Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-2133-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-2133-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How catchment characteristics influence hydrological pathways and travel times in a boreal landscape
Department of Forest Ecology and Management, Swedish University of
Agricultural Sciences, 901 83 Umeå, Sweden
DHI Sweden AB, Skeppsbron 28, 111 30 Stockholm, Sweden
Fredrik Lidman
Department of Forest Ecology and Management, Swedish University of
Agricultural Sciences, 901 83 Umeå, Sweden
Emma Lindborg
DHI Sweden AB, Skeppsbron 28, 111 30 Stockholm, Sweden
Ylva Sjöberg
Center for Permafrost (CENPERM), Department of Geosciences and Natural
Resource Management, University of Copenhagen, Øster Voldgade 10, 1350
Copenhagen, Denmark
Hjalmar Laudon
Department of Forest Ecology and Management, Swedish University of
Agricultural Sciences, 901 83 Umeå, Sweden
Related authors
No articles found.
Tejshree Tiwari and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-337, https://doi.org/10.5194/hess-2024-337, 2024
Preprint under review for HESS
Short summary
Short summary
A 40-year hydro-climatic time series from the Krycklan catchment revealed warmer winters associated with higher baseflow and lower summer baseflow. Climate index models suggest that while warmer winters enhance baseflow, they reduce water reserves necessary for summer baseflow. This was supported by an increasing winter precipitation isotope signal in winter baseflow, contrasted with a decreasing isotope signal in summer baseflow.
Shirin Karimi, Eliza Maher Hasselquist, Järvi Järveoja, Virginia Mosquera, and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-158, https://doi.org/10.5194/hess-2024-158, 2024
Revised manuscript under review for HESS
Short summary
Short summary
There is an increasing interest in rewetting drained peatlands to regain their important ecosystem functions. However, as peatland rewetting is a relatively new strategy, the scientific foundation for this approach is not solid. Therefore, we investigated the impact of rewetting on flood mitigation using high-resolution hydrological field observations. Our results showed that peatland rewetting has significantly reduced peak flow, runoff coefficient, and mitigated flashy hydrograph responses.
Alexa Marion Hinzman, Ylva Sjöberg, Steve W. Lyon, Wouter R. Berghuijs, and Ype van der Velde
EGUsphere, https://doi.org/10.5194/egusphere-2023-2391, https://doi.org/10.5194/egusphere-2023-2391, 2023
Preprint archived
Short summary
Short summary
An Arctic catchment with permafrost responds in a linear fashion: water in=water out. As permafrost thaws, 9 of 10 nested catchments become more non-linear over time. We find upstream catchments have stronger streamflow seasonality and exhibit the most nonlinear storage-discharge relationships. Downstream catchments have the greatest increases in non-linearity over time. These long-term shifts in the storage-discharge relationship are not typically seen in current hydrological models.
Anna Lupon, Stefan Willem Ploum, Jason Andrew Leach, Lenka Kuglerová, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 27, 613–625, https://doi.org/10.5194/hess-27-613-2023, https://doi.org/10.5194/hess-27-613-2023, 2023
Short summary
Short summary
Discrete riparian inflow points (DRIPs) transport dissolved organic carbon (DOC) from large areas to discrete sections of streams, yet the mechanisms by which DRIPs affect stream DOC concentration, cycling, and export are still unknown. Here, we tested four models that account for different hydrologic and biological representations to show that DRIPs generally reduce DOC exports by either diluting stream DOC (snowmelt period) or promoting aquatic metabolism (summer).
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Nataliia Kozii, Kersti Haahti, Pantana Tor-ngern, Jinshu Chi, Eliza Maher Hasselquist, Hjalmar Laudon, Samuli Launiainen, Ram Oren, Matthias Peichl, Jörgen Wallerman, and Niles J. Hasselquist
Hydrol. Earth Syst. Sci., 24, 2999–3014, https://doi.org/10.5194/hess-24-2999-2020, https://doi.org/10.5194/hess-24-2999-2020, 2020
Short summary
Short summary
The hydrologic cycle is one of the greatest natural processes on Earth and strongly influences both regional and global climate as well as ecosystem functioning. Results from this study clearly show the central role trees play in regulating the water cycle of boreal catchments, implying that forest management impacts on stand structure as well as climate change effects on tree growth are likely to have large cascading effects on the way water moves through boreal forested landscapes.
Navid Ghajarnia, Georgia Destouni, Josefin Thorslund, Zahra Kalantari, Imenne Åhlén, Jesús A. Anaya-Acevedo, Juan F. Blanco-Libreros, Sonia Borja, Sergey Chalov, Aleksandra Chalova, Kwok P. Chun, Nicola Clerici, Amanda Desormeaux, Bethany B. Garfield, Pierre Girard, Olga Gorelits, Amy Hansen, Fernando Jaramillo, Jerker Jarsjö, Adnane Labbaci, John Livsey, Giorgos Maneas, Kathryn McCurley Pisarello, Sebastián Palomino-Ángel, Jan Pietroń, René M. Price, Victor H. Rivera-Monroy, Jorge Salgado, A. Britta K. Sannel, Samaneh Seifollahi-Aghmiuni, Ylva Sjöberg, Pavel Terskii, Guillaume Vigouroux, Lucia Licero-Villanueva, and David Zamora
Earth Syst. Sci. Data, 12, 1083–1100, https://doi.org/10.5194/essd-12-1083-2020, https://doi.org/10.5194/essd-12-1083-2020, 2020
Short summary
Short summary
Hydroclimate and land-use conditions determine the dynamics of wetlands and their ecosystem services. However, knowledge and data for conditions and changes over entire wetlandscapes are scarce. This paper presents a novel database for 27 wetlandscapes around the world, combining survey-based local information and hydroclimatic and land-use datasets. The developed database can enhance our capacity to understand and manage critical wetland ecosystems and their services under global change.
