Articles | Volume 25, issue 7
https://doi.org/10.5194/hess-25-4231-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4231-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of detention dams on the probability distribution of floods
Salvatore Manfreda
CORRESPONDING AUTHOR
Dipartimento di Ingegneria Civile, Edile e Ambientale, Università
degli Studi di Napoli Federico II, 80125 Naples, Italy
Domenico Miglino
Dipartimento di Ingegneria Civile, Edile e Ambientale, Università
degli Studi di Napoli Federico II, 80125 Naples, Italy
Cinzia Albertini
Dipartimento di Ingegneria Civile, Edile e Ambientale, Università
degli Studi di Napoli Federico II, 80125 Naples, Italy
Dipartimento di Scienze Agro Ambientali e Territoriali, Università
degli Studi di Bari Aldo Moro, 70126 Bari, Italy
Related authors
Domenico Miglino, Khim Cathleen Saddi, Francesco Isgrò, Seifeddine Jomaa, Michael Rode, and Salvatore Manfreda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2172, https://doi.org/10.5194/egusphere-2024-2172, 2024
Short summary
Short summary
Turbidity is a key factor for water quality monitoring. We tested an image-based procedure in a full-scale river monitoring experiment using digital cameras. This procedure can increase our knowledge of the real status of water bodies, solving the spatial and temporal data resolution problems of the existing techniques, promoting also the development of early warning networks, moving water research forward thanks to a large increase of information and the reduction of operating expenses.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Alonso Pizarro, Silvano F. Dal Sasso, Matthew T. Perks, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 24, 5173–5185, https://doi.org/10.5194/hess-24-5173-2020, https://doi.org/10.5194/hess-24-5173-2020, 2020
Short summary
Short summary
An innovative approach is presented to optimise image-velocimetry performances for surface flow velocity estimates (and thus remotely sensed river discharges). Synthetic images were generated under different tracer characteristics using a numerical approach. Based on the results, the Seeding Distribution Index was introduced as a descriptor of the optimal portion of the video to analyse. A field case study was considered as a proof of concept of the proposed framework showing error reductions.
Matthew T. Perks, Silvano Fortunato Dal Sasso, Alexandre Hauet, Elizabeth Jamieson, Jérôme Le Coz, Sophie Pearce, Salvador Peña-Haro, Alonso Pizarro, Dariia Strelnikova, Flavia Tauro, James Bomhof, Salvatore Grimaldi, Alain Goulet, Borbála Hortobágyi, Magali Jodeau, Sabine Käfer, Robert Ljubičić, Ian Maddock, Peter Mayr, Gernot Paulus, Lionel Pénard, Leigh Sinclair, and Salvatore Manfreda
Earth Syst. Sci. Data, 12, 1545–1559, https://doi.org/10.5194/essd-12-1545-2020, https://doi.org/10.5194/essd-12-1545-2020, 2020
Short summary
Short summary
We present datasets acquired from seven countries across Europe and North America consisting of image sequences. These have been subjected to a range of pre-processing methods in preparation for image velocimetry analysis. These datasets and accompanying reference data are a resource that may be used for conducting benchmarking experiments, assessing algorithm performances, and focusing future software development.
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
S. Manfreda, L. Brocca, T. Moramarco, F. Melone, and J. Sheffield
Hydrol. Earth Syst. Sci., 18, 1199–1212, https://doi.org/10.5194/hess-18-1199-2014, https://doi.org/10.5194/hess-18-1199-2014, 2014
Domenico Miglino, Khim Cathleen Saddi, Francesco Isgrò, Seifeddine Jomaa, Michael Rode, and Salvatore Manfreda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2172, https://doi.org/10.5194/egusphere-2024-2172, 2024
Short summary
Short summary
Turbidity is a key factor for water quality monitoring. We tested an image-based procedure in a full-scale river monitoring experiment using digital cameras. This procedure can increase our knowledge of the real status of water bodies, solving the spatial and temporal data resolution problems of the existing techniques, promoting also the development of early warning networks, moving water research forward thanks to a large increase of information and the reduction of operating expenses.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Alonso Pizarro, Silvano F. Dal Sasso, Matthew T. Perks, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 24, 5173–5185, https://doi.org/10.5194/hess-24-5173-2020, https://doi.org/10.5194/hess-24-5173-2020, 2020
Short summary
Short summary
An innovative approach is presented to optimise image-velocimetry performances for surface flow velocity estimates (and thus remotely sensed river discharges). Synthetic images were generated under different tracer characteristics using a numerical approach. Based on the results, the Seeding Distribution Index was introduced as a descriptor of the optimal portion of the video to analyse. A field case study was considered as a proof of concept of the proposed framework showing error reductions.
