Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6339-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6339-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India
Civil Engineering Department, University of Bristol, Bristol, BS8 1TR, UK
Miguel Angel Rico-Ramirez
Civil Engineering Department, University of Bristol, Bristol, BS8 1TR, UK
Rafael Rosolem
Civil Engineering Department, University of Bristol, Bristol, BS8 1TR, UK
Related authors
Shaini Naha, Miguel A. Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-220, https://doi.org/10.5194/hess-2020-220, 2020
Manuscript not accepted for further review
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand and as a consequence, percentages of land are being converted to cropland which alters the river flow processes. Therefore we try to understand the exact role of these changes in modifying the river flows through the prediction of the impacts of these changes in the future by taking a clue from the past. This study concludes that recurrent flood events might be influenced by these changes in future.
Jamie Robert Cameron Brown, Ross Woods, Humberto Ribeiro da Rocha, Debora Regina Roberti, and Rafael Rosolem
EGUsphere, https://doi.org/10.5194/egusphere-2025-883, https://doi.org/10.5194/egusphere-2025-883, 2025
Short summary
Short summary
In recent years, global and regional weather datasets have emerged, but validation with real-world data is crucial, especially in diverse regions like Brazil. This study compares seven key weather variables from five datasets with measurements from 11 sites across Brazil’s main biomes. Results show varying performance across variables and timescales, with one reanalysis product outperforming others overall. Findings suggest it may be a strong choice for multi-variable studies in Brazil.
Yongshin Lee, Andres Peñuela, Francesca Pianosi, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 29, 1429–1447, https://doi.org/10.5194/hess-29-1429-2025, https://doi.org/10.5194/hess-29-1429-2025, 2025
Short summary
Short summary
This study assesses the value of seasonal flow forecasts (SFFs) in informing decision-making for drought management in South Korea and introduces a novel method for assessing values benchmarked against historical operations. Our results showed the importance of considering flow forecast uncertainty in reservoir operations. There was no significant correlation between the forecast accuracy and value. The method for selecting a compromise release schedule was a key control of the value.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Yanchen Zheng, Gemma Coxon, Ross Woods, Daniel Power, Miguel Angel Rico-Ramirez, David McJannet, Rafael Rosolem, Jianzhu Li, and Ping Feng
Hydrol. Earth Syst. Sci., 28, 1999–2022, https://doi.org/10.5194/hess-28-1999-2024, https://doi.org/10.5194/hess-28-1999-2024, 2024
Short summary
Short summary
Reanalysis soil moisture products are a vital basis for hydrological and environmental research. Previous product evaluation is limited by the scale difference (point and grid scale). This paper adopts cosmic ray neutron sensor observations, a novel technique that provides root-zone soil moisture at field scale. In this paper, global harmonized CRNS observations were used to assess products. ERA5-Land, SMAPL4, CFSv2, CRA40 and GLEAM show better performance than MERRA2, GLDAS-Noah and JRA55.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Daniel Sanchez-Rivas and Miguel A. Rico-Ramirez
Atmos. Meas. Tech., 15, 503–520, https://doi.org/10.5194/amt-15-503-2022, https://doi.org/10.5194/amt-15-503-2022, 2022
Short summary
Short summary
In this work, we review the use of quasi-vertical profiles for monitoring the calibration of the radar differential reflectivity ZDR. We validate the proposed method by comparing its results against the traditional approach based on measurements taken at 90°; we observed good agreement as the errors are within 0.2 dB. Additionally, we compare the results of the proposed method with ZDR derived from disdrometers; the errors are reasonable considering factors discussed in the paper.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Daniel Power, Miguel Angel Rico-Ramirez, Sharon Desilets, Darin Desilets, and Rafael Rosolem
Geosci. Model Dev., 14, 7287–7307, https://doi.org/10.5194/gmd-14-7287-2021, https://doi.org/10.5194/gmd-14-7287-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensors estimate root-zone soil moisture at sub-kilometre scales. There are national-scale networks of these sensors across the globe; however, methods for converting neutron signals to soil moisture values are inconsistent. This paper describes our open-source Python tool that processes raw sensor data into soil moisture estimates. The aim is to allow a user to ensure they have a harmonized data set, along with informative metadata, to facilitate both research and teaching.
E. Andrés Quichimbo, Michael Bliss Singer, Katerina Michaelides, Daniel E. J. Hobley, Rafael Rosolem, and Mark O. Cuthbert
Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021, https://doi.org/10.5194/gmd-14-6893-2021, 2021
Short summary
Short summary
Understanding and quantifying water partitioning in dryland regions are of key importance to anticipate the future impacts of climate change in water resources and dryland ecosystems. Here, we have developed a simple hydrological model (DRYP) that incorporates the key processes of water partitioning in drylands. DRYP is a modular, versatile, and parsimonious model that can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.
Daniel Sanchez-Rivas and Miguel A. Rico-Ramirez
Atmos. Meas. Tech., 14, 2873–2890, https://doi.org/10.5194/amt-14-2873-2021, https://doi.org/10.5194/amt-14-2873-2021, 2021
Short summary
Short summary
In our paper, we propose a robust and operational algorithm to determine the height of the melting level that can be applied to either quasi-vertical profiles (QVPs) or vertical profiles (VPs) of polarimetric radar variables. The algorithm is applied to 1 year of rainfall events that occurred over southeast England and validated using radiosonde data. The algorithm proves to be accurate as the errors (mean absolute error and root mean square error) are close to 200 m.
Isaac Kipkemoi, Katerina Michaelides, Rafael Rosolem, and Michael Bliss Singer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-48, https://doi.org/10.5194/hess-2021-48, 2021
Manuscript not accepted for further review
Short summary
Short summary
The work is a novel investigation of the role of temporal rainfall resolution and intensity in affecting the water balance of soil in a dryland environment. This research has implications for what rainfall data are used to assess the impact of climate and climate change on the regional water balance. This information is critical for anticipating the impact of a changing climate on dryland communities globally who need it to know when to plant their seeds or where livestock pasture is available.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Shaini Naha, Miguel A. Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-220, https://doi.org/10.5194/hess-2020-220, 2020
Manuscript not accepted for further review
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand and as a consequence, percentages of land are being converted to cropland which alters the river flow processes. Therefore we try to understand the exact role of these changes in modifying the river flows through the prediction of the impacts of these changes in the future by taking a clue from the past. This study concludes that recurrent flood events might be influenced by these changes in future.
Romane Berthelin, Michael Rinderer, Bartolomé Andreo, Andy Baker, Daniela Kilian, Gabriele Leonhardt, Annette Lotz, Kurt Lichtenwoehrer, Matías Mudarra, Ingrid Y. Padilla, Fernando Pantoja Agreda, Rafael Rosolem, Abel Vale, and Andreas Hartmann
Geosci. Instrum. Method. Data Syst., 9, 11–23, https://doi.org/10.5194/gi-9-11-2020, https://doi.org/10.5194/gi-9-11-2020, 2020
Short summary
Short summary
We present the setup of a soil moisture monitoring network, which is implemented at five karstic sites with different climates across the globe. More than 400 soil moisture probes operating at a high spatio-temporal resolution will improve the understanding of groundwater recharge and evapotranspiration processes in karstic areas.