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary
Short summary
Near-stream areas, or riparian zones, are important for the health of streams and rivers. If these areas are disturbed by forestry or other anthropogenic activity, the water quality and all life in streams may be at risk. We examined which riparian areas are particularly sensitive. We found that only a few wet areas bring most of the rainwater from the landscape to the stream, and they have a unique water quality. In order to maintain healthy streams and rivers, these areas should be protected.
Aaron Smith, Doerthe Tetzlaff, Hjalmar Laudon, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 3319–3334, https://doi.org/10.5194/hess-23-3319-2019, https://doi.org/10.5194/hess-23-3319-2019, 2019
Short summary
Short summary
We adapted and used a spatially distributed eco-hydrological model, EcH2O-iso, to temporally evaluate the influence of soil freeze–thaw dynamics on evaporation and transpiration fluxes in a northern Swedish catchment. We used multi-criterion calibration over multiple years and found an early-season influence of soil frost on transpiration water ages. This work provides a framework for quantifying the current and future interactions of soil water, evaporation, and transpiration.
Marcus Klaus, Erik Geibrink, Anders Jonsson, Ann-Kristin Bergström, David Bastviken, Hjalmar Laudon, Jonatan Klaminder, and Jan Karlsson
Biogeosciences, 15, 5575–5594, https://doi.org/10.5194/bg-15-5575-2018, https://doi.org/10.5194/bg-15-5575-2018, 2018
Short summary
Short summary
Forest management is widely used to mitigate climate change. However, forest greenhouse gas (GHG) budgets neglect to consider that clear-cuts often release carbon and nitrogen into streams and lakes and may affect aquatic GHG emissions. Here, we show that such emissions remain unaffected by experimental boreal forest clear-cutting despite increased groundwater carbon dioxide and methane concentrations, highlighting that riparian zones or in-stream processes may have buffered clear-cut leachates.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Martin Berggren, Marcus Klaus, Balathandayuthabani Panneer Selvam, Lena Ström, Hjalmar Laudon, Mats Jansson, and Jan Karlsson
Biogeosciences, 15, 457–470, https://doi.org/10.5194/bg-15-457-2018, https://doi.org/10.5194/bg-15-457-2018, 2018
Short summary
Short summary
The quality of dissolved organic carbon (DOC), especially its color, is a defining feature of freshwater ecosystems. We found that colored DOC fractions are surprisingly resistant to natural degradation during water transit through many brown-water lakes. This is explained by the dominance of microbial processes that appear to selectively remove noncolored DOC. However, in lakes where sunlight degradation plays a relatively larger role, significant DOC bleaching occurs.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Pertti Ala-aho, Doerthe Tetzlaff, James P. McNamara, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, https://doi.org/10.5194/hess-21-5089-2017, 2017
Short summary
Short summary
We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate streamflows, stable water isotope ratios, snowpack dynamics, and water ages in three snow-influenced experimental catchments with exceptionally long and rich datasets. Our simulations reproduced the hydrological observations in all three catchments, suggested contrasting stream water age distributions between catchments, and demonstrated the importance of snow isotope processes in tracer-aided modelling.
Fredrik Lidman, Åsa Boily, Hjalmar Laudon, and Stephan J. Köhler
Biogeosciences, 14, 3001–3014, https://doi.org/10.5194/bg-14-3001-2017, https://doi.org/10.5194/bg-14-3001-2017, 2017
Short summary
Short summary
The riparian zone is the narrow strip of land that lines a watercourse. This is the last soil that the groundwater is in contact with before it enters the stream and it therefore has a high impact on the water quality. In this paper we show that many elements occur in elevated concentrations in the peat-like riparian zone of boreal headwaters and that this also leads to elevated concentrations in the streams. Hence, understanding riparian soils is crucial for a sustainable management of streams.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Tobias Lindborg, Johan Rydberg, Mats Tröjbom, Sten Berglund, Emma Johansson, Anders Löfgren, Peter Saetre, Sara Nordén, Gustav Sohlenius, Eva Andersson, Johannes Petrone, Micke Borgiel, Ulrik Kautsky, and Hjalmar Laudon
Earth Syst. Sci. Data, 8, 439–459, https://doi.org/10.5194/essd-8-439-2016, https://doi.org/10.5194/essd-8-439-2016, 2016
Short summary
Short summary
This paper presents a biogeochemical and ecological data set from the Kangerlussuaq region, western Greenland. The data set is used to conceptualize and model terrestrial and limnic ecosystems as well as the land–lake linkage. Both biotic and abiotic data is presented and will be used for biogeochemical mass-balance and transport calculations. The data set constitutes an important source in order to understand and describe accumulation and flow of matter within periglacial landscapes.
Stephen Oni, Martyn Futter, Jose Ledesma, Claudia Teutschbein, Jim Buttle, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 20, 2811–2825, https://doi.org/10.5194/hess-20-2811-2016, https://doi.org/10.5194/hess-20-2811-2016, 2016
Short summary
Short summary
This paper presents an important framework to improve hydrologic projections in cold regions. Hydrologic modelling/projections are often based on model calibration to long-term data. Here we used dry and wet years as a proxy to quantify uncertainty in projecting hydrologic extremes. We showed that projections based on long-term data could underestimate runoff by up to 35% in boreal regions. We believe the hydrologic modelling community will benefit from new insights derived from this study.
J. Schelker, R. Sponseller, E. Ring, L. Högbom, S. Löfgren, and H. Laudon
Biogeosciences, 13, 1–12, https://doi.org/10.5194/bg-13-1-2016, https://doi.org/10.5194/bg-13-1-2016, 2016
Short summary
Short summary
The scientific question that is addressed in this study is how forest disturbance affects organic and inorganic nitrogen export from a boreal landscape. The key findings are that the mobilization of inorganic nitrogen from the terrestrial environment to streams increased strongly as a response to harvesting, but the stream network removed a major fraction of this load before it reached the outlet, while organic nitrogen was not removed and transported downstream.
