Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6339-2021
https://doi.org/10.5194/hess-25-6339-2021
Research article
 | 
16 Dec 2021
Research article |  | 16 Dec 2021

Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India

Shaini Naha, Miguel Angel Rico-Ramirez, and Rafael Rosolem

Related authors

Evaluation of high-resolution meteorological data products using flux tower observations across Brazil
Jamie Robert Cameron Brown, Ross Woods, Humberto Ribeiro da Rocha, Debora Regina Roberti, and Rafael Rosolem
EGUsphere, https://doi.org/10.5194/egusphere-2025-883,https://doi.org/10.5194/egusphere-2025-883, 2025
Short summary
Exploring the value of seasonal flow forecasts for drought management in South Korea
Yongshin Lee, Andres Peñuela, Francesca Pianosi, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 29, 1429–1447, https://doi.org/10.5194/hess-29-1429-2025,https://doi.org/10.5194/hess-29-1429-2025, 2025
Short summary
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024,https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024,https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Evaluation of reanalysis soil moisture products using cosmic ray neutron sensor observations across the globe
Yanchen Zheng, Gemma Coxon, Ross Woods, Daniel Power, Miguel Angel Rico-Ramirez, David McJannet, Rafael Rosolem, Jianzhu Li, and Ping Feng
Hydrol. Earth Syst. Sci., 28, 1999–2022, https://doi.org/10.5194/hess-28-1999-2024,https://doi.org/10.5194/hess-28-1999-2024, 2024
Short summary

Cited articles

Abe, C. A., de Lobo, F. L., Dibike, Y. B., de Costa, M. P. F., Dos Santos, V., and Novo, E. M. L. M.: Modelling the effects of historical and future land cover changes on the hydrology of an Amazonian basin, Water, 10, 932, https://doi.org/10.3390/w10070932, 2018. 
Ashagrie, A. G., de Laat, P. J., de Wit, M. J., Tu, M., and Uhlenbrook, S.: Detecting the influence of land use changes on discharges and floods in the Meuse River Basin – the predictive power of a ninety-year rainfall-runoff relation?, Hydrol. Earth Syst. Sci., 10, 691–701, https://doi.org/10.5194/hess-10-691-2006, 2006. 
Asokan, S. M. and Dutta, D.: Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions, Hydrol. Process. An Int. J., 22, 3589–3603, 2008. 
Babar, S. and Ramesh, H.: Streamflow response to land use-land cover change over the Nethravathi River Basin, India, J. Hydrol. Eng., 20, 05015002, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001177, 2015. 
Bao, Z., Liu, J., Zhang, J., Fu, G., Wang, G., Yan, X., Zhang, A., Xu, Q., and Shang, M.: Estimation of baseflow parameters of variable infiltration capacity model with soil and topography properties for predictions in ungauged basins, Hydrol. Earth Syst. Sci. Discuss., 8, 7017–7053, https://doi.org/10.5194/hessd-8-7017-2011, 2011. 
Download
Short summary
Rapid growth in population in developing countries leads to an increase in food demand, and as a consequence, percentages of land are being converted to cropland which alters river flow processes. This study describes how the hydrology of a flood-prone river basin in India would respond to the current and future changes in land cover. Our findings indicate that the recurrent flood events occurring in the basin might be influenced by these changes in land cover at the catchment scale.
Share