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Abstract. The objective of this study is to assess the impacts
of land cover change on the hydrological responses of the
Mahanadi river basin, a large river basin in India. Commonly,
such assessments are accomplished by using distributed hy-
drological models in conjunction with different land use sce-
narios. However, these models, through their complex in-
teractions among the model parameters to generate hydro-
logical processes, can introduce significant uncertainties to
the hydrological projections. Therefore, we seek to further
understand the uncertainties associated with model parame-
terization in those simulated hydrological responses due to
different land cover scenarios. We performed a sensitivity-
guided model calibration of a physically semi-distributed
model, the Variable Infiltration Capacity (VIC) model, within
a Monte Carlo framework to generate behavioural mod-
els that can yield equally good or acceptable model per-
formances for subcatchments of the Mahanadi river basin.
These behavioural models are then used in conjunction with
historical and future land cover scenarios from the recently
released Land-Use Harmonization version 2 (LUH2) dataset
to generate hydrological predictions and related uncertainties
from behavioural model parameterization. The LUH2 dataset
indicates a noticeable increase in the cropland (23.3 % cover)
at the expense of forest (22.65 % cover) by the end of year
2100 compared to the baseline year, 2005. As a response,
simulation results indicate a median percent increase in the
extreme flows (defined as the 95th percentile or higher river
flow magnitude) and mean annual flows in the range of 1.8 %
to 11.3 % across the subcatchments. The direct conversion of
forested areas to agriculture (of the order of 30 000 km2) re-
duces the leaf area index, which subsequently reduces the
evapotranspiration (ET) and increases surface runoff. Fur-
ther, the range of behavioural hydrological predictions in-

dicated variation in the magnitudes of extreme flows simu-
lated for the different land cover scenarios; for instance, un-
certainty in scenario labelled “Far Future” ranges from 17 to
210 m3 s−1 across subcatchments. This study indicates that
the recurrent flood events occurring in the Mahanadi river
basin might be influenced by the changes in land use/land
cover (LULC) at the catchment scale and suggests that model
parameterization represents an uncertainty which should be
accounted for in the land use change impact assessment.

1 Context and background

Land use/land cover (LULC) change induced by the rapid an-
thropogenic activities is one of the major causes of change in
hydrological and watershed processes (Rogger et al., 2016).
Alterations of existing land cover types and land manage-
ment practices in a catchment can thereby significantly mod-
ify the rainfall path into runoff by changing the hydrolog-
ical dynamics such as surface runoff, baseflow, evapotran-
spiration (ET), water holding capacity of the soil, intercep-
tion and groundwater recharge, thus reflecting a change in
the water demand (Berihun et al., 2019; Bosch and Hewlett,
1982; Costa et al., 2003; Foley et al., 2005; Garg et al., 2017;
Hamman et al., 2018; Mao and Cherkauer, 2009; Rogger
et al., 2016; Zhang et al., 2014). For instance, developing
countries like India are facing rapid growth in population,
which has prominent effects on LULC dynamics through de-
forestation, rapid urbanization and agricultural intensifica-
tion, subsequently modifying the hydrological cycle in many
river basins of India. A recent analysis on global land cover
changes for the 2000–2017 period (Chen et al., 2019a; IPCC,
2019) revealed 86 % changes in land cover patterns in In-
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dia with 82 % detected as croplands and the remaining 4 %
as forests (Chen et al., 2019a; IPCC, 2019). Therefore, a
comprehensive understanding and evaluation of land cover
change impacts on hydrological processes are essential for
decision makers to plan environmental policies which focus
on water resource allocation, riparian ecosystem protection
and river restoration (Chen et al., 2019b; Chu et al., 2013).

Many studies have attempted to evaluate the hydrological
responses to different LULC patterns on specific geographic
locations (Abe et al., 2018; Chu et al., 2013; Eum et al., 2016;
Li et al., 2015; Ma et al., 2010; Rodriguez and Tomasella,
2016; Viola et al., 2014; Woldesenbet et al., 2017) includ-
ing Indian river basins (Babar and Ramesh, 2015; Dadhwal
et al., 2010; Das et al., 2018; Gebremicael et al., 2019; Wilk
and Hughes, 2002). Most of these studies used physically
distributed hydrological models (e.g., SWAT, VIC, MIKE-
SHE) to simulate the complex hydrological processes and to
examine the impact of LULC changes on those processes.
Conventionally, this is done by calibrating and validating
the hydrological model against the observed data and then
setting up that single calibrated model for a baseline land
cover scenario. The calibrated model is then run for differ-
ent land use scenarios, and subsequently the differences in
simulations are compared. However, it is widely recognized
that hydrological predictions obtained from a single cali-
brated model can be biased; therefore, the measure of their
reliability is always questionable (Beven and Binley, 1992;
Huang and Liang, 2006). There may exist an “equally prob-
able parameter set” that can yield equally good or accept-
able model predictions (also known as behavioural models)
which are identified due to the complex interactions among
the model parameters to represent the complex hydrologi-
cal processes. This is known as equifinality and is consid-
ered one of the main sources of uncertainty in hydrological
modelling (Her et al., 2019). Recent climate change studies
have acknowledged the uncertainties stemming from model
parameters; therefore, they take into account these uncertain-
ties while predicting the hydrological responses due to cli-
mate change (Chaney et al., 2015; Feng and Beighley, 2020;
Her et al., 2019; Huang and Liang, 2006; Joseph et al., 2018;
Mockler et al., 2016; Singh et al., 2014). However, little is
known about the contributions of model parameter uncer-
tainties to the land use change impacts; thus, very few stud-
ies exist (Breuer et al., 2006; Chen et al., 2019b) which re-
ported that uncertainties associated with the model parame-
ters could significantly influence land cover change impacts
and hence should not be overlooked while modelling hydro-
logic responses to LULC change.

This paper specifically focusses on the Mahanadi river
basin, an easterly flowing river basin in India. The eastern
part of India is amongst the most rapidly changing landscape
over the country; specifically, Mahanadi river basin has un-
dergone drastic land cover changes in the last decades (Be-
hera et al., 2018; Dadhwal et al., 2010). In this study, we
address the following science questions:

1. What are the expected impacts of LULC changes on the
water balance of the Mahanadi river basin?

2. How do these predicted impacts vary as a result of
model parameter uncertainties?

The major objectives of this study are

1. to predict the changes in hydrological processes owing
to historical and future changes in LULC and

2. to understand the contribution of uncertainty from hy-
drologic parameterization to the hydrologic projections
due to LULC change.

To this end, a large-scale physically semi-distributed hy-
drological model, the Variable Infiltration Capacity (VIC)
(Liang et al., 1994), and historical and future land cover sce-
narios from the Land-Use Harmonization 2 (LUH2) database
(Hurtt et al., 2018) are used to simulate the discharge and
other hydrological components at daily timescales in the Ma-
hanadi river basin. The ability of VIC to simulate the impacts
of LULC changes on hydrology are well documented in var-
ious research articles (Garg et al., 2017, 2019; Hurkmans
et al., 2009; Mao and Cherkauer, 2009; Patidar and Behera,
2019; Zhang et al., 2014).