M. Haei and H. Laudon
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-15763-2015, https://doi.org/10.5194/bgd-12-15763-2015, 2015
Revised manuscript not accepted
M. Fritz, B. N. Deshpande, F. Bouchard, E. Högström, J. Malenfant-Lepage, A. Morgenstern, A. Nieuwendam, M. Oliva, M. Paquette, A. C. A. Rudy, M. B. Siewert, Y. Sjöberg, and S. Weege
The Cryosphere, 9, 1715–1720, https://doi.org/10.5194/tc-9-1715-2015, https://doi.org/10.5194/tc-9-1715-2015, 2015
Short summary
Short summary
This is a contribution about the future of permafrost research to the 3rd International Conference on Arctic Research Planning 2015 (ICARP III).
We summarize the top five research questions for the next decade of permafrost science from the perspective of early career researchers (ECRs).
We highlight the pathways and structural preconditions to address these research priorities.
This manuscript is an outcome of a community consultation conducted for and by ECRs on a global level.
A. A. Harpold, J. A. Marshall, S. W. Lyon, T. B. Barnhart, B. A. Fisher, M. Donovan, K. M. Brubaker, C. J. Crosby, N. F. Glenn, C. L. Glennie, P. B. Kirchner, N. Lam, K. D. Mankoff, J. L. McCreight, N. P. Molotch, K. N. Musselman, J. Pelletier, T. Russo, H. Sangireddy, Y. Sjöberg, T. Swetnam, and N. West
Hydrol. Earth Syst. Sci., 19, 2881–2897, https://doi.org/10.5194/hess-19-2881-2015, https://doi.org/10.5194/hess-19-2881-2015, 2015
Short summary
Short summary
This review's objective is to demonstrate the transformative potential of lidar by critically assessing both challenges and opportunities for transdisciplinary lidar applications in geomorphology, hydrology, and ecology. We find that using lidar to its full potential will require numerous advances, including more powerful open-source processing tools, new lidar acquisition technologies, and improved integration with physically based models and complementary observations.
F. I. Leith, K. J. Dinsmore, M. B. Wallin, M. F. Billett, K. V. Heal, H. Laudon, M. G. Öquist, and K. Bishop
Biogeosciences, 12, 1881–1892, https://doi.org/10.5194/bg-12-1881-2015, https://doi.org/10.5194/bg-12-1881-2015, 2015
Short summary
Short summary
Carbon dioxide transport between the terrestrial and aquatic systems was dominated by export from the near-stream riparian zone. Over the year, riparian export was highest during autumn storms and the spring snowmelt event. This resulted in high downstream export during these periods with vertical evasion from the stream surface accounting for 60% of the total stream water export, highlighting the importance of evasion to carbon export via the aquatic conduit.
Y. Sjöberg, P. Marklund, R. Pettersson, and S. W. Lyon
The Cryosphere, 9, 465–478, https://doi.org/10.5194/tc-9-465-2015, https://doi.org/10.5194/tc-9-465-2015, 2015
Short summary
Short summary
Permafrost peatlands are hydrological and biogeochemical hotspots in discontinuous permafrost areas. We estimate the depths to the permafrost table surface and base across a peatland in northern Sweden using ground penetrating radar and electrical resistivity tomography. Seasonal frost tables, taliks, and the permafrost base could be detected. The results highlight the added value of combining techniques for assessing distributions of permafrost in the rapidly changing sporadic permafrost zone.
H. Zarei, A. M. Akhondali, H. Mohammadzadeh, F. Radmanesh, and H. Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-3787-2014, https://doi.org/10.5194/hessd-11-3787-2014, 2014
Manuscript not accepted for further review
A. M. Ågren, I. Buffam, D. M. Cooper, T. Tiwari, C. D. Evans, and H. Laudon
Biogeosciences, 11, 1199–1213, https://doi.org/10.5194/bg-11-1199-2014, https://doi.org/10.5194/bg-11-1199-2014, 2014
E. Bosson, T. Lindborg, S. Berglund, L.-G. Gustafsson, J.-O. Selroos, H. Laudon, L. L. Claesson, and G. Destouni
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-9271-2013, https://doi.org/10.5194/hessd-10-9271-2013, 2013
Revised manuscript not accepted
J. L. J. Ledesma, T. Grabs, M. N. Futter, K. H. Bishop, H. Laudon, and S. J. Köhler
Biogeosciences, 10, 3849–3868, https://doi.org/10.5194/bg-10-3849-2013, https://doi.org/10.5194/bg-10-3849-2013, 2013
S. K. Oni, M. N. Futter, K. Bishop, S. J. Köhler, M. Ottosson-Löfvenius, and H. Laudon
Biogeosciences, 10, 2315–2330, https://doi.org/10.5194/bg-10-2315-2013, https://doi.org/10.5194/bg-10-2315-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Projections of streamflow intermittence under climate change in European drying river networks
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Achieving water budget closure through physical hydrological processes modelling: insights from a large-sample study
Analyzing the generalization capabilities of hybrid hydrological models for extrapolation to extreme events
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Heavy-tailed flood peak distributions: What is the effect of the spatial variability of rainfall and runoff generation?