Matthew T. Perks, Silvano Fortunato Dal Sasso, Alexandre Hauet, Elizabeth Jamieson, Jérôme Le Coz, Sophie Pearce, Salvador Peña-Haro, Alonso Pizarro, Dariia Strelnikova, Flavia Tauro, James Bomhof, Salvatore Grimaldi, Alain Goulet, Borbála Hortobágyi, Magali Jodeau, Sabine Käfer, Robert Ljubičić, Ian Maddock, Peter Mayr, Gernot Paulus, Lionel Pénard, Leigh Sinclair, and Salvatore Manfreda
Earth Syst. Sci. Data, 12, 1545–1559, https://doi.org/10.5194/essd-12-1545-2020, https://doi.org/10.5194/essd-12-1545-2020, 2020
Short summary
Short summary
We present datasets acquired from seven countries across Europe and North America consisting of image sequences. These have been subjected to a range of pre-processing methods in preparation for image velocimetry analysis. These datasets and accompanying reference data are a resource that may be used for conducting benchmarking experiments, assessing algorithm performances, and focusing future software development.
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
S. Manfreda, L. Brocca, T. Moramarco, F. Melone, and J. Sheffield
Hydrol. Earth Syst. Sci., 18, 1199–1212, https://doi.org/10.5194/hess-18-1199-2014, https://doi.org/10.5194/hess-18-1199-2014, 2014
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Theory development
A pulse-decay method for low (matrix) permeability analyses of granular rock media
A signal-processing-based interpretation of the Nash–Sutcliffe efficiency
Impact of cry wolf effects on social preparedness and the efficiency of flood early warning systems
Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection
Managing uncertainty in flood protection planning with climate projections
A physical approach on flood risk vulnerability of buildings
Development of streamflow drought severity–duration–frequency curves using the threshold level method
Understanding flood regime changes in Europe: a state-of-the-art assessment
Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter
On teaching styles of water educators and the impact of didactic training
T-shaped competency profile for water professionals of the future
Ideal point error for model assessment in data-driven river flow forecasting
On the return period and design in a multivariate framework
Estimating strategies for multiparameter Multivariate Extreme Value copulas
Tao Zhang, Qinhong Hu, Behzad Ghanbarian, Derek Elsworth, and Zhiming Lu
Hydrol. Earth Syst. Sci., 27, 4453–4465, https://doi.org/10.5194/hess-27-4453-2023, https://doi.org/10.5194/hess-27-4453-2023, 2023
Short summary
Short summary
Tight rock is essential to various emerging fields of energy geosciences such as EGS and CCUS, but its ultra-low permeability is not easily measurable as a rigorous and rapid theory-based measurement technique for sub-nanodarcy levels is lacking. For the first time, we resolve this by providing an integrated technique (termed gas permeability technique) with coupled theoretical development, experimental procedures, and a data interpretation workflow.
Le Duc and Yohei Sawada
Hydrol. Earth Syst. Sci., 27, 1827–1839, https://doi.org/10.5194/hess-27-1827-2023, https://doi.org/10.5194/hess-27-1827-2023, 2023
Short summary
Short summary
The Nash–Sutcliffe efficiency (NSE) is a widely used score in hydrology, but it is not common in the other environmental sciences. One of the reasons for its unpopularity is that its scientific meaning is somehow unclear in the literature. This study attempts to establish a solid foundation for NSE from the viewpoint of signal progressing. This approach is shown to yield profound explanations to many open problems related to NSE. A generalized NSE that can be used in general cases is proposed.