We first perform sensitivity analysis of the model parame-
ters and calibrate the hydrological model using Monte Carlo
simulations to identify behavioural model simulations that
implicitly account for the uncertainties from model param-
eterization. Those behavioural models are then used to pre-
dict the hydrological impacts due to different LULC scenar-
ios. The land cover scenarios used in this study are the most
up-to-date scenarios, available from version 2 of the Land-
Use Harmonization (LUH2) dataset, which represents future
changes in the LULC based on Shared Socioeconomic Path-
ways (SSPs) and climate radiative forcing outcomes (Rep-
resentative Concentration Pathways, RCPs) (Gidden et al.,
2019). Previous studies (Breuer et al., 2006; Chen et al.,
2019b) have focussed only on the historical land use sce-
narios to evaluate the hydrological impacts; however, and
to our knowledge, this is the first study that uses applica-
tions of the VIC model in conjunction with future land cover
datasets produced under combined SSP and RCP scenarios.
While most past studies in other catchments used aggregated
(monthly) time steps to model the change, we use daily time
steps to capture the dynamics of daily flow variability. More-
over, analysis carried out in most land use impact studies are
typically limited to the streamflow, missing an overall picture
of the hydrological processes.
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2 Research area

2.1 Geographical overview

The Mahanadi river basin is located in the eastern part of In-
dia (Fig. 1) and drains an area of 141 589 km2, which nearly
accounts for 4.3 % of the total geographical area of India. The
basin has a varying topography with its lowest elevated area
(−17 m) lying in the coastal reaches and the highest elevated
area (1323 m) in the northern hills. The basin is characterized
by tropical climate zone and receives rainfall from southwest
monsoons which commence in June and last till October. The
average annual rainfall is 1200 mm, with 90 % of the total
annual rainfall occurring during the monsoon months (Jin et
al., 2018). The mean annual discharge is 1895 m3 s−1. The
basin is also subjected to spatial variability in terms of re-
ceiving rainfall which has resulted in floods in some parts of
the basin and drought in others. Notice that about 65 % of
the basin is placed upstream of the Hirakud dam. The Hi-
rakud dam with a gross storage capacity of 8.136 km3 is the
major hydro-project in the river basin constructed in the year
1957 to alleviate the flood problems and to serve multiple
other purposes such as irrigation, hydropower generation and
supplying drinking water. Despite its significant storage ca-
pacity, the large flows from upstream of the dam and middle
reaches of the catchment cause devastating floods during the
monsoon in the deltaic region of the basin.

About 48 % of the total area is under agriculture, out of
which 30 % is cropped during the kharif season or monsoon
(June–October), and 15 % is under double or triple irriga-
tion. The remaining 3 % of the area is cropped during rabi
and zaid seasons (winter and summer, respectively). Decid-
uous Broadleaf Forest (DBF) being dominant among other
forest types, covers 25 % of the basin area (Fig. 2a). Built
up, plantation, grassland, shrubland, water bodies and other
forest types constitute the rest (22 %) of the basin area. Com-
parison of the local historical LULC maps of 2005 and 2014,
obtained from the National Remote Sensing Centre (NRSC),
shows an increase in the agricultural land from about 43 % to
48 % at the expense of fallow land, built up areas and water
bodies, while changes in forest covers were insignificant. In
addition, loamy and clayey are the major soil types covering
roughly 53 % and 42 %, respectively, of the total basin area
(NBBSS-LUP, India). Approximately 90 % of the basin has
moderately shallow to deep soil, having depths greater than
50 cm.

3 Materials and methods

3.1 Variable Infiltration Capacity (VIC) model

The VIC model is a semi-distributed, land surface hydro-
logic model which solves both water and energy balances
within the grid cells (Cherkauer and Lettenmaier, 1999). VIC
maintains sub-grid heterogeneity in land cover classes, i.e.,

divides each grid into tiles based on the number of land
cover classes, and also considers sub-grid variability in the
soil moisture storage capacity (Liang et al., 1994). Surface
runoff in VIC is generated through an infiltration excess by
using the Xiangjiang formulation (Zhao et al., 1980) in the
upper two soil layers. Baseflow is generated from the third
soil layer by applying the Arno formulation (Franchini and
Pacciani, 1991). Actual evapotranspiration of each grid cell
in VIC is obtained by summing up three types of evapora-
tion: evaporation from bare soil, evaporation from canopy
layer for each vegetation type and transpiration from differ-
ent vegetation types; it is then weighted by the fractional area
of each vegetation class. VIC computes potential evapotran-
spiration using the Penman–Monteith equation. The amount
of rainfall intercepted by the canopy is calculated as a func-
tion of leaf area index (LAI).

To obtain the discharge at the basin outlet, the VIC model
is coupled to a stand-alone routing model (Lohmann et al.,
1996). This routing model follows a simple river routing
scheme where runoff and baseflow are first routed to the edge
of the grid cells using an instantaneous unit hydrograph and
finally transported to the river/channel network using a lin-
earized St. Venant equation. More details about the structure
and formulations of the model can be found in the literature
(Gao et al., 2010; Liang et al., 1994).

In this study, we implement the VIC model with three
soil layers (known as VIC-3L), version 4.2.d in the water
balance mode at a daily time step and at a grid resolution
of 0.05◦ over the five subcatchments of the Mahanadi river
basin. Note that the VIC model is commonly employed at
daily scales especially when running with the water balance
mode only (Gou et al., 2020; Hengade et al., 2018; Hurkmans
et al., 2009). Flows are routed to the subcatchments of Bas-
antpur (Ba), Kantamal (Ka), Kesinga (Ke), Sundergarh (Su)
and Salebhata (Sa) (Fig. 1). We abstained from routing the
flow for the entire Mahanadi river basin due to the presence
of a major water management structure, Hirakud dam, at the
middle reach of the basin.

3.2 Datasets

The key input data required by the VIC model are meteoro-
logical forcings (precipitation, maximum temperature, mini-
mum temperature and wind speed), soil type, land cover in-
formation and topographic features. Topographical features
are determined using the 30 m CARTO-DEM (Cartosat-1
digital elevation model), a national DEM developed by ISRO
(Indian Space Research Organization) (Sivasena Reddy and
Janga Reddy, 2015). The Mahanadi river basin is delineated
and is converted into grid format of resolution 0.05◦ consti-
tuting 4807 grids within the basin area. Daily gridded pre-
cipitation (resolution 0.25◦) and maximum and minimum
temperature (resolution 1◦) for the time period 1988–2010
are obtained from India Meteorological Department (IMD)
(Pai et al., 2014). Soil textures are derived from the digitized
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Figure 1. The Mahanadi river basin boundary and the analysed flow gauges and their catchments. Abbreviations for catchment names are Ba
– Basantpur, Ka – Kantamal, Ke – Kesinga, Su – Sundergarh and Sa – Salebhata.