Fanny Sarrazin, Andreas Hartmann, Francesca Pianosi, Rafael Rosolem, and Thorsten Wagener
Geosci. Model Dev., 11, 4933–4964, https://doi.org/10.5194/gmd-11-4933-2018, https://doi.org/10.5194/gmd-11-4933-2018, 2018
Short summary
Short summary
We propose the first large-scale vegetation–recharge model for karst regions (V2Karst), which enables the analysis of the impact of changes in climate and land cover on karst groundwater recharge. We demonstrate the plausibility of V2Karst simulations against observations at FLUXNET sites and of controlling modelled processes using sensitivity analysis. We perform virtual experiments to further test the model and gain insight into its sensitivity to precipitation pattern and vegetation cover.
Martin Schrön, Markus Köhli, Lena Scheiffele, Joost Iwema, Heye R. Bogena, Ling Lv, Edoardo Martini, Gabriele Baroni, Rafael Rosolem, Jannis Weimar, Juliane Mai, Matthias Cuntz, Corinna Rebmann, Sascha E. Oswald, Peter Dietrich, Ulrich Schmidt, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, https://doi.org/10.5194/hess-21-5009-2017, 2017
Short summary
Short summary
A field-scale average of near-surface water content can be sensed by cosmic-ray neutron detectors. To interpret, calibrate, and validate the integral signal, it is important to account for its sensitivity to heterogeneous patterns like dry or wet spots. We show how point samples contribute to the neutron signal based on their depth and distance from the detector. This approach robustly improves the sensor performance and data consistency, and even reveals otherwise hidden hydrological features.
Joost Iwema, Rafael Rosolem, Mostaquimur Rahman, Eleanor Blyth, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 21, 2843–2861, https://doi.org/10.5194/hess-21-2843-2017, https://doi.org/10.5194/hess-21-2843-2017, 2017
Short summary
Short summary
We investigated whether the simulation of water flux from the land surface to the atmosphere (using the Joint UK Land Environment Simulator model) could be improved by replacing traditional soil moisture sensor data with data from the more novel Cosmic-Ray Neutron soil moisture sensor. Despite observed differences between the two types of soil moisture measurement data, we found no substantial differences in improvement in water flux estimation, based on multiple calibration experiments.
Mostaquimur Rahman and Rafael Rosolem
Hydrol. Earth Syst. Sci., 21, 459–471, https://doi.org/10.5194/hess-21-459-2017, https://doi.org/10.5194/hess-21-459-2017, 2017
Short summary
Short summary
Modelling water flow through chalk (a fine-grained porous medium traversed by fractures) is important for optimizing water resource management practices in the UK. However, efficient simulations of water movement through chalk are difficult due to the porous nature of chalk, creating high-velocity preferential flow paths. This paper describes a novel approach to representing chalk hydrology in land surface modelling for large-scale applications.
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015, https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
DasPy is a ready to use open source parallel multivariate land data assimilation framework with joint state and parameter estimation using Local Ensemble Transform Kalman Filter. The Community Land Model (4.5) was integrated as model operator. The Community Microwave Emission Modelling platform, COsmic-ray Soil Moisture Interaction Code and the Two-Source Formulation were integrated as observation operators for the multivariate assimilation of soil moisture and soil temperature, respectively.
J. Iwema, R. Rosolem, R. Baatz, T. Wagener, and H. R. Bogena
Hydrol. Earth Syst. Sci., 19, 3203–3216, https://doi.org/10.5194/hess-19-3203-2015, https://doi.org/10.5194/hess-19-3203-2015, 2015
Short summary
Short summary
The cosmic-ray neutron sensor can provide soil moisture content averages over areas of roughly half a kilometre by half a kilometre. Although this sensor is usually calibrated using soil samples taken on a single day, we found that multiple sampling days are needed. The calibration results were also affected by the soil wetness conditions of the sampling days. The outcome of this study will help researchers to calibrate/validate new cosmic-ray neutron sensor sites more accurately.
P. T. S. Oliveira, E. Wendland, M. A. Nearing, R. L. Scott, R. Rosolem, and H. R. da Rocha
Hydrol. Earth Syst. Sci., 19, 2899–2910, https://doi.org/10.5194/hess-19-2899-2015, https://doi.org/10.5194/hess-19-2899-2015, 2015
Short summary
Short summary
We determined the main components of the water balance for an undisturbed cerrado.
Evapotranspiration ranged from 1.91 to 2.60mm per day for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20% and stemflow values were approximately 1% of gross precipitation.
The average runoff coefficient was less than 1%, while cerrado deforestation has the potential to increase that amount up to 20-fold.
The water storage may be estimated by the difference between P and ET.
A. Hartmann, T. Gleeson, R. Rosolem, F. Pianosi, Y. Wada, and T. Wagener
Geosci. Model Dev., 8, 1729–1746, https://doi.org/10.5194/gmd-8-1729-2015, https://doi.org/10.5194/gmd-8-1729-2015, 2015
Short summary
Short summary
We present a new approach to assess karstic groundwater recharge over Europe and the Mediterranean. Cluster analysis is used to subdivide all karst regions into four typical karst landscapes and to simulate karst recharge with a process-based karst model. We estimate its parameters by a combination of a priori information and observations of soil moisture and evapotranspiration. Independent observations of recharge that present large-scale models significantly under-estimate karstic recharge.
X. Han, H.-J. H. Franssen, R. Rosolem, R. Jin, X. Li, and H. Vereecken
Hydrol. Earth Syst. Sci., 19, 615–629, https://doi.org/10.5194/hess-19-615-2015, https://doi.org/10.5194/hess-19-615-2015, 2015
Short summary
Short summary
This paper presents the joint assimilation of cosmic-ray neutron counts and land surface temperature with parameter estimation of leaf area index at an irrigated corn field. The results show that the data assimilation can reduce the systematic input errors due to the lack of irrigation data. The estimations of soil moisture, evapotranspiration and leaf area index can be improved in the joint assimilation framework.
