Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-2133-2021
https://doi.org/10.5194/hess-25-2133-2021
Research article
 | 
20 Apr 2021
Research article |  | 20 Apr 2021

How catchment characteristics influence hydrological pathways and travel times in a boreal landscape

Elin Jutebring Sterte, Fredrik Lidman, Emma Lindborg, Ylva Sjöberg, and Hjalmar Laudon

Related authors

Trends in hydroclimate extremes: How changes in winter conditions affect seasonal baseflow and storage
Tejshree Tiwari and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-337,https://doi.org/10.5194/hess-2024-337, 2024
Preprint under review for HESS
Short summary
Does peatland rewetting mitigate extreme rainfall events?
Shirin Karimi, Eliza Maher Hasselquist, Järvi Järveoja, Virginia Mosquera, and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-158,https://doi.org/10.5194/hess-2024-158, 2024
Revised manuscript under review for HESS
Short summary
Overview: Cascading spatial, seasonal, and temporal effects of permafrost thaw on streamflow in changing nested Arctic catchments
Alexa Marion Hinzman, Ylva Sjöberg, Steve W. Lyon, Wouter R. Berghuijs, and Ype van der Velde
EGUsphere, https://doi.org/10.5194/egusphere-2023-2391,https://doi.org/10.5194/egusphere-2023-2391, 2023
Preprint archived
Short summary
Groundwater flow paths drive longitudinal patterns of stream dissolved organic carbon (DOC) concentrations in boreal landscapes
Anna Lupon, Stefan Willem Ploum, Jason Andrew Leach, Lenka Kuglerová, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 27, 613–625, https://doi.org/10.5194/hess-27-613-2023,https://doi.org/10.5194/hess-27-613-2023, 2023
Short summary
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022,https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025,https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025,https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024,https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024,https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024,https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary

Cited articles

Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, 2017. 
Ameli, A. A., Amvrosiadi, N., Grabs, T., Laudon, H., Creed, I. F., McDonnell, J. J., and Bishop, K.: Hillslope permeability architecture controls on subsurface transit time distribution and flow paths, J. Hydrol., 543, 17–30, https://doi.org/10.1016/j.jhydrol.2016.04.071, 2016. 
Aubin, I., Boisvert-Marsh, L., Kebli, H., McKenney, D., Pedlar, J., Lawrence, K., Hogg, E. H., Boulanger, Y., Gauthier, S., and Ste-Marie, C.: Tree vulnerability to climate change: improving exposure-based assessments using traits as indicators of sensitivity, Ecosphere, 9, e02108, https://doi.org/10.1002/ecs2.2108, 2018. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303, https://doi.org/10.1038/nature04141, 2005. 
Download
Short summary
A numerical model was used to estimate annual and seasonal mean travel times across 14 long-term nested monitored catchments in the boreal region. The estimated travel times and young water fractions were consistent with observed variations of base cation concentration and stable water isotopes, δ18O. Soil type was the most important factor regulating the variation in mean travel times among sub-catchments, while the areal coverage of mires increased the young water fraction.