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
State updating in the Xin'anjiang Model: Joint assimilating streamflow and multi-source soil moisture data via Asynchronous Ensemble Kalman Filter with enhanced Error Models
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric-hydrological model
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Scale-dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
A diversity centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
Exploring the Potential Processes Controls for Changes of Precipitation-Runoff Relationships in Non-stationary Environments
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Long Short-Term Memory Networks for Real-time Flood Forecast Correction: A Case Study for an Underperforming Hydrologic Model
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Catchments do not strictly follow Budyko curves over multiple decades but deviations are minor and predictable
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024, https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-272, https://doi.org/10.5194/hess-2024-272, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study projects how climate change will affect drying of river segments and stream networks in Europe, using advanced modeling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent, intense and start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists in evaluating the ecological health of river ecosystem.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-230, https://doi.org/10.5194/hess-2024-230, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets, which undermines the robustness of hydrological inferences. This study proposes a Multisource Datasets Correction Framework grounded in Physical Hydrological Processes Modelling to enhance water budget closure, called PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset, and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Eduardo Acuna Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-2147, https://doi.org/10.5194/egusphere-2024-2147, 2024
Short summary
Short summary
Data-driven techniques have shown the potential to outperform process-based models in rainfall-runoff simulations. Hybrid models, combining both approaches, aim to enhance accuracy and maintain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions we test their generalization capabilities for extreme hydrological events.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-181, https://doi.org/10.5194/hess-2024-181, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small compared to large catchments, and that spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show an effect. The results can improve estimations of occurrence probabilities of extreme floods.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-211, https://doi.org/10.5194/hess-2024-211, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping better prepare for and respond to floods.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1464, https://doi.org/10.5194/egusphere-2024-1464, 2024
Short summary
Short summary
Our study conducted a detailed analysis of runoff component and future trend in the Yarlung Tsangpo River basin owing to the existed differences in the published results, and find that the contributions of snowmelt and glacier melt runoff to streamflow were limited, both for ~5 % which were much lower than previous results. The streamflow there will continuously increase in the future, but the overestimated contribution from glacier melt would lead to an underestimation on such increasing trend.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart Lane, and Francesco Comiti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1687, https://doi.org/10.5194/egusphere-2024-1687, 2024
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until an overparametrization limit is reached.
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-169, https://doi.org/10.5194/hess-2024-169, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine-learning models are increasingly being applied for flood forecasting. Such models are typically trained to large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets, that maximise the spatiotemproal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-118, https://doi.org/10.5194/hess-2024-118, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study develops an integrated framework based on the novel Driving index for changes in Precipitation-Runoff Relationships (DPRR) to explore the controls for changes in precipitation-runoff relationships in non-stationary environments. According to the quantitative results of the candidate driving factors, the possible process explanations for changes in the precipitation-runoff relationships are deduced. The main contribution offers a comprehensive understanding of hydrological processes.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2024-1030, https://doi.org/10.5194/egusphere-2024-1030, 2024
Short summary
Short summary
Accurate early warning systems are crucial for reducing damages caused by flooding events. In this study, we demonstrate the potential of Long Short-Term Memory Networks for enhancing the forecast accuracy of hydrologic models employed in operational flood forecasting. The presented approach elevated the investigated hydrologic model’s forecast accuracy for further ahead predictions and at flood event runoff.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-120, https://doi.org/10.5194/hess-2024-120, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko Framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, Recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantified deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Cited articles
Abbott, B. W., Baranov, V., Mendoza-Lera, C., Nikolakopoulou, M., Harjung,
A., Kolbe, T., Balasubramanian, M. N., Vaessen, T. N., Ciocca, F., Campeau,
A., Wallin, M. B., Romeijn, P., Antonelli, M., Gonçalves, J., Datry, T.,
Laverman, A. M., de Dreuzy, J.-R., Hannah, D. M., Krause, S., Oldham, C., and
Pinay, G.: Using multi-tracer inference to move beyond single-catchment
ecohydrology, Earth-Science Rev., 160, 19–42,
https://doi.org/10.1016/j.earscirev.2016.06.014, 2016.
Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, 2017.
Ameli, A. A., Amvrosiadi, N., Grabs, T., Laudon, H., Creed, I. F.,
McDonnell, J. J., and Bishop, K.: Hillslope permeability architecture
controls on subsurface transit time distribution and flow paths, J. Hydrol.,
543, 17–30, https://doi.org/10.1016/j.jhydrol.2016.04.071, 2016.
Aubin, I., Boisvert-Marsh, L., Kebli, H., McKenney, D., Pedlar,
J., Lawrence, K., Hogg, E. H., Boulanger, Y., Gauthier, S., and Ste-Marie,
C.: Tree vulnerability to climate change: improving exposure-based
assessments using traits as indicators of
sensitivity, Ecosphere, 9, e02108, https://doi.org/10.1002/ecs2.2108, 2018.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature,
438, 303, https://doi.org/10.1038/nature04141, 2005.
Bishop, K. H.: Episodic increases in stream acidity, catchment flow
pathways and hydrograph separation, PhD dissertation, Department of Geography, University of Cambridge, Cambridge, UK, 1991.
Bishop, K., Seibert, J., Nyberg, L., and Rodhe, A.: Water storage in a till
catchment. II: Implications of transmissivity feedback for flow paths and
turnover times, Hydrol. Process., 25, 3950–3959,
https://doi.org/10.1002/hyp.8355, 2011.
Bjerklie, D. M., Lawrence Dingman, S., Vorosmarty, C. J., Bolster, C. H.,
and Congalton, R.G.: Evaluating the potential for measuring river discharge
from space. J. Hydrol., 278, 17–38,
https://doi.org/10.1016/S0022-1694(03)00129-X, 2003.
Bosson, E., Sassner, M., Sabel, U., and Gustafsson, L.-G.: Modelling of present and future hydrology and solute transport at Forsmark, SKB R-10-02 Svensk Kärnbränslehantering AB, Stockholm, 2010.
Bosson, E., Sabel, U., Gustafsson, L. G., Sassner, M., and Destouni, G.: Influences of shifts in climate, landscape, and permafrost on terrestrial hydrology, J. Geophys.Res.-Atmos. 117, D05120, https://doi.org/10.1029/2011JD016429, 2012.
Bosson, E., Selroos, J.-O., Stigsson, M., Gustafsson, L.-G., and Destouni,
G.: Exchange and pathways of deep and shallow groundwater in different
climate and permafrost conditions using the Forsmark site, Sweden, as an
example catchment, Hydrogeol. J., 21, 225–237,
https://doi.org/10.1007/s10040-012-0906-7, 2013.