R. Rosolem, T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz
Hydrol. Earth Syst. Sci., 18, 4363–4379, https://doi.org/10.5194/hess-18-4363-2014, https://doi.org/10.5194/hess-18-4363-2014, 2014
J. Shuttleworth, R. Rosolem, M. Zreda, and T. Franz
Hydrol. Earth Syst. Sci., 17, 3205–3217, https://doi.org/10.5194/hess-17-3205-2013, https://doi.org/10.5194/hess-17-3205-2013, 2013
T. E. Franz, M. Zreda, R. Rosolem, and T. P. A. Ferre
Hydrol. Earth Syst. Sci., 17, 453–460, https://doi.org/10.5194/hess-17-453-2013, https://doi.org/10.5194/hess-17-453-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters
Finding process-behavioural parameterisations of a hydrological model using a multi-step process-based calibration and evaluation scheme
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Hydrological regime index for non-perennial rivers
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Extended-range forecasting of stream water temperature with deep-learning models
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Enhanced Baseflow Separation in Rural Catchments: Event-Specific Calibration of Recursive Digital Filters with Tracer-Derived Data
Projections of streamflow intermittence under climate change in European drying river networks
Economic valuation of subsurface water contributions to watershed ecosystem services using a fully integrated groundwater–surface-water model
Catchment Attributes and MEteorology for Large-Sample SPATially distributed analysis (CAMELS-SPAT): Streamflow observations, forcing data and geospatial data for hydrologic studies across North America
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model
Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments
Spatially Resolved Rainfall Streamflow Modeling in Central Europe
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
A Distributed Hybrid Physics-AI Framework for Learning Corrections of Internal Hydrological Fluxes and Enhancing High-Resolution Regionalized Flood Modeling
Combining uncertainty quantification and entropy-inspired concepts into a single objective function for rainfall-runoff model calibration
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Understanding the relationship between streamflow forecast skill and value across the western US
Leveraging soil diversity to mitigate hydrological extremes with nature-based solutions in productive catchments
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Soil moisture and precipitation intensity control the transit time distribution of quick flow in a flashy headwater catchment
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
The influence of lateral flow on land surface fluxes in southeast Australia varies with model resolution
Constraining pesticide degradation in conceptual distributed catchment models with compound-specific isotope analysis (CSIA)
On the use of streamflow transformations for hydrological model calibration
Unveiling the Impact of Potential Evapotranspiration Method Selection on Trends in Hydrological Cycle Components Across Europe
Simulation-based inference for parameter estimation of complex watershed simulators
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 3545–3568, https://doi.org/10.5194/hess-29-3545-2025, https://doi.org/10.5194/hess-29-3545-2025, 2025
Short summary
Short summary
This research examines how future climate changes impact root zone storage, a key hydrological model parameter. Root zone storage – the soil water accessible to plants – adapts to climate but is often kept constant in models. We estimated climate-adapted storage in six Austrian Alps catchments. While storage increased, streamflow projections showed minimal change, which suggests that dynamic root zone representation is less critical in humid regions but warrants further study in arid areas.
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci., 29, 3503–3525, https://doi.org/10.5194/hess-29-3503-2025, https://doi.org/10.5194/hess-29-3503-2025, 2025
Short summary
Short summary
This study presents a process-behavioural calibration approach for water balance models. The different calibration steps aim at calibrating different hydrological processes: evapotranspiration, the runoff partitioning into surface runoff, interflow, and groundwater recharge, as well as the groundwater behaviour. This allows for selection of a model parameterisation that correctly predicts the discharge at the catchment outlet and simultaneously correctly depicts the underlying hydrological processes.
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025, https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Short summary
The glacier-expanded SWAT (Soil Water Assessment Tool) version, SWAT-GL, was tested in four different catchments, highlighting the capabilities of the glacier routine. It was evaluated based on the representation of glacier mass balance, snow cover and glacier hypsometry. The glacier changes over a long timescale could be adequately represented, leading to promising potential future applications in glaciated and high mountain environments and significantly outperforming standard SWAT models.
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025, https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Short summary
The Desaguadero–Salado–Chadiluevú–Curacó (DSCC) River is a semiarid river which is heavily dammed at its tributaries which collect the snowmelt runoff. This runoff feeds mostly gravitational irrigation systems of very low efficiency. As a result, the DSCC River does not have natural runoff. The proposed hydrological regime index (HRI) is able to discriminate and quantify regime alterations under permanent and non-permanent flow conditions and with low- and high-impoundment conditions.
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025, https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Short summary
This study compares long short-term memory (LSTM) neural networks with traditional hydrological models to predict future streamflow under climate change. Using data from 148 catchments, it finds that LSTM models, which learn from extensive data sequences, perform differently and often better than traditional hydrological models. The continental LSTM model, which includes data from diverse climate zones, is particularly effective for understanding climate impacts on water resources.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025, https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Short summary
We assessed the value of high-resolution data and parameter transferability across temporal scales based on seven catchments in northern China. We found that higher-resolution data do not always improve model performance, questioning the need for such data. Model parameters are transferable across different data resolutions but not across computational time steps. It is recommended to utilize a smaller computational time step when building hydrological models even without high-resolution data.
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025, https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
Short summary
Hydrologic models are needed to provide simulations of water availability, floods, and droughts. The accuracy of these simulations is often quantified with so-called performance scores. A common thought is that different models are more or less applicable to different landscapes, depending on how the model works. We show that performance scores are not helpful in distinguishing between different models and thus cannot easily be used to select an appropriate model for a specific place.
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025, https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Short summary
We developed the first high-resolution, integrated surface water–groundwater hydrologic model of the entirety of continental China using ParFlow. The model shows good performance in terms of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision-making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025, https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Short summary
Land changes and landscape features critically impact water systems. Studying two watersheds in China’s Greater Bay Area, we found slope strongly influences water processes in mountainous areas. However, this relationship is weak in the lower regions of steeper watersheds. Urbanization leads to an increase in annual surface runoff, while flatter watersheds exhibit a buffering capacity against this effect. However, this buffering capacity diminishes with increasing annual rainfall intensity.
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025, https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Short summary
Hydrological droughts affect ecosystems and socioeconomic activities worldwide. Despite the fact that they are commonly described with the Standardized Streamflow Index (SSI), there is limited understanding of what they truly reflect in terms of water cycle processes. Here, we used state-of-the-art hydrological models in Andean basins to examine drivers of SSI fluctuations. The results highlight the importance of careful selection of indices and timescales for accurate drought characterization and monitoring.
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025, https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Short summary
Accurate early-warning systems are crucial for reducing the damage caused by flooding events. In this study, we explored the potential of long short-term memory networks for enhancing the forecast accuracy of hydrologic models employed in operational flood forecasting. The presented approach elevated the investigated hydrologic model’s forecast accuracy for further ahead predictions and at flood event runoff.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025, https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Short summary
Common intuition holds that higher input data resolution leads to better results. To assess the benefits of high-resolution data, we conduct simulation experiments using data with various temporal resolutions across multiple catchments and find that higher-resolution data do not always improve model performance, challenging the necessity of pursuing such data. In catchments with small areas or significant flow variability, high-resolution data is more valuable.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025, https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Short summary
The quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantifies deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025, https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until we observe overparameterization.
