Rybicki, N. B.: Hydrogeo-
morphology influences soil nitrogen and phosphorus min-
eralization in floodplain wetlands, Ecosystems, 16, 75–94,
https://doi.org/10.1007/s10021-012-9597-0, 2013.

Onderka, M., Wrede, S., Rodný, M., Pfister, L., Hoffmann, L.,
and Krein, A.: Hydrogeologic and landscape controls of dis-
solved inorganic nitrogen (DIN) and dissolved silica (DSi)
fluxes in heterogeneous catchments, J. Hydrol., 450, 36–47,
https://doi.org/10.1016/j.jhydrol.2012.05.035, 2012.

Oppelt, N., Rathjens, H., and Dörnhöfer, K.: Integration of
land cover data into the open source model SWAT, in: First
Sentinel-2 Preparatory Symposium, April 2012, Frascati, Italy,
23–27, ESA SP-707, https://www.researchgate.net/publication/
259632792 (last access: 2 June 2020), 2012.

Peel, M. C., McMahon, T. A., and Finlayson, B. L.: Veg-
etation impact on mean annual evapotranspiration at a
global catchment scale, Water Resour. Res., 46, W09508,
https://doi.org/10.1029/2009WR008233, 2010.

Pfannerstill, M., Guse, B., and Fohrer, N.: A multi-storage ground-
water concept for the SWAT model to emphasize nonlinear
groundwater dynamics in lowland catchments, Hydrol. Process.,
28, 5599–5612, https://doi.org/10.1002/hyp.10062, 2014.

Pott, C. A.: Integrated monitoring, assessment and modeling
of nitrogen and phosphorus pollution in a lowland catch-
ment in Germany: a long-term study on water quality,
Christian-Albrechts Universität Kiel, Kiel, Germany, https:
//macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_
derivate_00005297/Dissertation_Pott_AGRAR_29.1.14.pdf
(last access: 7 July 2018), 2014.

Pott, C. A. and Fohrer, N.: Best management practices to re-
duce nitrate pollution in a rural watershed in Germany, Rev.
Ambiente Agua, 12, 888–901, https://doi.org/10.4136/ambi-
agua.2099, 2017a.

Pott, C. A. and Fohrer, N.: Hydrological modeling in a rural catch-
ment in Germany, Appl. Res. Agrotech., 10, 7–16, 2017b.

Rathjens, H., Dörnhöfer, K., and Oppelt, N.: IRSeL – An ap-
proach to enhance continuity and accuracy of remotely sensed
land cover data, Int. J. Appl. Earth Obs. Geoinf., 31, 1–12,
https://doi.org/10.1016/j.jag.2014.02.010, 2014.

Riitters, K.: Pattern metrics for a transdisciplinary
landscape ecology, Landsc. Ecol., 34, 2057–2063,
https://doi.org/10.1007/s10980-018-0755-4, 2019.

Ripl, W., Janssen, T., Hildmann, C., and Otto, I.: Entwick-
lung eines Land-Gewässer Bewirtschaftungskonzeptes
zur Senkung von Stoffverlusten an Gewässer (Stör-
Projekt I und II), Forschungsbericht, TU Berlin, Berlin,
http://www.aquaterra-berlin.de/images/stories/stoer_endber01/
Ripl-et-al_1996_Stoer-Endbericht_150dpi_mCmP_.pdf (last
access: 2 May 2020), 1996.

Shawul, A. A., Chakma, S., and Melesse, A. M.: The response of
water balance components to land cover change based on hy-
drologic modeling and partial least squares regression (PLSR)
analysis in the Upper Awash Basin, J. Hydrol.: Reg. Stud., 26,
100640, https://doi.org/10.1016/j.ejrh.2019.100640, 2019.

Shi, P.-J., Yuan, Y., Zheng, J., Wang, J.-A., Ge, Y., and
Qiu, G.-Y.: The effect of land use/cover change on sur-
face runoff in Shenzhen region, China, Catena, 69, 31–35,
https://doi.org/10.1016/j.catena.2006.04.015, 2007.

Shi, Z., Ai, L., Li, X., Huang, X., Wu, G., and Liao, W.: Partial
least-squares regression for linking land-cover patterns to soil
erosion and sediment yield in watersheds, J. Hydrol., 498, 165–
176, https://doi.org/10.1016/j.jhydrol.2013.06.031, 2013.

Shrestha, S., Bhatta, B., Shrestha, M., and Shrestha, P. K.: In-
tegrated assessment of the climate and landuse change im-
pact on hydrology and water quality in the Songkhram
River Basin, Thailand, Sci. Total Environ., 643, 1610–1622,
https://doi.org/10.1016/j.scitotenv.2018.06.306, 2018.

Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E.,
and Smith, D.: Impacts of impervious surface on water-
shed hydrology: A review, Urban Water J., 2, 263–275,
https://doi.org/10.1080/15730620500386529, 2005.

Singh, H., Singh, D., Singh, S. K., and Shukla, D.: Assessment
of river water quality and ecological diversity through multi-
variate statistical techniques, and earth observation dataset of
rivers Ghaghara and Gandak, India, Int. J. River Basin Manage.,
15, 347–360, https://doi.org/10.1080/15715124.2017.1300159,
2017.

Soetaert, K. and Petzoldt, T.: Inverse modelling, sensitivity and
Monte Carlo analysis in R using package FME, J. Stat. Softw,
33, 1–28, https://doi.org/10.18637/jss.v033.i03, 2010.

Song, S., Schmalz, B., and Fohrer, N.: Simulation, quantifica-
tion and comparison of in-channel and floodplain sediment pro-
cesses in a lowland area – A case study of the Upper Stör
catchment in northern Germany, Ecol. Indic., 57, 118–127,
https://doi.org/10.1016/j.ecolind.2015.03.030, 2015.

Sood, A., Ghosh, S. K., and Upadhyay, P.: Impact of land
cover change on surface runoff, in: Advances in Re-
mote Sensing for Natural Resource Monitoring, edited
by: Pandey, P. C. and Sharma, L. K., Wiley, 150–169,
https://doi.org/10.1002/9781119616016.ch10, 2021.

https://doi.org/10.5194/hess-26-2561-2022 Hydrol. Earth Syst. Sci., 26, 2561–2582, 2022

https://doi.org/10.1007/s10661-018-7040-5
https://doi.org/10.1016/j.agee.2006.05.016
https://doi.org/10.13031/2013.23153
https://doi.org/10.1016/j.ecolind.2020.107254
https://swat.tamu.edu/media/99192/swat2009-theory.pdf
https://swat.tamu.edu/media/99192/swat2009-theory.pdf
https://doi.org/10.1007/s10021-012-9597-0
https://doi.org/10.1016/j.jhydrol.2012.05.035
https://www.researchgate.net/publication/259632792
https://www.researchgate.net/publication/259632792
https://doi.org/10.1029/2009WR008233
https://doi.org/10.1002/hyp.10062
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00005297/Dissertation_Pott_AGRAR_29.1.14.pdf
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00005297/Dissertation_Pott_AGRAR_29.1.14.pdf
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00005297/Dissertation_Pott_AGRAR_29.1.14.pdf
https://doi.org/10.4136/ambi-agua.2099
https://doi.org/10.4136/ambi-agua.2099
https://doi.org/10.1016/j.jag.2014.02.010
https://doi.org/10.1007/s10980-018-0755-4
http://www.aquaterra-berlin.de/images/stories/stoer_endber01/Ripl-et-al_1996_Stoer-Endbericht_150dpi_mCmP_.pdf
http://www.aquaterra-berlin.de/images/stories/stoer_endber01/Ripl-et-al_1996_Stoer-Endbericht_150dpi_mCmP_.pdf
https://doi.org/10.1016/j.ejrh.2019.100640
https://doi.org/10.1016/j.catena.2006.04.015
https://doi.org/10.1016/j.jhydrol.2013.06.031
https://doi.org/10.1016/j.scitotenv.2018.06.306
https://doi.org/10.1080/15730620500386529
https://doi.org/10.1080/15715124.2017.1300159
https://doi.org/10.18637/jss.v033.i03
https://doi.org/10.1016/j.ecolind.2015.03.030
https://doi.org/10.1002/9781119616016.ch10


2582 C. Lei et al.: Influences of land use changes on the dynamics of water quantity and quality in the Stör catchment

Srinivasan, J. T. and Reddy, V. R.: Impact of irrigation water quality
on human health: A case study in India, Ecol. Econ., 68, 2800–
2807, https://doi.org/10.1016/j.ecolecon.2009.04.019, 2009.

Statistical Office Schleswig-Holstein: Statistiches Jahrbuch
Schleswig-Holstein, Statistiches Amt für Hamburg und
Schleswig-Holstein, Kiel, https://www.statistischebibliothek.
de/mir/receive/SHSerie_mods_00000001 (last access:
20 July 2013), 1992–2013.

Taka, M., Sillanpää, N., Niemi, T., Warsta, L., Kokkonen, T., and
Setälä, H.: Heavy metals from heavy land use? Spatio-temporal
patterns of urban runoff metal loads, Sci. Total Environ., 817,
152855, https://doi.org/10.1016/j.scitotenv.2021.152855, 2022.