Botter, G., Bertuzzo, E., and Rinaldo, A.: Transport in the hydrologic
response: Travel time distributions, soil moisture dynamics, and the old
water paradox, Water Resour. Res., 46, W03514, https://doi.org/10.1029/2009WR008371,
2010.
Brirhet, H. and Benaabidate, L.: Comparison Of Two Hydrological Models (Lumped And Distributed) Over A Pilot Area Of The Issen Watershed In The Souss Basin, Morocco, European Scientific Journal, ESJ, 12, 347, https://doi.org/10.19044/esj.2016.v12n18p347, 2016.
Brown, R., Vikhamar-Schuler, D., Bulygina, O., Derksen, C., Luojus, K.,
Mudryk, L., Wang, L., and Yang, D.: Arctic terrestrial snow cover, Chapter 3,
in: Snow, water, ice and permafrost in the arctic (SWIPA) 2017,
Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 25–64 pp., 2017.
Burns, D. A., Plummer, L. N., McDonnell, J. J., Busenberg, E., Casile, G. C., Kendall, C., Hooper, R. P., Freer, J. E., Peters, N. E., Beven, K., and Schlosser, P.: The Geochemical Evolution of Riparian Ground Water in a Forested Piedmont Catchment, Groundwater, 41, 913–925, https://doi.org/10.1111/j.1745-6584.2003.tb02434.x, 2003.
Danesh-Yazdi, M., Foufoula-Georgiou, E., Karwan, D. L., and Botter, G.:
Inferring changes in water cycle dynamics of intensively managed landscapes
via the theory of time-variant travel time distributions, Water Resour.
Res., 52, 7593–7614, https://doi.org/10.1002/2016WR019091, 2016.
Destouni, G., Simic, E., and Graham, W.: On the applicability of analytical
methods for estimating solute travel time statistics in nonuniform
groundwater flow, Water Resour. Res., 37, 2303–2308,
https://doi.org/10.1029/2001WR000348, 2001.
DHI: MIKE powered by DHI – MIKE software, available at:
https://www.mikepoweredbydhi.com, last access: 10 March 2021.
Erlandsson, M., Oelkers, E. H., Bishop, K., Sverdrup, H., Belyazid, S.,
Ledesma, J. L. J., and Köhler, S. J.: Spatial and temporal variations of
base cation release from chemical weathering on a hillslope scale, Chem.
Geol., 441, 1–13, https://doi.org/10.1016/j.chemgeo.2016.08.008, 2016.
Erlandsson Lampa, M., Sverdrup, H. U., Bishop, K. H., Belyazid, S., Ameli, A., and Köhler, S. J.: Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time, SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020, 2020.
Fenicia, F., Wrede, S., Kavetski, D., Pfister, L., Hoffmann, L., Savenije,
H. H. G., and McDonnell, J. J.: Assessing the impact of mixing assumptions
on the estimation of streamwater mean residence time, Hydrol.
Proc., 24, 1730–1741, https://doi.org/10.1002/hyp.7595, 2010.
Frisbee, M. D., Phillips, F. M., Campbell, A. R., Liu, F., and Sanchez, S.
A.: Streamflow generation in a large, alpine watershed in the southern Rocky
Mountains of Colorado: Is streamflow generation simply the aggregation of
hillslope runoff responses?, Water Resour. Res., 47, W06512,
https://doi.org/10.1029/2010WR009391, 2011.
Goldthwait, R. P.: Till : a symposium, First Edn., The Ohio State University
Press, Columbus, USA, 1971.
Goller, R., Wilcke, W., Leng, M. J., Tobschall, H. J., Wagner, K., Valarezo,
C., and Zech, W.: Tracing water paths through small catchments under a
tropical montane rain forest in south Ecuador by an oxygen isotope approach,
J. Hydrol., 308, 67–80,
https://doi.org/10.1016/J.JHYDROL.2004.10.022, 2005.
Graham, D. N. and Butts, M. B.: Flexible, integrated watershed modelling with MIKE SHE, in: Watershed Models, edited by: Singh, V. P. and Frevert, D. K., CRC Press, Taylor & Francis: Boca Raton, FL, USA, 245–272 pp., ISBN 0849336090, 2005.
Harman, C. J.: Time-variable transit time distributions and transport:
Theory and application to storage-dependent transport of chloride in a
watershed, Water Resour. Res., 51, 1–30,
https://doi.org/10.1002/2014WR015707, 2015.
Heidbüchel, I., Troch, P. A., Lyon, S. W., and Weiler, M.: The master
transit time distribution of variable flow systems, Water Resour. Res., 48, W06520,
https://doi.org/10.1029/2011WR011293, 2012.
Heidbüchel, I., Yang, J., Musolff, A., Troch, P., Ferré, T., and Fleckenstein, J. H.: On the shape of forward transit time distributions in low-order catchments, Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020, 2020.
Hooper, R. P., Stone, A., Christophersen, N., de Grosbois, E., and Seip, H.
M.: Assessing the Birkenes Model of stream acidification using a multisignal
calibration methodology, Water Resour. Res., 24, 1308–1316,
https://doi.org/10.1029/WR024i008p01308, 1988.
Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., and Soulsby, C.: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?, Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, 2013.
Hrachowitz, M., Fovet, O., Ruiz, L., and Savenije, H. H. G.: Transit time
distributions, legacy contamination and variability in biogeochemical
1/fα scaling: how are hydrological response dynamics linked to water
quality at the catchment scale?, Hydrol. Process., 29, 5241–5256,
https://doi.org/10.1002/hyp.10546, 2015.
Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O., Howden, N. J.,
Ruiz, L., van der Velde, Y., and Wade, A. J.: Transit times – the link between
hydrology and water quality at the catchment scale, WIREs Water, 3, 629–657,
https://doi.org/10.1002/wat2.1155, 2016.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, IPCC, Geneva, Switzerland, 151 pp., 2014.