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025, https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for 32 consecutive days at 54 stations in Switzerland with our best-performing data-driven model. The average forecast error is 0.38 °C for 1 d ahead and increases to 0.90 °C for 32 d ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025, https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Short summary
Long short-term memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff hydrological modelling. However, most studies focus on predictions at a daily scale, limiting the benefits of sub-daily (e.g. hourly) predictions in applications like flood forecasting. In this study, we introduce a new architecture, multi-frequency LSTM (MF-LSTM), designed to use inputs of various temporal frequencies to produce sub-daily (e.g. hourly) predictions at a moderate computational cost.
Fernanda Helfer, Felipe Bernardi, Claudia Alessandra Peixoto de Barros, Daniel Gustavo Allasia, Jean Paolo Gomes Minella, Rutinéia Tassi, and Néverton Scariot
EGUsphere, https://doi.org/10.5194/egusphere-2025-244, https://doi.org/10.5194/egusphere-2025-244, 2025
Short summary
Short summary
We explored how water flows in small rural streams to improve tools for better managing water resources. Using a new method, we adjusted existing models to consider the size of rainfall events, showing that water movement patterns change depending on the rain’s intensity. This approach makes predictions more accurate and helps scientists and managers understand water availability and protect ecosystems.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Tariq Aziz, Steven K. Frey, David R. Lapen, Susan Preston, Hazen A. J. Russell, Omar Khader, Andre R. Erler, and Edward A. Sudicky
Hydrol. Earth Syst. Sci., 29, 1549–1568, https://doi.org/10.5194/hess-29-1549-2025, https://doi.org/10.5194/hess-29-1549-2025, 2025
Short summary
Short summary
This study determines the value of subsurface water for ecosystem services' supply in an agricultural watershed in Ontario, Canada. Using a fully integrated water model and an economic valuation approach, the research highlights subsurface water's critical role in maintaining watershed ecosystem services. The study informs on the sustainable use of subsurface water and introduces a new method for managing watershed ecosystem services.
Wouter J. M. Knoben, Kasra Keshavarz, Laura Torres-Rojas, Cyril Thébault, Nathaniel W. Chaney, Alain Pietroniro, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2025-893, https://doi.org/10.5194/egusphere-2025-893, 2025
Short summary
Short summary
Many existing data sets for hydrologic analysis tend treat catchments as single, spatially homogeneous units, focus on daily data and typically do not support more complex models. This paper introduces a data set that goes beyond this setup by: (1) providing data at higher spatial and temporal resolution, (2) specifically considering the data requirements of all common hydrologic model types, (3) using statistical summaries of the data aimed at quantifying spatial and temporal heterogeneity.
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025, https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
Short summary
Data-driven techniques have shown the potential to outperform process-based models in rainfall–runoff simulations. Hybrid models, combining both approaches, aim to enhance accuracy and maintain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions, we test their generalization capabilities for extreme hydrological events.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025, https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Short summary
This study reconstructs daily runoff in Switzerland (1962–2023) using a deep-learning model, providing a spatially contiguous dataset on a medium-sized catchment grid. The model outperforms traditional hydrological methods, revealing shifts in Swiss water resources, including more frequent dry years and declining summer runoff. The reconstruction is publicly available.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025, https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Short summary
Owing to differences in the existing published results, we conducted a detailed analysis of the runoff components and future trends in the Yarlung Tsangpo River basin and found that the contributions of snowmelt and glacier melt runoff to streamflow (both ~5 %) are limited and much lower than previous results. The streamflow in this area will continuously increase in the future, but the overestimated contribution of glacier melt could lead to an underestimation of this increasing trend.
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 903–924, https://doi.org/10.5194/hess-29-903-2025, https://doi.org/10.5194/hess-29-903-2025, 2025
Short summary
Short summary
This study develops an integrated framework based on the novel Driving index for changes in Precipitation–Runoff Relationships (DPRR) to explore the controlling changes in precipitation–runoff relationships in non-stationary environments. According to the quantitative results of the candidate driving factors, the possible process explanations for changes in the precipitation–runoff relationships are deduced. The main contribution offers a comprehensive understanding of hydrological processes.
Marc Aurel Vischer, Noelia Otero, and Jackie Ma
EGUsphere, https://doi.org/10.5194/egusphere-2024-3649, https://doi.org/10.5194/egusphere-2024-3649, 2025
Short summary
Short summary
We use a neural network to predict the amount of water flowing into rivers. Our focus is on large river catchment areas in central Europe with pronounced human activity. Our model scales efficiently to large amounts of data and is thus able to processes the input without prior aggregation, capturing fine spatial detail and improving prediction in large catchments. Our model’s internal states can be adapted to allow capturing human activity more explicitly in the future.
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025, https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine learning (ML) models are increasingly being applied for flood forecasting. Such models are typically trained on large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets that maximise the spatio-temporal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025, https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms claims raised by historians that the eastward diversion project of the Tone River in Japan was conducted 4 centuries ago to increase low flows and subsequent travelling possibilities surrounding the capital, Edo (Tokyo), using inland navigation. We showed that great steps forward can be made for improving quality of life with small human engineering waterworks and small interventions in the regime of natural flows.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025, https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets which undermines the robustness of hydrological inferences. This study proposes a Multisource Dataset Correction Framework grounded in Physical Hydrological Process Modelling to enhance water budget closure, termed PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025, https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small catchments compared to large catchments, and spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show effects. The results can improve estimations of probabilities of extreme floods.
Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3665, https://doi.org/10.5194/egusphere-2024-3665, 2025
Short summary
Short summary
Understanding and modeling flash flood-prone areas remains challenging due to limited data and scale-relevant hydrological theory. While machine learning shows promise, its integration with process-based models is difficult. We present an approach incorporating machine learning into a high-resolution hydrological model to correct internal fluxes and transfer parameters between watersheds. Results show improved accuracy, advancing development of learnable and interpretable process-based models.
Alonso Pizarro, Demetris Koutsoyiannis, and Alberto Montanari
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-389, https://doi.org/10.5194/hess-2024-389, 2025
Revised manuscript accepted for HESS
Short summary
Short summary
We introduce RUMI, a new metric to improve rainfall-runoff simulations. RUMI better captures the link between observed and simulated stream flows by considering uncertainty at a core computation step. Tested on 99 catchments and with the GR4J model, it outperforms traditional metrics by providing more reliable and consistent results. RUMI paves the way for more accurate hydrological predictions.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025, https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping to better prepare for and respond to floods.
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Parthkumar A. Modi, Jared C. Carbone, Keith S. Jennings, Hannah Kamen, Joseph R. Kasprzyk, Bill Szafranski, Cameron W. Wobus, and Ben Livneh
EGUsphere, https://doi.org/10.5194/egusphere-2024-4046, https://doi.org/10.5194/egusphere-2024-4046, 2025
Short summary
Short summary
This study shows that in unmanaged snow-dominated basins, high forecast accuracy doesn’t always lead to high economic value, especially during extreme conditions like droughts. It highlights how irregular errors in modern forecasting systems weaken the connection between accuracy and value. These findings call for forecast evaluations to focus not only on accuracy but also on economic impacts, providing valuable guidance for better water resource management under uncertainty.