Tan, M. L., Gassman, P. W., Liang, J., and Haywood, J. M.: A
review of alternative climate products for SWAT modelling:
Sources, assessment and future directions, Sci. Total Environ.,
795, 148915, https://doi.org/10.1016/j.scitotenv.2021.148915,
2021.

Tigabu, T. B., Wagner, P. D., Hörmann, G., and Fohrer, N.:
Modeling the spatio-temporal flow dynamics of groundwater-
surface water interactions of the Lake Tana Basin, Up-
per Blue Nile, Ethiopia, Hydrol. Res., 51, 1537–1559,
https://doi.org/10.2166/nh.2020.046, 2020.

Uuemaa, E., Antrop, M., Roosaare, J., Marja, R., and Mander, Ü.:
Landscape metrics and indices: an overview of their use in land-
scape research, Living Rev. Landscape Res., 3, 1–28, 2009.

Venohr, M.: Einträge und Abbau von Nährstoffen in Fließgewässern
der oberen Stör, Diploma thesis, Christian-Albrechts-Universität
Kiel, Kiel, Germany, 2000.

Wagner, P., Kumar, S., and Schneider, K.: An assessment of land use
change impacts on the water resources of the Mula and Mutha
Rivers catchment upstream of Pune, India, Hydrol. Earth Syst.
Sci., 17, 2233–2246, https://doi.org/10.5194/hess-17-2233-2013,
2013.

Wagner, P. D. and Fohrer, N.: Gaining prediction accu-
racy in land use modeling by integrating modeled hy-
drologic variables, Environ. Model. Softw., 115, 155–163,
https://doi.org/10.1016/j.envsoft.2019.02.011, 2019.

Wagner, P. D. and Waske, B.: Importance of spatially
distributed hydrologic variables for land use change
modeling, Environ. Model. Softw., 83, 245–254,
https://doi.org/10.1016/j.envsoft.2016.06.005, 2016.

Wagner, P. D., Bhallamudi, S. M., Narasimhan, B., Kantakumar,
L. N., Sudheer, K., Kumar, S., Schneider, K., and Fiener, P.: Dy-
namic integration of land use changes in a hydrologic assessment
of a rapidly developing Indian catchment, Sci. Total Environ.,
539, 153–164, https://doi.org/10.1016/j.scitotenv.2015.08.148,
2016.

Wagner, P. D., Hoermann, G., Schmalz, B., and Fohrer, N.: Charac-
terisation of the water and nutrient balance in the rural lowland
catchment of the Kielstau, Hydrol. Wasserbewirtsch., 62, 145–
158, 2018.

Wang, Q., Xu, Y., Xu, Y., Wu, L., Wang, Y., and Han, L.: Spatial
hydrological responses to land use and land cover changes in a
typical catchment of the Yangtze River Delta region, Catena, 170,
305–315, https://doi.org/10.1016/j.catena.2018.06.022, 2018.

Wang, W., Wu, X., Yin, C., and Xie, X.: Nutrition loss through
surface runoff from slope lands and its implications for agri-
cultural management, Agr. Water Manage., 212, 226–231,
https://doi.org/10.1016/j.agwat.2018.09.007, 2019.

Wei, W., Chen, L., Fu, B., Huang, Z., Wu, D., and Gui, L.: The
effect of land uses and rainfall regimes on runoff and soil erosion
in the semi-arid loess hilly area, China, J. Hydrol., 335, 247–258,
https://doi.org/10.1016/j.jhydrol.2006.11.016, 2007.

Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed
hydrology-vegetation model for complex terrain, Water Re-
sour. Res., 30, 1665–1679, https://doi.org/10.1029/94WR00436,
1994.

Wijesekara, G., Gupta, A., Valeo, C., Hasbani, J.-G., Qiao, Y., De-
laney, P., and Marceau, D.: Assessing the impact of future land-
use changes on hydrological processes in the Elbow River wa-
tershed in southern Alberta, Canada, J. Hydrol., 412, 220–232,
https://doi.org/10.1016/j.jhydrol.2011.04.018, 2012.

Wold, S., Sjöström, M., and Eriksson, L.: PLS-regression: a basic
tool of chemometrics, Chemom. Intel. Lab. Syst., 58, 109–130,
https://doi.org/10.1016/S0169-7439(01)00155-1, 2001.

Wu, J. and Lu, J.: Spatial scale effects of landscape metrics on
stream water quality and their seasonal changes, Water Res., 191,
116811, https://doi.org/10.1016/j.watres.2021.116811, 2021.