Figure 2. (a) LULC map of Mahanadi river basin from NRSC of year 2005. (b) Comparison of LAI values from MODIS, averaged over the
time period 2000–2015, and GLDAS.

soil map as provided by the National Bureau of Soil Sur-
vey and Land Use Planning (NBSSLUP) (scale 1 : 250 000).
Land cover maps from two different sources, i.e., local and
global, are used in this study. The local LULC map is de-
rived from National Remote Sensing Centre (NRSC), In-
dia, of year 2005 (scale 1 : 250 000; resolution 56 m) and is
used in the model runs while performing sensitivity analysis,
model calibration and validation. Global land cover scenarios
are obtained from LUH2, which are used in model simula-
tions for predicting impacts of land cover changes on hydro-
logical components. All LULC maps used in this study are
reformatted and reclassified into United States Geological
Survey (USGS) LULC types as required by the VIC model

(Fig. 2a). The observed discharge at daily scales at multiple
gauges (Fig. 1) for the simulated time (1988–2010) are ob-
tained from the Central Water Commission (CWC), India,
for validating the simulated discharge.

3.3 Model parameters

We have selected 16 VIC model parameters (Table 1) for
the sensitivity analysis (SA). The choice of parameters was
based on our preliminary experiments and expected sensitive
properties from previous studies (see description below Ta-
ble 1). Typical calibration in VIC involves only streamflow-
related parameters as also recommended by VIC model de-
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velopers (Gao et al., 2010; Gou et al., 2020; Xie et al., 2007).
However, a few studies have reported that some vegetation
parameters are sensitive to the runoff in the VIC model (De-
maria et al., 2007; Joseph et al., 2018). Parameters subjected
to SA in this study include, among others, rarely imple-
mented soil properties, such as bulk density (BD) and frac-
tional water content at wilting point (wpf) and at critical point
(wcrf); vegetation properties, such as architectural resistance
(rarc) and stomatal resistance (rmin); and routing parameters,
such as velocity (v) and diffusion (diff). A multiplier of wcrf
is used to compute wpf to meet the criteria that soil mois-
ture at wilting point should always be less than soil moisture
at critical point, and the multiplier is tested for sensitivity
rather than the actual parameter. A similar approach is fol-
lowed by Rosolem et al. (2012) while testing sensitivity of
parameters in a land surface model. Feasible ranges (min-
imum and maximum values) of soil parameters (BD, wcrf,
ksat, Exp) are obtained based on average hydraulic proper-
ties of USDA soil textural classes (Cosby et al., 1984; Rawls
et al., 1998; Reynolds et al., 2000) considering only the dom-
inant soil textures within the basin. Ranges for the rest of
the soil parameters are based on suggestions from the VIC
model developers and published studies. Feasible ranges of
the vegetation parameters are obtained based on the recom-
mended ranges provided in the Land Data Assimilation Sys-
tem (LDAS) values for the dominant vegetation types in the
basin. Our preliminary experiments suggest canopy height is
not sensitive; hence, roughness length (RL) and displacement
height (Disp), which are computed from canopy height, are
not accounted for in SA.

In addition, the LAI is an important vegetation factor, hav-
ing substantial control over the water balance by directly
influencing the ET rates (Gao et al., 2010; Matheussen et
al., 2002). LAI is specified at a mean monthly basis in
VIC. We compared the monthly-mean LAI averaged over
the time period 2000–2015 from MODIS (Moderate Reso-
lution Imaging Spectroradiometer) Aqua/Terra with the LAI
values from the GLDAS (Global Land Data Assimilation
System) database for the river basin. We observed that the
monthly-mean LAI of all the LULC types from MODIS cap-
tures the phenological characteristics more realistically than
the GLDAS LAI (Fig. 2b), which shall have further implica-
tions on water balance. We find that the range of MODIS LAI
obtained for each LULC type are well in agreement with the
LAI values obtained in the nearby Ganga river basin in India
(Patidar and Behera, 2019).

Another important factor linking vegetation characteristics
to hydrological processes in VIC is the root zone distribution.
Typically, root zone allocation in VIC requires user-defined
root zone depths and fractions for each land cover type that
are kept fixed during the calibration process. We derived root
zone depths and estimated the fractions of roots in each zone
following Zeng (2002) for each vegetation type, and we used
a simplified approach to vary the root zone distributions with
respect to the soil depths during calibration. This ensures root

zone properties vary for different model calibration with a re-
duced number of parameters, hence providing a more man-
ageable calibration strategy. For details on our root allocation
approach, please refer to the Supplement (Sect. S1).

3.4 Experimental design

3.4.1 Morris method for sensitivity analysis

SA of the chosen 16 VIC-3L parameters (Table 1) is con-
ducted using the Morris (1991) method. This method re-
quires Monte Carlo simulations where the model is run with a
specified number of samples and measures the change in the
model output by varying one parameter at a time. We used the
one-at-a-time Latin hypercube sampling (LHS-OAT) strat-
egy to form a total number of 1200 model parameter sets.
This method proposed two sensitivity measures: (1) the mean
(µ) of the elementary effects, which estimates the direct ef-
fect of the input parameter on model output, and (2) the stan-
dard deviation (σ) of the elementary effects, which estimates
the interaction between the input parameters on the model
output. We tested the sensitivity of model parameters on the
Kling–Gupta efficiency (KGE) metric (Eqs. 1–3) (Gupta et
al., 2009), computed using observed daily streamflow values
over 20 years (1990–2010) of simulation period.

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2; (1)

α =
σsim

σobs
, (2)

β =
µsim

µobs
, (3)

where r is the linear correlation between observed and simu-
lated discharge, α is an estimate of flow variability error and
β is a bias term. σsim and σobs are standard deviations in sim-
ulated and observed discharge, respectively. µsim and µobs
are mean of simulated and observed discharge, respectively.

We first visually inspect SA results and assume a screening
threshold value for the sensitivity index, below which the pa-
rameters can be regarded as either completely insensitive or
less influential. This is a common practice followed in previ-
ous SA studies (Gou et al., 2020; Sarrazin et al., 2016; Tang
et al., 2007; Vanrolleghem et al., 2015). Next, to achieve a
more objective screening convergence result, we compute the
width of the 95 % confidence interval of the sensitivity in-
dices (Herman et al., 2013; Wang and Solomatine, 2019) and
then use maximum width of the 95 % confidence interval, as
a statistic (Sarrazin et al., 2016), across the lower influential
input to verify if the screening convergence has been reached.
For a detailed explanation about the steps we took for the SA
experiments, please refer to the Supplement (Sect. S2).

3.4.2 Model calibration and validation

Next, we calibrate sensitive parameters separately on a sub-
basin level for the time 1990–2000 with a 2-year warm-

https://doi.org/10.5194/hess-25-6339-2021 Hydrol. Earth Syst. Sci., 25, 6339–6357, 2021



6344 S. Naha et al.: Hydrological impacts of land cover change in Mahanadi river basin in India

Table 1. VIC and routing model parameters tested for sensitivity analysis and feasible ranges.