Benjamin Guillaume, Adrien Michez, and Aurore Degré
EGUsphere, https://doi.org/10.5194/egusphere-2024-3978, https://doi.org/10.5194/egusphere-2024-3978, 2025
Short summary
Short summary
Nature-based solutions (NbS) can mitigate floods and agricultural droughts by enhancing soil health and restoring hydrological cycles. This study highlights that leveraging soil diversity is key to optimizing NbS performance.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024, https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-359, https://doi.org/10.5194/hess-2024-359, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Using advances in transit time estimation and tracer data, we tested if fast-flow transit times are controlled solely by soil moisture or are also controlled by precipitation intensity. We used soil moisture-dependent and precipitation intensity-conditional transfer functions. We showed that significant portion of event water bypasses the soil matrix through fast flow paths (overland flow, tile drains, preferential flow paths) in dry soil conditions for both low and high-intensity precipitation.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Anjana Devanand, Jason Evans, Andy Pitman, Sujan Pal, David Gochis, and Kevin Sampson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3148, https://doi.org/10.5194/egusphere-2024-3148, 2024
Short summary
Short summary
Including lateral flow increases evapotranspiration near major river channels in high-resolution land surface simulations in southeast Australia, consistent with observations. The 1-km resolution model shows a widespread pattern of dry ridges that does not exist at coarser resolutions. Our results have implications for improved simulations of droughts and future water availability.
Sylvain Payraudeau, Pablo Alvarez-Zaldivar, Paul van Dijk, and Gwenaël Imfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-2840, https://doi.org/10.5194/egusphere-2024-2840, 2024
Short summary
Short summary
Our study focuses on the rising concern of pesticides damaging aquatic ecosystems, which puts drinking water, the environment, and human health at risk. We provided more accurate estimates of how pesticides break down and spread in small water systems, helping to improve pesticide management practices. By using unique chemical markers in our analysis, we enhanced the accuracy of our predictions, offering important insights for better protection of water sources and natural ecosystems.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Vishal Thakur, Yannis Markonis, Rohini Kumar, Johanna Ruth Thomson, Mijael Rodrigo Vargas Godoy, Martin Hanel, and Oldrich Rakovec
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-341, https://doi.org/10.5194/hess-2024-341, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Understanding the changes in water movement in earth is crucial for everyone. To quantify this water movement there are several techniques. We examined how different methods of estimating evaporation impact predictions of various types of water movement across Europe. We found that, while these methods generally agree on whether changes are increasing or decreasing, they differ in magnitude. This means selecting the right evaporation method is crucial for accurate predictions of water movement.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Cited articles
Abe, C. A., de Lobo, F. L., Dibike, Y. B., de Costa, M. P. F., Dos Santos, V., and Novo, E. M. L. M.: Modelling the effects of historical and future land cover changes on the hydrology of an Amazonian basin, Water, 10, 932, https://doi.org/10.3390/w10070932, 2018.
Ashagrie, A. G., de Laat, P. J., de Wit, M. J., Tu, M., and Uhlenbrook, S.: Detecting the influence of land use changes on discharges and floods in the Meuse River Basin – the predictive power of a ninety-year rainfall-runoff relation?, Hydrol. Earth Syst. Sci., 10, 691–701, https://doi.org/10.5194/hess-10-691-2006, 2006.
Asokan, S. M. and Dutta, D.: Analysis of water resources in the Mahanadi
River Basin, India under projected climate conditions, Hydrol. Process. An
Int. J., 22, 3589–3603, 2008.
Babar, S. and Ramesh, H.: Streamflow response to land use-land cover change
over the Nethravathi River Basin, India, J. Hydrol. Eng., 20, 05015002,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001177, 2015.
Bao, Z., Liu, J., Zhang, J., Fu, G., Wang, G., Yan, X., Zhang, A., Xu, Q., and Shang, M.: Estimation of baseflow parameters of variable infiltration capacity model with soil and topography properties for predictions in ungauged basins, Hydrol. Earth Syst. Sci. Discuss., 8, 7017–7053, https://doi.org/10.5194/hessd-8-7017-2011, 2011.
Behera, M. D., Tripathi, P., Das, P., Srivastava, S. K., Roy, P. S., Joshi,
C., Behera, P. R., Deka, J., Kumar, P., Khan, M. L., Tripathi, O. P., Dash,
T., and Krishnamurthy, Y. V. N.: Remote sensing based deforestation analysis
in Mahanadi and Brahmaputra river basin in India since 1985, J. Environ.
Manage., 206, 1192–1203, https://doi.org/10.1016/j.jenvman.2017.10.015, 2018.
Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Meshesha, D. T., Adgo, E.,
Tsubo, M., Masunaga, T., Fenta, A. A., Sultan, D., Yibeltal, M., and Ebabu,
K.: Hydrological responses to land use/land cover change and climate
variability in contrasting agro-ecological environments of the Upper Blue
Nile basin, Ethiopia, Sci. Total Environ., 689, 347–365,
https://doi.org/10.1016/j.scitotenv.2019.06.338, 2019.
Beven, K. and Binley, A.: The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298,
https://doi.org/10.1002/hyp.3360060305, 1992.
Bhuvan: NRSC Open EO Data Archive | NOEDA | Ortho | DEM | Elevation | AWiFS | LISSIII | HySI | TCHP | OHC | Free GIS Data | Download, available at: https://bhuvan-app3.nrsc.gov.in/data/download/index.php, last access: 13 December 2021.
Bosch, J. M. and Hewlett, J. D.: A review of catchment experiments to
determine the effect of vegetation changes on water yield and
evapotranspiration, J. Hydrol., 55, 3–23,
https://doi.org/10.1016/0022-1694(82)90117-2, 1982.
Breuer, L., Huisman, J. A., and Frede, H. G.: Monte Carlo assessment of
uncertainty in the simulated hydrological response to land use change,
Environ. Model. Assess., 11, 209–218, https://doi.org/10.1007/s10666-006-9051-9,
2006.
Central Water Commission, Ministry of jal shakti, Department of Water Resources, River Development and Ganga Rejuvenation, GoI: http://www.cwc.gov.in/, last access: 13 December 2021.
Chaney, N. W., Herman, J. D., Reed, P. M., and Wood, E. F.: Flood and drought hydrologic monitoring: the role of model parameter uncertainty, Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, 2015.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs,
R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu,
Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the
world through land-use management, Nat. Sustain., 2, 122–129,
https://doi.org/10.1038/s41893-019-0220-7, 2019a.