Yohei Sawada, Rin Kanai, and Hitomu Kotani
Hydrol. Earth Syst. Sci., 26, 4265–4278, https://doi.org/10.5194/hess-26-4265-2022, https://doi.org/10.5194/hess-26-4265-2022, 2022
Short summary
Short summary
Although flood early warning systems (FEWS) are promising, they inevitably issue false alarms. Many false alarms undermine the credibility of FEWS, which we call a cry wolf effect. Here, we present a simple model that can simulate the cry wolf effect. Our model implies that the cry wolf effect is important if a community is heavily protected by infrastructure and few floods occur. The cry wolf effects get more important as the natural scientific skill to predict flood events is improved.
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Beatrice Dittes, Olga Špačková, Lukas Schoppa, and Daniel Straub
Hydrol. Earth Syst. Sci., 22, 2511–2526, https://doi.org/10.5194/hess-22-2511-2018, https://doi.org/10.5194/hess-22-2511-2018, 2018
Short summary
Short summary
There is large uncertainty in the future development of flood patterns, e.g., due to climate change. We quantify relevant uncertainties and show how they can be used for flood protection planning. We find that one ought to include an estimate of uncertainty that cannot be quantified from available data (hidden uncertainty), since projections and data at hand often cover only a limited range of the uncertainty spectrum. Furthermore, dependencies between climate projections must be accounted for.
B. Mazzorana, S. Simoni, C. Scherer, B. Gems, S. Fuchs, and M. Keiler
Hydrol. Earth Syst. Sci., 18, 3817–3836, https://doi.org/10.5194/hess-18-3817-2014, https://doi.org/10.5194/hess-18-3817-2014, 2014
J. H. Sung and E.-S. Chung
Hydrol. Earth Syst. Sci., 18, 3341–3351, https://doi.org/10.5194/hess-18-3341-2014, https://doi.org/10.5194/hess-18-3341-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
V. R. N. Pauwels, G. J. M. De Lannoy, H.-J. Hendricks Franssen, and H. Vereecken
Hydrol. Earth Syst. Sci., 17, 3499–3521, https://doi.org/10.5194/hess-17-3499-2013, https://doi.org/10.5194/hess-17-3499-2013, 2013
A. Pathirana, J. H. Koster, E. de Jong, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 16, 3677–3688, https://doi.org/10.5194/hess-16-3677-2012, https://doi.org/10.5194/hess-16-3677-2012, 2012
S. Uhlenbrook and E. de Jong
Hydrol. Earth Syst. Sci., 16, 3475–3483, https://doi.org/10.5194/hess-16-3475-2012, https://doi.org/10.5194/hess-16-3475-2012, 2012
C. W. Dawson, N. J. Mount, R. J. Abrahart, and A. Y. Shamseldin
Hydrol. Earth Syst. Sci., 16, 3049–3060, https://doi.org/10.5194/hess-16-3049-2012, https://doi.org/10.5194/hess-16-3049-2012, 2012
G. Salvadori, C. De Michele, and F. Durante
Hydrol. Earth Syst. Sci., 15, 3293–3305, https://doi.org/10.5194/hess-15-3293-2011, https://doi.org/10.5194/hess-15-3293-2011, 2011
G. Salvadori and C. De Michele
Hydrol. Earth Syst. Sci., 15, 141–150, https://doi.org/10.5194/hess-15-141-2011, https://doi.org/10.5194/hess-15-141-2011, 2011
Cited articles
Bellu, A., Fernandes, L. F. S., Cortes, R. M., and Pacheco, F. A.: A
framework model for the dimensioning and allocation of a detention basin
system: The case of a flood-prone mountainous watershed, J.
Hydrol., 533, 567–580, 2016.
Benjamin, J. R. and Cornell, C. A.: Probability, statistics, and
decision for civil engineers, Courier Corporation, Mineola, New York, 2014.
De Michele, C. A. R. L. O. and Salvadori, G.: On the derived flood
frequency distribution: analytical formulation and the influence of
antecedent soil moisture condition, J. Hydrol., 262, 245–258,
2002.
Di Baldassarre, G., Montanari, A., Lins, H., Koutsoyiannis, D., Brandimarte,
L., and Bloeschl, G.: Flood fatalities in Africa: from diagnosis to
mitigation, Geophys. Res. Lett., 37, L22402, https://doi.org/10.1029/2010GL045467, 2010.
Di Baldassarre, G., Martinez, F., Kalantari, Z., and Viglione, A.: Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation, Earth Syst. Dynam., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, 2017.