Parameters Description Units Minimum Maximum

Soil parameters

wcrf Fraction of water content at critical pointb – 0.40 0.60

wpc
f (wpf =M ·wcrf) Fraction of water content at wilting pointb – 0.50 0.99

BD Bulk density of soil (used in VIC estimation of
porosity)b

kg m−3 1350 1550

ksat Saturated hydraulic conductivityb mm d−1 240 840

Exp Parameter characterizing the variation of saturated hy-
draulic conductivity with soil moistureb

– 10 30

d1 Thickness of first soil layera m 0.01 0.3

d2 Thickness of second soil layera m 0.31 3.5

d3 Thickness of third soil layera m 0.31 3.5

dsmax Max velocity of baseflow a mm d−1 10−4 101.48

ds Fraction of max velocity of baseflow a – 10−4 100

binf Parameter to describe the Variable Infiltration
Curve a

– 10−4 100.6

ws Fraction of maximum soil moisture of the third
layer a

– 10−4 100

Vegetation parameters

rarc Architectural resistanceb s m−1 20 70

rmin Minimum stomatal resistanceb s m−1 100 170

routing

v Flow velocityb m s−1 0.1 3

diff Flow diffusivityb m2 s−1 500 5000

Parameter names in bold are sampled on log domain. a indicates parameters that are suggested by VIC model developers as the most sensitive parameters
(Gao et al., 2010). b indicates parameters suggested in the literatures to be tested for sensitivity (Demaria et al., 2007; Gou et al., 2020; Joseph et al., 2018;
Yanto et al., 2017). c wpf is analysed based on its multiplier (i.e., the M term in wpf parameter’s equation). Although description and units refer to actual
parameter in VIC, parameter range represents the multiplier values (instead of actual parameter).

up period (1988–1999), using a sequence of Monte Carlo
simulation, by generating 5000 near-random parameter sets
from within the specified range using the Latin hypercube
sampling method (LHSM) with uniform distribution. We
use KGE (Eq. 1) as the objective function to assess the
model performance in the calibration period. The KGE
metric balances the contribution to the error coming from
all three main components, namely correlation (e.g., tim-
ing/dynamics), variability (e.g., seasonality), and systematic
bias, and it is now a widely used metric in hydrometeorolog-
ical studies (Gupta et al., 2009; Knoben et al., 2019). KGE
ranges in [−∞, 1] with larger values indicating better per-
formance. Additionally, we use the percent bias (PBIAS) to
evaluate our model performance, especially to account for
the high flow conditions. We adopt a common practice of se-

lecting the best model simulations by using a top certain per-
centage of the total simulations (Chaney et al., 2015; Mock-
ler et al., 2016). This is relevant in our study as choosing
model simulations based on a particular KGE score is subjec-
tive given that the behavioural performance, as well as the be-
havioural parameters, vary across the subcatchments. There-
fore, we first assess the performance of top 10 %, 5 % and
2 % of model simulations at every subbasin and choose the
top 2 % based on overall model performance across the sub-
catchments, hence not compromising the performance qual-
ity and also accounting for equifinality. These behavioural
models are further used to simulate streamflow in the valida-
tion period (2001–2010) for all the subcatchments.
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3.4.3 LULC scenarios

All the simulations in the calibration and validation period
are performed using a static local LULC map of year 2005
derived from NRSC. Simulations using this land use map
shall be termed NRSC2005 henceforth. Next, we used a set
of land use scenarios based on Shared Socioeconomic Path-
ways (SSPs) and Representative Concentration Pathways
(RCPs) from the recently released Land-Use Harmonization
project (LUH2) dataset (releases LUH2v2h and LUH2v2f)
for the time periods of 850–2005 and 2015–2100, respec-
tively (Hurtt et al., 2018) (see Table S2, Supplement). The
LUH2 approach estimates the gridded land use fractions, an-
nually at a resolution of 0.25◦. The land use fraction maps
are available for each land use type at a resolution of 0.25◦.
So, we have first obtained LUH2 fraction maps of different
LULC types for the Mahanadi basin extent at a resolution of
0.25◦ and further regridded to VIC grid size of 0.05◦. Next,
to run the VIC model, we have prepared a vegetation pa-
rameter file where we included the fractional coverage of
all LULC types for each grid cell ensuring that each grid
will contain more than one vegetation type. The land use
classes are reduced to simplify our model application and
consequently remapped to the VIC land use classes by as-
suming all primary (forested or non-forested) and secondary
(forested and non-forested) land to Deciduous Broadleaf For-
est (DBF); managed pasture and rangeland are considered
grassland, and all crops are merged into a single class la-
belled “Cropland”. Urban land and water bodies are retained
(see Table S3, Supplement). It is worth mentioning that the
“potentially non-forested secondary land” class in the LUH2
datasets matched to the forested areas in NRSC2005 and
hence both mapped into DBF, which is the dominant forest
type in the basin (Fig. S5 in the Supplement).

We used the behavioural models to simulate discharge for
the baseline scenario using land cover map from LUH2 of
year 2005 so as to attain more confidence in the future sce-
narios. We compare LULC maps, NRSC2005 and LUH2005
(Fig. 3) and observe spatial patterns of the most dominant
land use classes; classes Cropland (CL) and Forest (F) show
a similar spatial distribution and have comparable aerial cov-
erage. The only notable difference in both maps is that the
Barren Ground (BG) class is missing in LUH2005. Table 2
shows the percentage of area covered by each land use class
in the basin. Note that we will refer to DBF as Forest (F)
henceforth.

Among the future scenarios, owing to the large compu-
tational demand of our simulations, we only considered the
worst case scenario, RCP3.4 SSP4, which resulted in max-
imum change in the land cover fractional area (Fig. 4). For
our study, we have not taken into account the actual uncer-
tainty due to the land cover scenarios. However, the per-
centage of land cover change relative to the baseline from
other LUH2 scenarios is either negligible or comparable to
our chosen scenario. Therefore, our chosen scenario which

Table 2. Percent of each land use type in NRSC2005 and LUH2005
in the entire Mahanadi river basin (WB – Water Body; ENF – Ever-
green Needleleaf Forest; DBF – Deciduous Broadleaf Forest; GL –
Grassland; CL – Cropland; U – Urban; BG – Barren ground).

LULC classes NRSC2005 LUH2005
(%) (%)

WB 2.60 0.76
ENF 0.08 0.00
DBF 35.98 41.00
GL 0.13 4.70
CL 49.00 53.00
U 0.52 0.40
BG 12.30 0.00

shows the maximum changes in land cover will likely pro-
duce the largest impact.

Land cover changes and fractional area covered in other
future scenarios are shown in Fig. S6 in the Supplement.
Four distinct years (i.e., four distinct land cover maps) have
been chosen for this study: 2005 (Baseline), 2015 (Present),
2050 (Near Future) and 2100 (Far Future) to study the im-
pacts of LULC change in the Mahanadi river basin. A sharp
decrease in the forest cover is observed at the expense of
agriculture in the years 2050 and 2100 (Fig. 4). We run the
behavioural models three times using the individual LUH2
datasets: (1) with land use map “LUH2015”, termed as the
“Present” (P) scenario; (2) with land use map “LUH2050”,
termed as the “Near Future” (NF) scenario; and (3) with land
use map “LUH2100”, which is termed as the “Far Future”
(FF) scenario. To account for the extreme hydrological ef-
fects that these changes could cause, two hypothetical scenar-
ios are framed: (1) the “All Cropland” (CL) scenario where
all the grassland and forest areas are transformed into crop-
land and (2) the “All Forest” (F) scenario where all the crop-
land and grassland areas are transformed into forest. The ur-
ban and water bodies in these hypothetical scenarios are re-
tained as per the baseline scenario. Notice that the daily me-
teorological forcing used in all the model simulations is the
same and obtained from the current climatology (i.e., 1990–
2010). Here, we focus on identifying the impacts on hydro-
logical responses mainly by applying individual land cover
scenarios. Therefore, any changes observed in the predicted
hydrological components will be only attributed to changes
in LULC. It is also worth mentioning that running model
simulations with different land cover scenarios would not di-
rectly impact the soil parameters identified in our chosen be-
havioural models. That is because all soil-related parameter
values in VIC are assigned solely based on soil textures. The
percent areas covered by each land use class at all subcatch-
ments across the scenarios are shown in Table 3.
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Figure 3. Comparison of spatial patterns of land cover types from NRSC and LUH2 for the baseline year, 2005. All land cover classes shown
here are resampled to the model grid resolution of 0.05◦. The colour bar represents the fraction of area covered by each land cover type.

