Articles | Volume 26, issue 5
https://doi.org/10.5194/hess-26-1371-2022
https://doi.org/10.5194/hess-26-1371-2022
Research article
 | 
14 Mar 2022
Research article |  | 14 Mar 2022

A retrospective on hydrological catchment modelling based on half a century with the HBV model

Jan Seibert and Sten Bergström

Related authors

Rain-on-snow events in mountainous catchments under climate change
Ondrej Hotovy, Ondrej Nedelcev, Jan Seibert, and Michal Jenicek
EGUsphere, https://doi.org/10.5194/egusphere-2024-2274,https://doi.org/10.5194/egusphere-2024-2274, 2024
Short summary
Large-sample hydrology – a few camels or a whole caravan?
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024,https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Droughts and Media: when and what do the newspapers talk about the droughts in England?
Inhye Kong, Jan Seibert, and Ross S. Purves
EGUsphere, https://doi.org/10.5194/egusphere-2024-1844,https://doi.org/10.5194/egusphere-2024-1844, 2024
Short summary
Shallow-groundwater-level time series and a groundwater chemistry survey from a boreal headwater catchment, Krycklan, Sweden
Jana Erdbrügger, Ilja van Meerveld, Jan Seibert, and Kevin Bishop
Earth Syst. Sci. Data, 15, 1779–1800, https://doi.org/10.5194/essd-15-1779-2023,https://doi.org/10.5194/essd-15-1779-2023, 2023
Short summary
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022,https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025,https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025,https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025,https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025,https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025,https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
Download
Short summary
Hydrological catchment models are commonly used as the basis for water resource management planning. The HBV model, which is a typical example of such a model, was first applied about 50 years ago in Sweden. We describe and reflect on the model development and applications. The aim is to provide an understanding of the background of model development and a basis for addressing the balance between model complexity and data availability that will continue to face hydrologists in the future.
Share