Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2861-2021
https://doi.org/10.5194/hess-25-2861-2021
Technical note
 | 
27 May 2021
Technical note |  | 27 May 2021

Technical note: Accounting for snow in the estimation of root zone water storage capacity from precipitation and evapotranspiration fluxes

David N. Dralle, W. Jesse Hahm, K. Dana Chadwick, Erica McCormick, and Daniella M. Rempe

Related authors

Inclusion of bedrock vadose zone in dynamic global vegetation models is key for simulating vegetation structure and function
Dana A. Lapides, W. Jesse Hahm, Matthew Forrest, Daniella M. Rempe, Thomas Hickler, and David N. Dralle
Biogeosciences, 21, 1801–1826, https://doi.org/10.5194/bg-21-1801-2024,https://doi.org/10.5194/bg-21-1801-2024, 2024
Short summary

Cited articles

Arkley, R. J.: Soil moisture use by mixed conifer forest in a summer-dry climate, Soil Sci. Soc. Am. J., 45, 423–427, 1981. a
Botter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: Slow, leaching-prone components of the hydrologic response, Water Resour. Res., 43, W02417, https://doi.org/10.1029/2006WR005043, 2007. a
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 2031–2064, 2008. a
Daly, C., Smith, J. I., and Olson, K. V.: Mapping atmospheric moisture climatologies across the conterminous United States, PloS One, 10, e0141140, https://doi.org/10.1371/journal.pone.0141140, 2015. a
Dawson, T. E., Hahm, W. J., and Crutchfield-Peters, K.: Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology, New Phytol., 226, 666–671, https://doi.org/10.1111/nph.16410, 2020. a
Download
Short summary
Root zone water storage capacity determines how much water can be stored belowground to support plants during periods without precipitation. Here, we develop a satellite remote sensing method to estimate this key variable at large scales that matter for management. Importantly, our method builds on previous approaches by accounting for snowpack, which may bias estimates from existing approaches. Ultimately, our method will improve large-scale understanding of plant access to subsurface water.
Share