Ivarsson H. and Johnson T.: Stratigraphy of the quaternary deposits in the Nyänget drainage area, within the Svartberget Forest Experimental Area, and a general geomorphological description of the Vindeln region, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden, Stencil 6, 61 pp., 1988.
Jian, J., Ryu, D., Costelloe, J. F., and Su, C.-H.: Towards hydrological
model calibration using river level measurements. J. Hydrol. Reg. Stud., 10,
95–109, https://doi.org/10.1016/j.ejrh.2016.12.085, 2017.
Johansson, E., Gustafsson, L. G., Berglund, S., Lindborg, T., Selroos, J. O., Claesson Liljedahl, L., and Destouni, G.: Data evaluation and numerical modeling of hydrological interactions between active layer, lake and talik in a permafrost catchment, Western Greenland. J. Hydrol. 527, 688–703, https://doi.org/10.1016/j.jhydrol.2015.05.026, 2015.
Joyce, S., Simpson, T., Hartley, L., Applegate, D., Hoek, J., Jackson, P., and Swan, D.: Groundwater flow modelling of periods with 105 temperate climate conditions, SKB R-09-20 Svensk Kärnbränslehantering AB, Stockholm, 2010.
Jungqvist G., Oni S. K., Teutschbein C., and Futter M. N.: Effect of Climate
Change on Soil Temperature in Swedish Boreal Forests, PLoS ONE, 9, e93957,
https://doi.org/10.1371/journal.pone.0093957, 2014.
Jutebring Sterte, E., Johansson, E., Sjöberg, Y., Huseby Karlsen, R.,
and Laudon, H.: Groundwater-surface water interactions across scales in a
boreal landscape investigated using a numerical modelling approach, J. Hydrol., 560, 184–201, https://doi.org/10.1016/J.JHYDROL.2018.03.011,
2018.
Jutebring Sterte, E., Lindborg, E., Lidman, F., Laudon, H., Huseby Karlsen, R., and Sjöberg, Y.:
Surface-ground water interaction: From watershed processes to hyporheic exchange, Safe Deposit, available at: https://www.safedeposit.se/projects/166 (last access: 10 March 2021), 2020.
Kaandorp, V. P., de Louw, P. G. B., van der Velde, Y., and Broers, H.
P.: Transient Groundwater Travel Time Distributions and Age-Ranked
Storage-Discharge Relationships of Three Lowland Catchments, Water Resour.
Res., 54, 4519–4536, https://doi.org/10.1029/2017WR022461, 2018.
Karlsen, R. H., Grabs, T., Bishop, K., Buffam, I., Laudon, H., and Seibert,
J.: Landscape controls on spatiotemporal discharge variability in a boreal
catchment, Water Resour. Res., 52, 6541–6556,
https://doi.org/10.1002/2016WR019186, 2016.
Kirchner, J. W.: Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrol. Earth Syst. Sci., 20, 279–297, https://doi.org/10.5194/hess-20-279-2016, 2016.
Klaminder, J., Grip, H., Morth, C.-M., and Laudon, H.: Carbon mineralization
and pyrite oxidation in groundwater: Importance for silicate weathering in
boreal forest soils and stream base-flow chemistry, Appl. Geochem.,
26, 319–324, https://doi.org/10.1016/j.apgeochem.2010.12.005, 2011.
Klaus, J., Zehe, E., Elsner, M., Külls, C., and McDonnell, J. J.: Macropore flow of old water revisited: experimental insights from a tile-drained hillslope, Hydrol. Earth Syst. Sci., 17, 103–118, https://doi.org/10.5194/hess-17-103-2013, 2013.
Kolbe, T., Marçais, J., de Dreuzy, J.-R., Labasque, T., Bishop, K.: Lagged
rejuvenation of groundwater indicates internal flow structures and
hydrological connectivity, Hydrol. Process., 34, 2176–2189,
https://doi.org/10.1002/hyp.13753, 2020.
Kralik, M.: How to Estimate Mean Residence Times of Groundwater, Proced.
Earth Plan. Sc., 13, 301–306,
https://doi.org/10.1016/J.PROEPS.2015.07.070, 2015.
Kristensen, K. J. and S. E. Jensen.: A model for estimating actual
evapotranspiration from potential evapotranspiration, Royal Veterinary and
Agricultural University, Nord. Hydrol., 6, 170–188, 1975.
Krycklan Database: Hydrological Research at Krycklan Catchment Study,
available at: https://www.slu.se/Krycklan (last access: 10 March 2021), 2013.
Laudon, H. and Sponseller, R. A.: How landscape organization and scale shape
catchment hydrology and biogeochemistry: insights from a long-term catchment
study, WIREs Water, 5, e1265, https://doi.org/10.1002/wat2.1265, 2018.
Laudon, H., Seibert, J., Köhler, S., and Bishop, K.: Hydrological flow
paths during snowmelt: Congruence between hydrometric measurements and
oxygen 18 in meltwater, soil water, and runoff, Water Resour. Res., 40,
W03102, https://doi.org/10.1029/2003WR002455, 2004.
Laudon, H., Sjöblom, V., Buffam, I., Seibert, J., and Mörth, M.: The
role of catchment scale and landscape characteristics for runoff generation
of boreal streams, J. Hydrol., 344, 198–209, 2007.
Laudon, H., Berggren, M., Ågren, A., Buffam, I., Bishop, K., Grabs, T., Jansson, J., and Köhler, S.: Patterns and Dynamics of
Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes,
Connectivity, and Scaling, Ecosystems, 14, 880–893,
https://doi.org/10.1007/s10021-011-9452-8, 2011.
Laudon, H., Taberman, I., Ågren, A., Futter, M., Ottosson-Löfvenius,
M., and Bishop, K.: The Krycklan Catchment Study – A flagship infrastructure
for hydrology, biogeochemistry, and climate research in the boreal
landscape, Water Resour. Res., 49, 7154–7158,
https://doi.org/10.1002/wrcr.20520, 2013.