Eagleson P. S.: Dynamics of flood frequency, Water Resour Res., 8, 878–98,
1972.
Fiorentino, M.: La valutazione dei volumi dei volumi di piena nelle reti di
drenaggio urbano, Idrotecnica, 3, 141–152, 1985.
Franzi, L., Pezzoli, A., and Besana, A.: Flood Lamination Strategies for
Risk Reduction, River Basin Management, 113, 315, https://doi.org/10.5772/63553, 2016.
Gioia, A., Iacobellis, V., Manfreda, S., and Fiorentino, M.: Runoff thresholds in derived flood frequency distributions, Hydrol. Earth Syst. Sci., 12, 1295–1307, https://doi.org/10.5194/hess-12-1295-2008, 2008.
Jacob, A. C. P., Rezende, O. M., de Sousa, M. M., de França Ribeiro, L.
B., de Oliveira, A. K. B., Arrais, C. M., and Miguez, M. G.: Use of
detention basin for flood mitigation and urban requalification in Mesquita,
Brazil, Water Sci. Technol., 79, 2135–2144, 2019.
Manfreda, S.: Peak outflows of a detention basin, MATLAB Central File Exchange [model code], available at: https://www.mathworks.com/matlabcentral/fileexchange/95813-peak-outflows-of-a-detention-basin, last access: 27 July 2021.
Manfreda, S. and Fiorentino, M.: A stochastic approach for the description of the water balance dynamics in a river basin, Hydrol. Earth Syst. Sci., 12, 1189–1200, https://doi.org/10.5194/hess-12-1189-2008, 2008.
Manfreda S., Link, O., and Pizarro, A.: The Theoretically Derived Probability
Distribution of Scour, Water, 10, 1520, https://doi.org/10.3390/w10111520, 2018.
Munich Reinsurance Company [MunichRe]: Geo Risks Research,
NatCatSERVICE. © 2020 Münchener
Rückversicherungs-Gesellschaft, NatCatSERVICE, available at: https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html, last access: 26 May 2020.
Natural Environmental Research Council (NERC): Estimation of Flood Volumes
over Different Duration, in: Flood Studies Report; Volume
I, NERC: London, UK, pp. 352–373, 1975.
Papalexiou, S. M. and Montanari, A.: Global and regional increase of
precipitation extremes under global warming, Water Resour. Res., 55,
4901–4914, 2019.
Peduzzi, P.: Is climate change increasing the frequency of hazardous
events?, Environment and Poverty Times, 3, p. 7, 2005.
Plate, E. J.: Flood risk and flood management, J.
Hydrol., 267, 2–11, 2002.
Rodríguez-Iturbe, I. and Porporato, A.: Ecohydrology of water-controlled
ecosystems: soil moisture and plant dynamics, Cambridge University Press, Cambridge, USA, 2007.
Seibert, S. P., Skublics, D., and Ehret, U.: The potential of coordinated
reservoir operation for flood mitigation in large basins – A case study on
the Bavarian Danube using coupled hydrological – hydrodynamic models, J. Hydrol., 517, 1128–1144, 2014.
Urban Drainage and Flood Control District (UDFCD): Urban Storm Drainage Criteria Manual,
Volume 2, Denver, Colorado, available at: https://udfcd.org/wp-content/uploads/uploads/vol2 criteria manual/USDCM Volume 2.pdf (last access: 15 June 2020), 2016.
Wallemacq, P. and Below, R. : The human cost of natural disasters: A global perspective, Centre for Research on the Epidemiology of Disasters, Brussels, Belgium, 2015.
Winsemius, H. C., Aerts, J. C., Van Beek, L. P., Bierkens, M. F., Bouwman, A., Jongman, B., Kwadijk, J. C., Ligtvoet, W., Lucas, P. L., van Vuuren, D. P. and Ward, P. J.: Global drivers of future river flood risk, Nat.
Clim. Change, 6, 381–385, 2016.
Short summary
In this work, we introduce a new theoretically derived probability distribution of the outflows of in-line detention dams. The method may be used to evaluate the impact of detention dams on flood occurrences and attenuation of floods. This may help and support risk management planning and design.
In this work, we introduce a new theoretically derived probability distribution of the outflows...