Chen, Y., Xu, C. Y., Chen, X., Xu, Y., Yin, Y., Gao, L., and Liu, M.:
Uncertainty in simulation of land-use change impacts on catchment runoff
with multi-timescales based on the comparison of the HSPF and SWAT models,
J. Hydrol., 573, 486–500, https://doi.org/10.1016/j.jhydrol.2019.03.091,
2019b.
Cherkauer, K. A. and Lettenmaier, D. P.: Hydrologic effects of frozen soils
in the upper Mississippi River basin, J. Geophys. Res.-Atmos., 104,
19599–19610, https://doi.org/10.1029/1999JD900337, 1999.
Chu, M. L., Knouft, J. H., Ghulam, A., Guzman, J. A., and Pan, Z.: Impacts of
urbanization on river flow frequency: A controlled experimental
modeling-based evaluation approach, J. Hydrol., 495, 1–12,
https://doi.org/10.1016/j.jhydrol.2013.04.051, 2013.
Cornelissen, T., Diekkrüger, B., and Giertz, S.: A comparison of
hydrological models for assessing the impact of land use and climate change
on discharge in a tropical catchment, J. Hydrol., 498, 221–236,
https://doi.org/10.1016/j.jhydrol.2013.06.016, 2013.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A Statistical
Exploration of the Relationships of Soil Moisture Characteristics to the
Physical Properties of Soils, Water Resour. Res., 20, 682–690,
https://doi.org/10.1029/WR020i006p00682, 1984.
Costa, M. H., Botta, A., and Cardille, J. A.: Effects of large-scale changes
in land cover on the discharge of the Tocantins River, Southeastern
Amazonia, J. Hydrol., 283, 206–217,
https://doi.org/10.1016/S0022-1694(03)00267-1, 2003.
Dadhwal, V. K., Mishra, N., and Aggarwal, S, P.: Hydrological Simulation of
Mahanadi River Basin and Impact of Land Use/Land Cover Change on Surface
Runoff Using a Macro Scale Hydrological Model, ISPRS TC VII Symp. – 100
Years ISPRS, Vienna, Austria, XXXVIII, 165–170, 2010.
Das, P., Behera, M. D., Patidar, N., Sahoo, B., Tripathi, P., Behera, P. R.,
Srivastava, S. K., Roy, P. S., Thakur, P., Agrawal, S. P., and Krishnamurthy,
Y. V. N.: Impact of LULC change on the runoff, base flow and
evapotranspiration dynamics in eastern Indian river basins during 1985–2005
using variable infiltration capacity approach, J. Earth Syst. Sci., 127,
1–19, https://doi.org/10.1007/s12040-018-0921-8, 2018.
Demaria, E. M., Nijssen, B., and Wagener, T.: Monte Carlo sensitivity
analysis of land surface parameters using the Variable Infiltration Capacity
model, J. Geophys. Res.-Atmos., 112, 1–15, https://doi.org/10.1029/2006JD007534,
2007.
Demaria, E. M. C., Maurer, E. P., Sheffield, J., Bustos, E., Poblete, D.,
Vicuña, S., and Meza, F.: Using a gridded global dataset to characterize
regional hydroclimate in central Chile, J. Hydrometeorol., 14, 251–265,
https://doi.org/10.1175/JHM-D-12-047.1, 2013.
Eum, H. Il, Dibike, Y., and Prowse, T.: Comparative evaluation of the effects
of climate and land-cover changes on hydrologic responses of the Muskeg
River, Alberta, Canada, J. Hydrol. Reg. Stud., 8, 198–221,
https://doi.org/10.1016/j.ejrh.2016.10.003, 2016.
Feng, D. and Beighley, E.: Identifying uncertainties in hydrologic fluxes and seasonality from hydrologic model components for climate change impact assessments, Hydrol. Earth Syst. Sci., 24, 2253–2267, https://doi.org/10.5194/hess-24-2253-2020, 2020.
Fohrer, N., Haverkamp, S., Eckhardt, K., and Frede, H. G.: Hydrologic
response to land use changes on the catchment scale, Phys. Chem. Earth Pt
B, 26, 577–582,
https://doi.org/10.1016/S1464-1909(01)00052-1, 2001.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter,
S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J.
H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A.,
Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global consequences of
land use, Science, 309, 570–574,
https://doi.org/10.1126/science.1111772, 2005.
Franchini, M. and Pacciani, M.: Comparative analysis of several conceptual
rainfall-runoff models, J. Hydrol., 122, 161–219,
https://doi.org/10.1016/0022-1694(91)90178-K, 1991.
Gao, H., Tang, Q., Shi, X., Zhu, C., and Bohn, T.: Water budget record from Variable Infiltration Capacity (VIC) model, Algorithm Theor. Basis Doc. Terr. Water Cycle Data Rec., (Vic), 120–173, available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Water+Budget+Record+from+Variable+Infiltration+Capacity+(+VIC+)+Model#2 (last access: 20 June 2021), 2010.
Garg, V., Aggarwal, S. P., Gupta, P. K., Nikam, B. R., Thakur, P. K.,
Srivastav, S. K., and Senthil Kumar, A.: Assessment of land use land cover
change impact on hydrological regime of a basin, Environ. Earth Sci.,
76, 1–17, https://doi.org/10.1007/s12665-017-6976-z, 2017.
Garg, V., Nikam, B. R., Thakur, P. K., Aggarwal, S. P., Gupta, P. K., and
Srivastav, S. K.: Human-induced land use land cover change and its impact on
hydrology, HydroResearch, 1, 48–56, https://doi.org/10.1016/j.hydres.2019.06.001, 2019.
Gebremicael, T. G., Mohamed, Y. A., and Van der Zaag, P.: Attributing the
hydrological impact of different land use types and their long-term dynamics
through combining parsimonious hydrological modelling, alteration analysis
and PLSR analysis, Sci. Total Environ., 660, 1155–1167,
https://doi.org/10.1016/j.scitotenv.2019.01.085, 2019.
Ghosh, S., Raje, D., and Mujumdar, P. P.: Mahanadi streamflow: climate change
impact assessment and adaptive strategies, Curr. Sci. India, 98, 1084–1091,
2010.
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019.
Gou, J., Miao, C., Duan, Q., Tang, Q., Di, Z., Liao, W., Wu, J., and Zhou,
R.: Sensitivity Analysis-Based Automatic Parameter Calibration of the VIC
Model for Streamflow Simulations Over China, Water Resour. Res., 56,
1–19, https://doi.org/10.1029/2019WR025968, 2020.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y.: The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility, Geosci. Model Dev., 11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018, 2018.
Hengade, N., Eldho, T. I., and Ghosh, S.: Climate change impact assessment of
a river basin using CMIP5 climate models and the VIC hydrological model,
Hydrolog. Sci. J., 63, 596–614, https://doi.org/10.1080/02626667.2018.1441531, 2018.