Leach, J. A. and Laudon, H.: Headwater lakes and their influence on
downstream discharge, Limnology and Oceanography Letters, 4, 105–112,
https://doi.org/10.1002/lol2.10110, 2019.
Ledesma, J. L. J., Grabs, T., Futter, M. N., Bishop, K. H., Laudon, H., and Köhler, S. J.: Riparian zone control on base cation concentration in boreal streams, Biogeosciences, 10, 3849–3868, https://doi.org/10.5194/bg-10-3849-2013, 2013.
Ledesma, J. L. J., Futter, M. N., Blackburn, M., F., Lidman, F., Grabs, T., Sponseller, R. A., Laudon, H., Bishop, K. H., and Köhler, S. J.: Towards an Improved Conceptualization of Riparian
Zones in Boreal Forest Headwaters, Ecosystems, 21, 297–315,
https://doi.org/10.1007/s10021-017-0149-5, 2018.
Li, C., Liu, J., Yu, F., Tian, J., Wang, Y., and Qiu, Q.: Hydrological model calibration in data-limited catchments using non-continuous data series with different lengths, EPiC Series in Engineering 3, EasyChair, Palermo, Italy, 1155–1161 pp., 2018.
Lidman, F., Köhler, S. J., Morth, C.-M., and Laudon, H.: Metal transport
in the boreal landscape – the role of wetlands and the affinity for organic
matter, Environmental Science & Technology,
https://doi.org/10.1021/es4045506, 2014.
Lidman, F., Peralta-Tapia, A., Vesterlund, A., and Laudon, H.: 234U 238U in
a boreal stream network – Relationship to hydrological events, groundwater
and scale, Chem. Geol., 420, 240–250, https://doi.org/10.1016/j.chemgeo.2015.11.014,
2016.
Lidman, F., Boily, Å., Laudon, H., and Köhler, S. J.: From soil water to surface water – how the riparian zone controls element transport from a boreal forest to a stream, Biogeosciences, 14, 3001–3014, https://doi.org/10.5194/bg-14-3001-2017, 2017.
Lin, H.: Earth's Critical Zone and hydropedology: concepts, characteristics, and advances, Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, 2010.
Lutz, S. R., Krieg, R., Müller, C., Zink, M., Knöller, K.,
Samaniego, L., and Merz, R.: Spatial Patterns of Water Age: Using Young
Water Fractions to Improve the Characterization of Transit Times in
Contrasting Catchments, Water Resour. Res., 54, 4767–4784,
https://doi.org/10.1029/2017WR022216, 2018.
Lyon, S. W., Ploum, S. W., van der Velde, Y., Rocher-Ros, G., Mörth,
C.-M., and Giesler, R.: Lessons learned from monitoring the stable water
isotopic variability in precipitation and streamflow across a snow-dominated
subarctic catchment, Arct. Antarct. Alp. Res., 50, e1454778,
https://doi.org/10.1080/15230430.2018.1454778, 2018.
Massoudieh, A., Sharifi, S., and Solomon, D. K.: Bayesian evaluation of
groundwater age distribution using radioactive tracers and anthropogenic
chemicals, Water Resour. Res., 48,
https://doi.org/10.1029/2012WR011815, 2012.
Massoudieh, A., Dentz, M., and Alikhani, J.: A spatial Markov model for the
evolution of the joint distribution of groundwater age, arrival time, and
velocity in heterogeneous media, Water Resour. Res., 53, 5495–5515,
https://doi.org/10.1002/2017WR020578, 2017.
Maulé, C. P. and Stein, J.: Hydrologic Flow Path Definition and
Partitioning of Spring Meltwater, Water Resour. Res., 26,
2959–2970, https://doi.org/10.1029/WR026i012p02959, 1990.
McDonnell, J. J. and Beven, K.: Debates – The future of hydrological
sciences: A (common) path forward? A call to action aimed at understanding
velocities, celerities and residence time distributions of the headwater
hydrograph, Water Resour. Res., 50, 5342–5350,
https://doi.org/10.1002/2013WR015141, 2014.
McDonnell, J. J., McGuire, K., Aggarwal, P., Beven, K. J., Biondi, D., Destouni, G., Dunn, S., James, A., Kirchner, J., Kraft, P. J. H. P., and Lyon, S.: How old is streamwater? Open questions in catchment
travel time conceptualization, modelling and analysis, Hydrol.
Process., 24, 1745–1754, https://doi.org/10.1002/hyp.7796, 2010.
McGuire, K. J. and McDonnell, J. J.: A review and evaluation of catchment
transit time modeling, J. Hydrol., 330, 543–563,
https://doi.org/10.1016/j.jhydrol.2006.04.020, 2006.
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L.,
Welker, J. M., and Seibert, J.: The role of topography on catchment-scale
water residence time, Water Resour. Res., 41, W05002,
https://doi.org/10.1029/2004WR003657, 2005.
McGuire, K. J., Weiler, M., and McDonnell, J. J.: Integrating tracer
experiments with modeling to assess runoff processes and water transit
times, Adv. Water Resour., 30, 824–837,
https://doi.org/10.1016/j.advwatres.2006.07.004, 2007.
Morris, D. A. and Johnson, A. I.: Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the US Geological Survey, 1948–60, No. 1839-D, US Government Printing Office, https://doi.org/10.3133/wsp1839D, 1967.
Nyberg, L.: Water flow path interactions with soil hydraulic properties in
till soil at Gårdsjön, Sweden, J. Hydrol., 170,
255–275, https://doi.org/10.1016/0022-1694(94)02667-Z,
1995.
Peralta-Tapia, A., Sponseller, R. A., Ågren, A., Tetzlaff, D., Soulsby,
C., and Laudon, H.: Scale-dependent groundwater contributions influence
patterns of winter baseflow stream chemistry in boreal catchments, J. Geophys. Res.-Biogeo., 120, 847–858,
https://doi.org/10.1002/2014JG002878, 2015.