Figure 4. (a) Fraction of catchment area occupied by land use classes for scenario RCP3.4 SSP4. (b–d) Land cover scenarios from LUH2
(resolution – 0.25◦) for years 2015, 2050 and 2100 used in this study. LUH2 land cover classes shown here are resampled to the model grid
resolution, and only the predominant class is shown here for clarity. For actual model simulations, VIC accounts for the individual proportion
for each land cover type at each grid point.
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Table 3. Land cover area change across all subcatchments of the Mahanadi river basin.

LULC classes Baseline Present Near Future Far Future All All
(%) 2005 2015 2050 2100 Cropland Forest

Basantpur

CL 40 54 69 78 94 0
F 54 41 23 16 0 94
GL 1 4 6 4 0 0
WB 5 1 1 1 5 5
U 1 1 1 1 1 1

Kantamal

CL 51 44 58 70 95 0
F 44 51 33 25 0 95
GL 0 5 8 5 0 0
WB 5 0 0 0 5 5
U 0 0 1 1 0 0

Kesinga

CL 44 50 62 73 95 0
F 51 45 30 22 0 95
GL 0 5 7 5 0 0
WB 5 0 0 0 5 5
U 0 0 1 1 0 0

Sundergarh

CL 29 67 77 83 96 0
F 67 29 17 15 0 96
GL 0 3 4 2 0 0
WB 4 0 0 0 4 4
U 0 0 1 1 0 0

Salebhata

CL 34 61 73 83 95 0
F 61 34 19 11 0 95
GL 0 0 7 6 0 0
WB 5 0 0 0 5 5
U 0 0 1 0 0 0

4 Results

4.1 Sensitivity analysis, model calibration and
validation

It is to be noted that SA is conducted for all subbasins in-
dividually; hence, the Morris screening results obtained for
each subbasin are independent of each other. However, we
observe that the non-influential parameters match closely
with each other across subbasins (Fig. S2). Based on the
Morris sensitivity measures, there are six sensitive (or influ-
ential) parameters, namely dsmax, d2, binf, v, ws and ds. The
rest of the parameters (rmin, d3, wcrf, wpf, rarc, Exp, BD, diff,
d1, ksat) are either relatively non-influential or have negligi-
ble impact in the KGE performance. d2 is the most important
soil layer, probably because it is the thickest soil layer where

most of the roots are found, which is expected to exert strong
controls on ET. Dsmax, ds and ws are the baseflow-related
parameters, interlinked with each other, associated with the
third soil moisture layer d3, having a higher impact on low
flows. We discard a common set of parameters prior to the
model calibration based on weighted average of the sensitiv-
ity indices of the subbasins. The weights are assigned based
on catchment area. Figure 5 shows the influential and non-
influential parameters for the entire basin. The total number
of model simulations performed is sufficient to achieve the
stability of the screening results (see Fig. S3, Supplement).
More details on the Morris screening results are given in the
Supplement that accompanies this paper (Sect. S2.2).

Figure 6 shows the performance of VIC with respect to
KGE in the calibration and validation period for all the
subcatchments in the highest order of their catchment size.
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Table 4. Ranges of percent change, change in flows, and uncertainty (i.e., difference between max and min predicted flow) in extreme and
mean annual flows in all the scenarios with respect to the baseline scenario.

Mean annual extreme Ba Ka Ke Su Sa

Near Future

Change (%) 2.3 to 5.5 1.4 to 4.7 1.3 to 2.7 4.7 to 10.7 2.7 to 4.3
Change (m3 s−1) 132 to 289 62 to 166 42 to 77 32 to 75 27 to 41
Uncertainty (m3 s−1) 157 104 36 41 14

Far Future

Change ( %) 2.4 to 6.5 1.4 to 5.6 1.6 to 3.5 6 to 15.4 3 to 4.7
Change (m3 s−1) 137 to 347 63 to 195 51 to 100 42 to 109 28 to 45
Uncertainty (m3 s−1) 210 132 49 67 17

All Cropland

Change (%) 2.4 to 1.2 1.2 to 8.6 2.1 to 5.7 6.5 to 20.5 5 to 8.5
Change (m3 s−1) 124 to 496 51 to 301 67 to 164 45 to 147 49 to 81
Uncertainty (m3 s−1) 372 250 97 102 32

All Forest

Change (%) −4 to −14.4 −2 to −11.4 −2.6 to −6.6 −15.8 to −41 −13.5 to −22
Change (m3 s−1) −218 to −712 −85 to −400 −86 to −190 −109 to −289 −131 to −213
Uncertainty (m3 s−1) 494 315 104 180 82

Mean annual flows Ba Ka Ke Sa Su

Near Future

Change (%) 3.7 to 7.6 2.5 to 6.13 2.4 to 4.2 4.9 to 9.7 3.4 to 4.6
Change (m3 s−1) 21 to 31 8.6 to 16 5.2 to 7.5 34 to 61 2.6 to 3.3
Uncertainty (m3 s−1) 10 7.4 2.3 27 0.7

Far Future

Change (%) 3.4 to 7.9 2.12 to 6.5 3.4 to 4.6 6 to 13.2 3.24 to 4.6
Change (m3 s−1) 19 to 32.6 7.3 to 16.8 5 to 8.8 4 to 8.3 2.4 to 3.3
Uncertainty (m3 s−1) 13.6 9.5 3.8 4.3 0.9

All Cropland

Change (%) 2.8 to 8.5 1 to 7.7 2.1 to 5.6 6 to 16 4.1 to 6.6
Change (m3 s−1) 15.6 to 35 3.4 to 20 4.7 to 12 4.2 to 10 3.1 to 5
Uncertainty (m3 s−1) 19.4 16.6 7.3 5.8 2

All Forest

Change (%) −4.6 to −14.34 −2.4 to −11.1 −2.9 to −7.2 −14.5 to −34.2 −12 to −18.6
Change (m3 s−1) −26.2 to −59 −8.2 to −29 −6.4 to −15.8 −10.2 to −21.3 −9.1 to −13.3
Uncertainty (m3 s−1) 33 20.8 9.4 11 4.2