Her, Y., Yoo, S. H., Cho, J., Hwang, S., Jeong, J., and Seong, C.:
Uncertainty in hydrological analysis of climate change: multi-parameter vs.
multi-GCM ensemble predictions, Sci. Rep.-UK, 9, 1–22,
https://doi.org/10.1038/s41598-019-41334-7, 2019.
Herman, J. D., Kollat, J. B., Reed, P. M., and Wagener, T.: Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models, Hydrol. Earth Syst. Sci., 17, 2893–2903, https://doi.org/10.5194/hess-17-2893-2013, 2013.
Huang, M. and Liang, X.: On the assessment of the impact of reducing
parameters and identification of parameter uncertainties for a hydrologic
model with applications to ungauged basins, J. Hydrol., 320, 37–61,
https://doi.org/10.1016/j.jhydrol.2005.07.010, 2006.
Hurkmans, R. T. W. L., Terink, W., Uijlenhoet, R., Moors, E. J., Troch, P.
A., and Verburg, P. H.: Effects of land use changes on streamflow generation
in the Rhine basin, Water Resour. Res., 45, 1–15,
https://doi.org/10.1029/2008WR007574, 2009.
Hurtt, G. C., Chini, L. P., Sahajpal, R., Frolking, S. E., Bodirsky, B.,
Calvin, K. V, Doelman, J. C., Fisk, J., Fujimori, S., Goldewijk, K., and
others: LUH2: Harmonization of global land-use scenarios for the period
850-2100, AGUFM, 2018, GC13A–01, 2018.
India Meteorological Department: https://www.imd.gov.in, last access: 13 December 2021.
IPCC: Special report on global warming of 1.5 ∘C (SR15), available at: https://www.ipcc.ch/sr15/ (last access: 30 November 2021), 2019.
Jin, L., Whitehead, P. G., Rodda, H., Macadam, I., and Sarkar, S.: Simulating
climate change and socio-economic change impacts on flows and water quality
in the Mahanadi River system, India, Sci. Total Environ., 637–638,
907–917, https://doi.org/10.1016/j.scitotenv.2018.04.349, 2018.
Joseph, J., Ghosh, S., Pathak, A., and Sahai, A. K.: Hydrologic impacts of
climate change: Comparisons between hydrological parameter uncertainty and
climate model uncertainty, J. Hydrol., 566, 1–22,
https://doi.org/10.1016/j.jhydrol.2018.08.080, 2018.
Kneis, D., Chatterjee, C., and Singh, R.: Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi), Hydrol. Earth Syst. Sci., 18, 2493–2502, https://doi.org/10.5194/hess-18-2493-2014, 2014.
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.
Krause, A., Haverd, V., Poulter, B., Anthoni, P., Quesada, B., Rammig, A.,
and Arneth, A.: Multimodel Analysis of Future Land Use and Climate Change
Impacts on Ecosystem Functioning, Earth's Futur., 7, 833–851,
https://doi.org/10.1029/2018EF001123, 2019.
Kumar, N., Singh, S. K., Singh, V. G., and Dzwairo, B.: Investigation of
impacts of land use/land cover change on water availability of Tons River
Basin, Madhya Pradesh, India, Model. Earth Syst. Environ., 4, 295–310,
https://doi.org/10.1007/s40808-018-0425-1, 2018.
Kundu, S., Khare, D., and Mondal, A.: Individual and combined impacts of
future climate and land use changes on the water balance, Ecol. Eng., 105,
42–57, https://doi.org/10.1016/j.ecoleng.2017.04.061, 2017.
Land Use Harmonization: https://luh.umd.edu/data.shtml, last access: 13 December 2021.
Li, Z., Deng, X., Wu, F., and Hasan, S. S.: Scenario analysis for water
resources in response to land use change in the middle and upper reaches of
the heihe river Basin, Sustainability-Basel, 7, 3086–3108, https://doi.org/10.3390/su7033086,
2015.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A Simple
hydrologically Based Model of Land Surface Water and Energy Fluxes for GSMs,
J. Geophys. Res., 99, 14415–14428, 1994.
Lilhare, R., Pokorny, S., Déry, S. J., Stadnyk, T. A., and Koenig, K. A.:
Sensitivity analysis and uncertainty assessment in water budgets simulated
by the variable infiltration capacity model for Canadian subarctic
watersheds, Hydrol. Process., 34, 2057–2075, https://doi.org/10.1002/hyp.13711,
2020.
Lohmann, D. A. G., Nolte-Holube, R., and Raschke, E.: A large-scale
horizontal routing model to be coupled to land surface parametrization
schemes, Tellus A, 48, 708–721, 1996.
Ma, X., Xu, J., and van Noordwijk, M.: Sensitivity of streamflow from a
Himalayan catchment to plausible changes in land cover and climate, Hydrol.
Process., 24, 1379–1390, https://doi.org/10.1002/hyp.7602, 2010.
Mao, D. and Cherkauer, K. A.: Impacts of land-use change on hydrologic
responses in the Great Lakes region, J. Hydrol., 374, 71–82,
https://doi.org/10.1016/j.jhydrol.2009.06.016, 2009.
Matheussen, B., Goodman, I. A., Lettenmaier, D. P., Kirschbaum, R. L., and
O'Donnell, G. M.: Effects of land cover change on streamflow in the interior
Columbia River Basin (USA and Canada), Hydrol. Process., 14, 867–885,
https://doi.org/10.1002/(sici)1099-1085(20000415)14:5<867::aid-hyp975>3.0.co;2-5, 2002.
Mishra, N., Aggarwal, S. P., and Dadhwal, V. K.: Macroscale Hydrological
Modelling and Impact of land cover change on stream flows of the Mahanadi
River Basin, A Master thesis Submitt. to Andhra Univ. Indian Inst. Remote
Sens. (National Remote Sens. Agency) Dept. Space, Govt. India, 2008.
Mockler, E. M., Chun, K. P., Sapriza-Azuri, G., Bruen, M., and Wheater, H.
S.: Assessing the relative importance of parameter and forcing uncertainty
and their interactions in conceptual hydrological model simulations, Adv.
Water Resour., 97, 299–313, https://doi.org/10.1016/j.advwatres.2016.10.008, 2016.
Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174, 1991.
NOAA Physical Sciences Laboratory: NCEP/NCAR Reanalysis 1: Pressure, available at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html, last access: 13 December 2021.
Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., and
Mukhopadhyay, B.: Development of a new high spatial resolution
(0.25∘ × 0.25∘) long period (1901–2010) daily
gridded rainfall data set over India and its comparison with existing data
sets over the region, Mausam, 65, 1–18, 2014.
Patidar, N. and Behera, M. D.: How Significantly do Land Use and Land Cover
(LULC) Changes Influence the Water Balance of a River Basin? A Study in
Ganga River Basin, India, P. Natl. A. Sci. India A,
89, 353–365, https://doi.org/10.1007/s40010-017-0426-x, 2019.