Xu, S., Li, S.-L., Zhong, J., and Li, C.: Spatial scale effects of
the variable relationships between landscape pattern and wa-
ter quality: Example from an agricultural karst river basin,
Southwestern China, Agr. Ecosyst. Environ., 300, 106999,
https://doi.org/10.1016/j.agee.2020.106999, 2020.

Yan, B., Fang, N., Zhang, P., and Shi, Z.: Impacts of
land use change on watershed streamflow and sediment
yield: An assessment using hydrologic modelling and
partial least squares regression, J. Hydrol., 484, 26–37,
https://doi.org/10.1016/j.jhydrol.2013.01.008, 2013.

Yu, D., Li, X., Cao, Q., Hao, R., and Qiao, J.: Impacts of climate
variability and landscape pattern change on evapotranspiration in
a grassland landscape mosaic, Hydrol. Process., 34, 1035–1051,
https://doi.org/10.1002/hyp.13642, 2020.

Zeileis, A. and Grothendieck, G.: zoo: S3 infrastructure for
regular and irregular time series, J. Stat. Softw., 14, 1–27,
https://doi.org/10.18637/jss.v014.i06, 2005.

Zhang, W., Li, H., Hyndman, D. W., Diao, Y., Geng, J., and
Pueppke, S. G.: Water quality trends under rapid agricultural
expansion and enhanced in-stream interception in a hilly wa-
tershed of Eastern China, Environ. Res. Lett., 15, 084030,
https://doi.org/10.1088/1748-9326/ab8981, 2020a.

Zhang, W., Li, H., Pueppke, S. G., Diao, Y., Nie, X., Geng, J., Chen,
D., and Pang, J.: Nutrient loss is sensitive to land cover changes
and slope gradients of agricultural hillsides: evidence from four
contrasting pond systems in a hilly catchment, Agr. Water Man-
age., 237, 106165, https://doi.org/10.1016/j.agwat.2020.106165,
2020b.

Zhang, Y.-K. and Schilling, K.: Increasing streamflow
and baseflow in Mississippi River since the 1940s: Ef-
fect of land use change, J. Hydrol., 324, 412–422,
https://doi.org/10.1016/j.jhydrol.2005.09.033, 2006.

Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for
comparison of simulated and observed hydrological time se-
ries, R package version 0.4-0, https://github.com/hzambran/
hydroGOF, last access: 8 July 2020.

Hydrol. Earth Syst. Sci., 26, 2561–2582, 2022 https://doi.org/10.5194/hess-26-2561-2022

https://doi.org/10.1016/j.ecolecon.2009.04.019
https://www.statistischebibliothek.de/mir/receive/SHSerie_mods_00000001
https://www.statistischebibliothek.de/mir/receive/SHSerie_mods_00000001
https://doi.org/10.1016/j.scitotenv.2021.152855
https://doi.org/10.1016/j.scitotenv.2021.148915
https://doi.org/10.2166/nh.2020.046
https://doi.org/10.5194/hess-17-2233-2013
https://doi.org/10.1016/j.envsoft.2019.02.011
https://doi.org/10.1016/j.envsoft.2016.06.005
https://doi.org/10.1016/j.scitotenv.2015.08.148
https://doi.org/10.1016/j.catena.2018.06.022
https://doi.org/10.1016/j.agwat.2018.09.007
https://doi.org/10.1016/j.jhydrol.2006.11.016
https://doi.org/10.1029/94WR00436
https://doi.org/10.1016/j.jhydrol.2011.04.018
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/j.watres.2021.116811
https://doi.org/10.1016/j.agee.2020.106999
https://doi.org/10.1016/j.jhydrol.2013.01.008
https://doi.org/10.1002/hyp.13642
https://doi.org/10.18637/jss.v014.i06
https://doi.org/10.1088/1748-9326/ab8981
https://doi.org/10.1016/j.agwat.2020.106165
https://doi.org/10.1016/j.jhydrol.2005.09.033
https://github.com/hzambran/hydroGOF
https://github.com/hzambran/hydroGOF

	Abstract
	Introduction
	Materials and methods
	Study area
	Land use data and landscape metrics
	Hydrological and water quality modeling
	SWAT model
	Model databases and setup
	Model calibration and validation
	Model application

	Partial least squares regression

	Results and discussion
	Model performances for calibration and validation periods
	Characteristics of land use change
	Differences in changes in water quantity and quality
	Influences of changes in land use metrics on water quantity and quality
	Contributions of LUCC to changes in water quantity and quality
	Effects of LUCC predictors on water quantity and quality


	Conclusion
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