The KGE ranges for the calibration and validation of daily
streamflow for all subcatchments are listed in Table S4 in
the Supplement. Overall, evaluation result suggests that the
model reproduced the observed flows remarkably well with
the median KGE values of 0.85, 0.86, 0.82, 0.75, and 0.63
in calibration and 0.77, 0.82, 0.72, 0.60, and 0.59 in valida-
tion at Basantpur, Kantamal, Kesinga, Salebhata, and Sun-
dergarh, respectively. However, we observe a relative reduc-
tion in the daily KGE values at the smaller subcatchments

(Sundergarh and Salebhata) in both calibration and valida-
tion periods. The PBIAS values obtained in the calibration
period (Fig. S8, Supplement) indicate that the model tends to
be more biased (positively) as the catchment size decreases
and that the largest catchment, Basantpur, is least biased. The
median PBIAS values at Sundergarh and Salebhata are+9 %
and+23 %, respectively, in the calibration period and+19 %
and+55 % in the validation period. It is to be noted that sub-
basins analysed are effected by human intervention, and ob-
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Figure 5. Sensitivity indices (mean and standard deviation) of the
Morris method for VIC-3L parameters for the Mahanadi river basin
(computed based on weighted average of all subcatchments). Pa-
rameters, top to bottom, listed on the right side are in ranking or-
der, highest to lowest influential parameters, respectively, based on
mean of EEs. The dashed red vertical line is the screening threshold.

served streamflow values are controlled by minor reservoirs
and dams which will affect the VIC simulations especially
in the smaller subcatchments. Moreover, non-consideration
of groundwater recharge and irrigation in VIC can also pos-
sibly affect performance at smaller subcatchments. Supple-
ment Figure S7 shows that the models reproduced the daily
and monthly flows consistently when compared to the ob-
served flows in both calibration and validation periods.

Figure 6b shows that the distribution of behavioural pa-
rameters within their respective variability ranges differs
from one parameter to another as well as across subcatch-
ments. The behavioural models at all subcatchments are scat-
tered nearly across the entire range of parameter space for
ds and ws, reflecting high effect on modelled streamflow
through their interaction with other parameters. Contrarily,
behavioural parameter ranges of binf, dsmax, d2 and v are
relatively constrained across subcatchments, towards either
higher, mid or lower values, indicating direct influence of
these parameters on the behavioural simulations. For in-
stance, higher values of d2 and v, lower values of dsmax and
mid values of binf resulted in the behavioural model sim-
ulations at the smaller subcatchment, Salebhata. Thickness
of second soil layer, d2, is the most identifiable parameter
across all subcatchments.

4.2 Baseline scenario performance

We compare the performance of calibrated VIC models in
the baseline scenario (using LUH2005) against the validation
performance (using the NRSC2005) for the period 2001–
2010. The boxplots in Fig. 6a show daily KGE values for
the baseline and validation simulations for all subcatchments
studied here. The median KGE values for the baseline at Ba,
Ka, Ke, Su and Sa are 0.62, 0.64, 0.58, 0.62 and 0.72, respec-
tively. The model performed relatively well at the smaller
subcatchments Sa and Su in the baseline, whereas decline in

the performance is observed at subcatchments Ba, Ka and
Ke. PBIAS values (Fig. S8, Supplement) indicates that base-
line simulations are more biased (negatively) than validation
simulations at bigger catchments. The median PBIAS values
at Ba, Ka and Ke are −28 %, −29 % and −33 %, respec-
tively. This underestimation can be attributed to the absence
of 12 % Barren Ground in the baseline land cover, which
is replaced by croplands (4 %), forests (5.02 %), grasslands
(4.57 %). The increase in flows due to the increase in crop-
land is compensated by the decrease in flows due to the in-
crease in forest. Therefore, the underestimation in the sim-
ulated flows using LUH2005 may result from the increasing
grasslands which increased LAI, thus resulting in an increase
in ET and decrease in surface runoff, respectively. Contrar-
ily, a slight positive bias of 3 % is observed at the smallest
subcatchment (Sa) in the baseline simulation, compared to
+55 % in the validation simulation. KGE values obtained
across calibration, validation and baseline periods indicate
an overall good performance of the basin as per the exist-
ing studies using KGE as a performance metric (Knoben et
al., 2019). Overall, baseline land cover map LUH2005 shows
comparable model performance against local land cover map
NRSC in the historical period with the model being able
to capture the seasonality and land use/land cover dynamics
while simulating the daily flows.

4.3 LULC impacts and uncertainties

Figure 7 shows percent change in annual average of ex-
treme flows (i.e., 95th percentile or higher) for the time
2001–2010 in scenarios NF, FF, All Cropland (CL) and
All Forest (F) with respect to baseline scenario for the be-
havioural models. The range of percent change represents
the related uncertainty in model predictions arising from the
behavioural model parameters. We observe an insignificant
positive change in projected extreme flows in the present
(P) scenario despite a major increase, 6 % to 36 %, in crop-
lands replacing forests across four out of five subcatchments
(not shown Fig. 7). We observe a prominent increase in the
extreme flows at all subcatchments in both future scenarios
(NF and FF). The projected change in extreme flows in NF
ranges between 1.3 % and 10.7 % across the subcatchments.
The median percent change in the NF scenarios at subcatch-
ments Ba, Ka, Ke, Su and Sa are 3.6 %, 2.6 %, 1.8 %, 8.1 %
and 3.8 %, respectively. This increase in extreme flows in NF
can be attributed to the reduction in forest cover (−20 % to
−42 %) at the expense of cropland (+7 % to +48 %) across
the subcatchments. Percent increases of slightly higher mag-
nitudes are observed in the FF scenario in response to fur-
ther increase in croplands. The projected changes in extreme
flows in FF ranges between 1.4 % and 15.4 % across the sub-
catchments. The median percent change in the FF scenario at
subcatchments Ba, Ka, Ke, Su and Sa are 4 %, 2.8 %, 2.3 %,
11.3 % and 4.1 %, respectively, in response to reduction in
forest cover (−19 to −50 %) at the expense of cropland
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Figure 6. (a) Boxplot showing KGE range for calibrated, validated and baseline scenario simulations. (b) Parallel coordinate plot representing
VIC-3L behavioural parameterization for all subcatchments obtained during model calibration. Lines in black are simulations where KGE
lies within top 2 % i.e., behavioural simulations, and lines in grey are non-behavioural simulations. Behavioural KGE values at Ba, Ka, Ke,
Su and Sa range from 0.83–0.88, 0.85–0.88, 0.81–0.84, 0.74–0.76 and 0.62–0.66, respectively. Parameters are defined in Table 1.

(+19 % to+54 %) across the subcatchments. As anticipated,
maximum percent increases in the extreme flows (1.2 % to
20.5 %) are observed in the hypothetical All Cropland sce-
nario where all forests and grasslands are replaced by crop-
land and maximum reduction (−2 % to −41 %) observed in
the All Forest scenario where all the croplands and grass-
lands are converted to forests. The projected percent changes
in mean annual flows are slightly higher than the extreme
flows across all scenarios and subcatchments. The median
values in both future (FF and NF) and CL scenarios show
slightly higher positive percent change in the range of 3 % to
11 % and higher negative percent change,−5 % to−25 %, in
the F scenario.