Rawls, W. J., Gimenez, D., and Grossman, R.: Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity, T. ASAE, 41, 983–988, 1998.
Reynolds, C. A., Jackson, T. J., and Rawls, W. J.: Estimating soil
water-holding capacities by linking the Food and Agriculture Organization
soil map of the world with global pedon databases and continuous
pedotransfer functions, Water Resour. Res., 36, 3653–3662, 2000.
Rodriguez, D. A. and Tomasella, J.: On the ability of large-scale
hydrological models to simulate land use and land cover change impacts in
Amazonian basins, Hydrolog. Sci. J., 61, 1831–1846,
https://doi.org/10.1080/02626667.2015.1051979, 2016.
Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga,
M., Chaplot, V., Gallart, F., Glatzel, G., Hall, J., Holden, J., Holko, L.,
Horn, R., Kiss, A., Quinton, J. N., Leitinger, G., Lennartz, B., Parajka,
J., Peth, S., Robinson, M., Salinas, J. L., Santoro, A., Szolgay, J., Tron,
S., and Viglione, A.: Water Resour. Res., 53, 5209–5219,
https://doi.org/10.1002/2017WR020723, 2016.
Rosolem, R., Gupta, H. V., Shuttleworth, W. J., Zeng, X., and De
Gonçalves, L. G. G.: A fully multiple-criteria implementation of the
Sobol' method for parameter sensitivity analysis, J. Geophys. Res.-Atmos.,
117, 1–18, https://doi.org/10.1029/2011JD016355, 2012.
Sarrazin, F., Pianosi, F., and Wagener, T.: Global Sensitivity Analysis of
environmental models: Convergence and validation, Environ. Model. Softw.,
79, 135–152, https://doi.org/10.1016/j.envsoft.2016.02.005, 2016.
Singh, R., Wagener, T., Crane, R., Mann, M. E., and Ning, L.: A vulnerability
driven approach to identify adverse climate and land use change combinations
for critical hydrologic indicator thresholds: Application to a watershed in
Pennsylvania, USA, Water Resour. Res., 50, 3409–3427,
https://doi.org/10.1002/2013WR014988, 2014.
Sivasena Reddy, A. and Janga Reddy, M.: Evaluating the influence of spatial
resolutions of DEM on watershed runoff and sediment yield using SWAT, J.
Earth Syst. Sci., 124, 1517–1529, 2015.
Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K.: Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation, Hydrol. Earth Syst. Sci., 11, 793–817, https://doi.org/10.5194/hess-11-793-2007, 2007.
UH-VIC: https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Routing/UH/, last access: 13 December 2021.
UW-Hydro: VIC, GitHub [code], available at:
https://github.com/UW-Hydro/VIC/releases/tag/VIC.4.2.d, last access:
13 December 2021.
Vanrolleghem, P. A., Mannina, G., Cosenza, A., and Neumann, M. B.: Global
sensitivity analysis for urban water quality modelling: Terminology,
convergence and comparison of different methods, J. Hydrol., 522, 339–352,
https://doi.org/10.1016/j.jhydrol.2014.12.056, 2015.
Viglione, A., Merz, B., Viet Dung, N., Parajka, J., Nester, T., and
Blöschl, G.: Attribution of regional flood changes based on scaling
fingerprints, Water Resour. Res., 52, 5322–5340, 2016.
Viola, M. R., Mello, C. R., Beskow, S., and Norton, L. D.: Impacts of
Land-use Changes on the Hydrology of the Grande River Basin Headwaters,
Southeastern Brazil, Water Resour. Manag., 28, 4537–4550,
https://doi.org/10.1007/s11269-014-0749-1, 2014.
Wagner, P. D., Kumar, S., and Schneider, K.: An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India, Hydrol. Earth Syst. Sci., 17, 2233–2246, https://doi.org/10.5194/hess-17-2233-2013, 2013.
Wang, A. and Solomatine, D. P.: Practical experience of sensitivity
analysis: Comparing six methods, on three hydrological models, with three
performance criteria, Water, 11, 1–26,
https://doi.org/10.3390/w11051062, 2019.
Wilk, J. and Hughes, D. A.: Simulating the impacts of land-use and climate
change on water resource availability for a large south Indian catchment,
Hydrolog. Sci. J., 47, 19–30, 2002.
Woldesenbet, T. A., Elagib, N. A., Ribbe, L., and Heinrich, J.: Hydrological
responses to land use/cover changes in the source region of the Upper Blue
Nile Basin, Ethiopia, Sci. Total Environ., 575, 724–741,
https://doi.org/10.1016/j.scitotenv.2016.09.124, 2017.
Xie, Z., Yuan, F., Duan, Q., Zheng, J., Liang, M., and Chen, F.: Regional
parameter estimation of the VIC land surface model: Methodology and
application to river basins in China, J. Hydrometeorol., 8, 447–468,
https://doi.org/10.1175/JHM568.1, 2007.
Yanto, Livneh, B., Rajagopalan, B., and Kasprzyk, J.: Hydrological model
application under data scarcity for multiple watersheds, Java Island,
Indonesia, J. Hydrol. Reg. Stud., 9, 127–139,
https://doi.org/10.1016/j.ejrh.2016.09.007, 2017.
Yeste, P., García-Valdecasas Ojeda, M., Gámiz-Fortis, S. R.,
Castro-Díez, Y., and Jesús Esteban-Parra, M.: Integrated Sensitivity
Analysis of a Macroscale Hydrologic Model in the North of the Iberian
Peninsula, J. Hydrol., 590, 125230,
https://doi.org/10.1016/j.jhydrol.2020.125230, 2020.
Zeng, X.: Global Vegetation Root Distribution for Land Modeling, J.
Hydrometeorol., 2, 525–530, https://doi.org/10.1175/1525-7541(2001)002<0525:gvrdfl>2.0.co;2, 2002.
Zhang, T., Zhang, X., Xia, D., and Liu, Y.: An analysis of land use change
dynamics and its impacts on hydrological processes in the Jialing River
Basin, Water, 6, 3758–3782, https://doi.org/10.3390/w6123758, 2014.
Zhao, R. J., Zhang, Y. L., Fang, L. R., Liu, X. R., and Zhang, Q. S.: The Xinanjiang model Hydrological Forecasting Proceedings Oxford Symposium, IASH 129, 351–356, 1980.
Short summary
Rapid growth in population in developing countries leads to an increase in food demand, and as a consequence, percentages of land are being converted to cropland which alters river flow processes. This study describes how the hydrology of a flood-prone river basin in India would respond to the current and future changes in land cover. Our findings indicate that the recurrent flood events occurring in the basin might be influenced by these changes in land cover at the catchment scale.
Rapid growth in population in developing countries leads to an increase in food demand, and as a...