Maximum increments in extreme flows and annual flows
across all scenarios are recorded at the largest subcatchment
Basantpur, which are in the range of 194 to 496 and 31 to
35 m3 s−1, respectively. The maximum reduction of 712 and
59 m3 s−1 is observed in the All Forest scenario at Basant-
pur. Much less change in terms of magnitudes is observed in
the annual flows compared to the extreme flows. This can be
explained by the fact that the basin receives approximately
85 % of the total annual rainfall during the monsoon months
(June–September). Therefore, with negligible changes oc-
curring during the rest of the year, changes in extreme flows
occurring only during the monsoon months are masked out
when computed for the entire year. We further computed the
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Figure 7. (a, left) Percent change in extreme flows (i.e., 95th per-
centile or higher).(a, right) Change in extreme flows (in m3 s−1).(b,
left) Percent change in mean flows. (b, right) Change in mean flows
(in m3 s−1), averaged annually over 2001–2010 in the Near Future
(NF), Far Future (FF), All Cropland (CL) and All Forest (F) scenar-
ios with respect to baseline scenario for all the subcatchments. Note
that the daily meteorological forcing used in all the model simula-
tions are obtained from the current climatology (i.e., 1990–2010).
The results are shown for the behavioural model simulations ob-
tained through calibration.

difference between maximum and minimum values (ranges)
of projected extreme flows as a measure of the amount of
uncertainty contained in ensemble predictions made using
land cover scenarios and multiple (behavioural) parameter
sets (Table 4). Uncertainty in Far Future scenario ranges from
17 to 210 m3 s−1 across subcatchments. Among all the sce-
narios, maximum uncertainty is observed in the hypotheti-
cal All Forest scenario (−82 to −494 m3 s−1) followed by
All Cropland scenario (32 to 372 m3 s−1). Overall the uncer-
tainty of hydrological model parameterization is observed at
the largest subcatchment Basantpur and decreases with re-
spect to the decrease in the catchment size.

We analysed the water balance components to understand
the factors causing changes in the streamflow. Overall, we
found that the increase in the mean annual flows is caused by
the increment in runoff and reduction in ET across all sub-
catchments. Positive median changes are observed in runoff
(NF, FF and CL), ranging between (2.8 to 14) % and negative
changes of (−4 to−37) % in the F scenario. Negative median
changes are observed in ET in scenarios (NF, FF and CL)
ranging between (−1.4 to −3.4) % and positive changes of
(1.9 to 7.8) % in the F scenario. Removal of forests decreases
the LAI of the natural vegetation and hence decreases ET.
Moreover, the removal of forest cover reduces the root wa-
ter uptake by plants, which increases the water content of the
second and third layer of the soil. The top, thin soil layer in
the VIC model helps in partitioning the rainfall amount into

direct runoff and the amount entering the soil. Therefore, the
increase in the cropland results in more direct runoff, thus
reducing the soil moisture content in the first soil layer. The
increase in runoff is not significant, despite the occurrence of
major deforestation in the future scenarios. This is because
the decrease in ET due to forest removal is compensated
as increment in croplands also leads to a major increase in
ET rates, which is why we do not see a sharp reduction in
the ET rates. Negligible changes are observed in baseflow,
while slight increase in total soil moisture is noticed across
the subcatchments (not shown). The water balance indicates
that 15 % to 21 % of precipitation is direct runoff and 64 %
to 80 % is ET across all subbasins and all land cover scenar-
ios, whereas negligible baseflow and soil moisture changes
are observed. This is probably because the third soil mois-
ture layer in the model does not reach saturation to cause the
non-linear baseflow, as precipitation in the basin is highly
concentrated in only 3 to 4 months in monsoon, and the rest
of the year remains dry.

5 Discussions

Performing a comprehensive sensitivity analysis and model
calibration enhances the accuracy of hydrological predic-
tions, which subsequently improves the representations of
changes in the hydrological regime due to land cover
changes. Our SA results are in agreement with existing stud-
ies conducted on several basins using VIC, which show binf
and d2 are the most sensitive parameters (Demaria et al.,
2007; Gou et al., 2020; Lilhare et al., 2020; Yeste et al.,
2020). Moreover, not all the parameters recommended for
calibration by VIC model developers (binf, d1, d2, d3, ds,
dsmax and ws) are sensitive to the basin runoff, which is
also in line with findings of Bao et al. (2011), Demaria et
al. (2013) and Gou et al. (2020) for other basins. For in-
stance, first- and third-layer soil depths (d1 and d3) are not
found sensitive in this study. d1 is the thinner topmost soil
layer, having not much control on ET and subsurface pro-
cesses. d3 is probably not sensitive as most of the roots are
present in the second soil layer, hence not contributing to
the soil moisture uptake through the roots. We found that
soil properties impose greater control on model performance
than the vegetation parameters. However, while varying soil
depth influences the ET rates by posing indirect influences
on both timing and magnitude of the soil water available for
ET, varying root depth and fractions (using our root zone al-
location approach) has provided substantial control over the
water balance by directly influencing the ET rates, thereby
improving KGE (not shown). The weakness in reproducing
flows at smaller subcatchments in Mahanadi basin is also re-
ported previously in some studies (Kneis et al., 2014; Mishra
et al., 2008).
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Figure 8. Percent change in (a) mean runoff (b) mean ET aver-
aged annually over the time (2001–2010) in the Near Future (NF),
Far Future (FF), Cropland (CL) and Forest (F) scenarios with re-
spect to baseline scenario for all the subcatchments. Note that the
daily meteorological forcing used in all the model simulations is ob-
tained from the current climatology (i.e., 1990–2010). The results
are shown for the behavioural model simulations obtained through
calibration.

LUH2 is a new dataset that is not yet extensively used in
basin-scale hydrology. A recent study by Krause et al. (2019)
predicted worldwide increment in runoff (67 %) and a vari-
able response of ET across different land use scenarios using
LUH2 dataset. The major land cover changes in the future
scenarios in Mahanadi basin (as predicted by LUH2) agrees
with Behera et al. (2018), wherein they reported a prominent
conversion of DBF to croplands in year 2025.

Our findings indicate an increase of 27–496 m3 s−1 in ex-
treme flows and 2.6–35 m3 s−1 in annual mean flows due to
deforestation, across the subbasins and scenarios (including
the hypothetical cropland scenario). These increasing trends
are consistent with other studies in the Mahanadi river basin
in India (Dadhwal et al., 2010), neighbouring basins (Das
et al., 2018; Kundu et al., 2017) and elsewhere (Abe et al.,
2018; Berihun et al., 2019; Cornelissen et al., 2013; Costa et
al., 2003). Kundu et al. (2017) found an increase in runoff
and decrease in ET due to the expansion in projected agricul-
tural land in Narmada river basin in India. Das et al. (2018)
predicted that deforestation, urbanization and cropland ex-
pansion in eastern river basins of India in the future would
increase runoff and baseflow and decrease ET%. It should
be noted that 15 % of the agricultural land in the basin is
under irrigation effects; however, this version of VIC (ver-
sion 4.2.d) does not represent irrigation. Therefore, reduction
in ET rates due to conversion of forest to cropland could be
compensated by the moisture available due to the irrigation
during the non-monsoon season. However, this may not have
a significant effect on the assessments of impacts on runoff,
especially on extreme flows, because those events are likely
to be related to the monsoon season, where the effect of irri-
gation is minimum.

We found a small change in mean annual discharge as well
as in water balance components despite a major change in
land cover. Our results correlate well with several research

studies (Ashagrie et al., 2006; Fohrer et al., 2001; Hurk-
mans et al., 2009; Kumar et al., 2018; Patidar and Behera,
2019; Rogger et al., 2016; Viglione et al., 2016; Wagner et
al., 2013; Wilk and Hughes, 2002), wherein they have re-
ported that the impacts of land cover change on water bal-
ance components in a large-scale river basin are too small
to be detected due to the compensation effects. Wilk and
Hughes (2002) showed that removal of large forests led to
little or no changes in annual runoff in large heterogeneous
catchments in South India. Patidar and Behera (2019) in a
recent study in a large river basin in India reported that the
conversion of forest to agriculture may not alter the water
balance significantly as the impacts on ET and runoff cancel
out at the basin scale. The range of these hydrological esti-
mates (Figs. 7, 8 and Table 4) provides more straightforward
and explicit quantification of uncertainty than other statistical
measures such as variance or interquartile ranges (Her et al.,
2019). Our results suggest that even a small set of calibrated
models can predict a wide range of flows through different
hydrological processes occurring within the basin; therefore,
the impacts of uncertainty derived from model parameters on
the relative changes cannot be neglected. The uncertainty due
to model parameters did not alter the trend of changes in ex-
treme flow, mean annual flow and hydrological components
due to land use change in comparison to the baseline simu-
lations. However, a considerable variation is observed espe-
cially in the magnitudes of extreme flows simulated for the
different land cover scenarios. For instance, the competing
interactions among ds and ws led to the varying hydrological
processes occurring within the basin, thereby affecting the
partition of water in the soil column. Similar conclusions are
outlined in Chen et al. (2019b) that the projected monthly
and annual flows simulated for different land use scenarios
were having significant uncertainty due to model parameter-
ization. In addition, we found that the trends within the sce-
narios especially in the mean annual flows, runoff and ET
are not consistent. For instance, we expect the increase in
flows to be more in Far Future scenarios than Near Future,
given that the increase in agricultural land in the Far Future
is relatively more. However due to different parametrization,
some models predicted decrease in Far Future flows relative
to Near Future (Fig. 7). This clearly indicates that the im-
pact of land use could be biased when a single model pre-
diction is used, as the impacts could be potentially hidden
within simulation uncertainty derived from model (Chen et
al., 2019b). Only a small percentage of model simulations
(2 %; 100 model simulations) with relatively high daily KGE
scores (KGE> 0.8 at 3 out of 5 subcatchments) were used for
assessing the impacts, yet significant variations in extreme
flow magnitudes and trends (in some cases) are observed.
Therefore, selecting models with relatively lower KGE val-
ues might have led to larger uncertainty bounds and inconsis-
tent trends in the relative change. Equifinality in hydrological
modelling and its influence on hydrological analysis of cli-
mate change has been discussed in several studies. However,

Hydrol. Earth Syst. Sci., 25, 6339–6357, 2021 https://doi.org/10.5194/hess-25-6339-2021



S. Naha et al.: Hydrological impacts of land cover change in Mahanadi river basin in India 6353

its influence on hydrological analysis of land cover change
has not been studied enough to provide a clear idea about the
contributions of model parameter uncertainty to hydrologi-
cal projections. Our results thus underline the importance of
considering model uncertainty and consequently equifinality
while modelling the land cover change impacts.

6 Conclusions

In this study an attempt is made to quantify the hydrologic
response of the subcatchments of the Mahanadi river basin,
owing to different land cover scenarios obtained from the
LUH2 dataset, through the implementation of a sensitivity-
based calibrated semi-distributed hydrological model. Our
findings offer insights into the plausible hydrological scenar-
ios in future at a river basin level, which is a crucial step
forward for a developing country in the context of today’s
increasing focus on integrated water resources management
(IWRM) in river basins. Overall, VIC captured the observed
daily flows well in calibration, validation and baseline pe-
riods across subcatchments. Deforestation at the expense of
cropland dominated the land cover change processes across
all scenarios and subcatchments, which has led to an increase
in the extreme flows and mean annual flows. Analysis of
other hydrological components have shown that the increase
in flows is caused by the increase in runoff and decrease in
ET. The uncertainties due to model parameterization in land
use change impacts varies from one subcatchment to another.
The uncertainties did not alter the trend of changes when
compared to the baseline; however, a considerable variation
is observed especially in the magnitudes of extreme flows
simulated for the different land cover scenarios. This result
suggests a significant constraint on the usage of hydrological
models for the variations of extreme flows due to land cover
change, even with high KGE values at daily time step as the
impacts could be potentially hidden within simulation un-
certainty derived from the model parameters. The uncertain-
ties from model parameters thus should be considered in land
use change impact assessment for a more robust and reliable
analysis, which shall make the land cover change mitigation
strategies and water resources management plans more effec-
tive.

This study indicates that the recurrent flood events occur-
ring in the Mahanadi river basin might be influenced by the
changes in LULC at the catchment scale. However, projected
increase in precipitation due to climate change might have
more pronounced effect on the streamflow on this basin, es-
pecially extreme flows (Asokan and Dutta, 2008; Ghosh et
al., 2010; Jin et al., 2018), thereby hiding the hydrologi-
cal impacts of LULC changes. Future studies shall focus on
modelling the combined impacts of climate and land cover
changes on hydrology of the Mahanadi river basin, consider-
ing the uncertainties from model parameterization, which is
currently lacking in many studies.

Data availability. The DEM was acquired from Bhuvan,
Indian Geo-Platform (https://bhuvan-app3.nrsc.gov.in/data/
download/index.php, Bhuvan, 2021) of Indian Space Research
Organisation, last access: 30 November 2021. Values of Unit
Hydrograph are obtained from the Variable Infiltration Capac-
ity (VIC) model; Routing: Unit Hydrograph (UH) file (https:
//vic.readthedocs.io/en/vic.4.2.d/Documentation/Routing/UH/,
UH-VIC, 2021). Daily gridded rainfall, maximum and minimum
temperature data used in this study can be obtained from the
Indian Meteorological Department (IMD) (https://www.imd.gov.in,
India Meteorological Department, 2021, home page/rainfall
and temperature information). Wind speed data used in this
study can be obtained from NCEP/NCAR reanalysis (https:
//psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html,
NOAA Physical Sciences Laboratory, 2021). The source
code for VIC-3L version 4.2.d is available from GitHub
(https://github.com/UW-Hydro/VIC/releases/tag/VIC.4.2.d,
UW-Hydro, 2021). For downloading LUH2 datasets
(https://luh.umd.edu/data.shtml, Land Use Harmonization, 2021),
please refer to Hurtt et al. (2020), https://doi.org/10.5194/gmd-
13-5425-2020. Observed discharge data are obtained from the
Central Water Commission, India (http://www.cwc.gov.in/, Central
Water Commission, Ministry of jal shakti, Department of Water
Resources, River Development and Ganga Rejuvenation, GoI,
2021).
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