Peralta-Tapia, A., Soulsby, C., Tetzlaff, D., Sponseller, R., Bishop, K.,
and Laudon, H.: Hydroclimatic influences on non-stationary travel time
distributions in a boreal headwater catchment, J. Hydrol., 543, 7–16,
https://doi.org/10.1016/j.jhydrol.2016.01.079, 2016.
Peters, N. E., Burns, D. A., and Aulenbach, B. T.: Evaluation of High-Frequency
Mean Streamwater Transit-Time Estimates Using Groundwater Age and Dissolved
Silica Concentrations in a Small Forested Watershed, Aquat. Geochem., 20,
183–202, https://doi.org/10.1007/s10498-013-9207-6, 2014.
Rahim, B. E. A., Yusoff, I., Jafri, A. M., Othman, Z., and Abdul Ghani, A.:
Application of MIKE SHE modelling system to set up a detailed water balance
computation, Water Environ. J., 26, 490–503, https://doi.org/10.1111/j.1747-6593.2012.00309.x, 2012.
Remondi, F., Kirchner, J. W., Burlando, P., and Fatichi, S.: Water flux
tracking with a distributed hydrological model to quantify controls on the
spatio-temporal variability of transit time distributions, Water Resour.
Res., 54, 3081–3099, 2018.
Rinaldo, A., Beven, K. J., Bertuzzo, E., Nicotina, L., Davies, J., Fiori,
A., Russo, D., and Botter, G.: Catchment travel time distributions and water
flow in soils, Water Resour. Res., 47, W07537, https://doi.org/10.1029/2011WR010478,
2011.
Rodhe, A., Nyberg, L., and Bishop, K.: Transit Times for Water in a Small
Till Catchment from a Step Shift in the Oxygen 18 Content of the Water
Input, Water Resour. Res., 32, 3497–3511,
https://doi.org/10.1029/95WR01806, 1996.
Seibert, J., Rodhe, A., and Bishop, K.: Simulating interactions between
saturated and unsaturated storage in a conceptual runoff model, Hydrol.
Process., 17, 379–390, https://doi.org/10.1002/hyp.1130, 2003.
Seibert, J., Grabs, T., Köhler, S., Laudon, H., Winterdahl, M., and Bishop, K.: Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model, Hydrol. Earth Syst. Sci., 13, 2287–2297, https://doi.org/10.5194/hess-13-2287-2009, 2009.
Sishodia, R. P., Shukla, S., Graham, W. D., Wani, S. P., Jones, J. W., and
Heaney, J.: Current and future groundwater withdrawals: Effects, management
and energy policy options for a semi-arid Indian watershed, Adv. Water
Resour., 110, 459–475, https://doi.org/10.1016/j.advwatres.2017.05.014,
2017.
Soltani, S. S.: Hydrological Transport in Shallow Catchments: tracer discharge, travel time and water age., PhD diss., KTH Royal Institute of Technology, Stockholm, Sweden, 2017.
Spence, C. and Phillips, R. W.: Refining understanding of hydrological
connectivity in a boreal catchment, Hydrol. Process., 29, 3491–3503,
https://doi.org/10.1002/hyp.10270, 2015.
Spence, C., Guan, X. J., and Phillips, R.: The Hydrological Functions of a
Boreal Wetland, Wetlands, 31, 75–85,
https://doi.org/10.1007/s13157-010-0123-x, 2011.
Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., and Soulsby, C.: Water ages in the critical zone of long-term experimental sites in northern latitudes, Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, 2018.
Stockinger, M. P., Bogena, H. R., Lücke, A., Stumpp, C., and Vereecken, H.: Time variability and uncertainty in the fraction of young water in a small headwater catchment, Hydrol. Earth Syst. Sci., 23, 4333–4347, https://doi.org/10.5194/hess-23-4333-2019, 2019.
Swedish Geological Survey: Soil depth to bedrock map, available at: https://www.sgu.se/en/products/maps (last access: 18 April 2016), 2016.
Taagepera, R.: Making Social Sciences More Scientific: The Need for
Predictive Models, Oxford University Press, Oxford,
https://doi.org/10.1093/acprof:oso/9780199534661.001.0001, 2008.
Tetzlaff, D. and Soulsby, C.: Sources of baseflow in larger catchments –
Using tracers to develop a holistic understanding of runoff generation,
J. Hydrol., 359, 287–302, 2008.
Tetzlaff, D., Seibert, J., McGuire, K. J., Laudon, H., Burns, D. A., Dunn,
S. M., and Soulsby, C.: How does landscape structure influence catchment
transit time across different geomorphic provinces?, Hydrol. Process., 23,
945–953, https://doi.org/10.1002/hyp.7240, 2009.
Tetzlaff, D., Buttle, J., Carey, S. K., McGuire, K., Laudon, H., and Soulsby,
C.: Tracer based assessment of flow paths, storage and runoff generation in
northern catchments: a review, Hydrol. Process., 29, 3475–3490,
https://doi.org/10.1002/hyp.10412, 2015.
Tiwari, T., Buffam, I., Sponseller, R. A., and Laudon, H.: Inferring
scale-dependent processes influencing stream water biogeochemistry from
headwater to sea, Limnology and Oceanography, 62, S58–S70,
https://doi.org/10.1002/lno.10738, 2017.
Tremblay, L., Larocque, M., Anctil, F., and Rivard C.: Teleconnections and
interannual variability in Canadian groundwater levels, J.
Hydrol., 410, 178–188, https://doi.org/10.1016/j.jhydrol.2011.09.013, 2011.
Uhlenbrook, S., Frey, M., Leibundgut, C., and Maloszewski, P.: Hydrograph
separations in a mesoscale mountainous basin at event and seasonal
timescales, Water Resour. Res., 38, 14–31,
https://doi.org/10.1029/2001WR000938, 2002.
Unlu, E. and Faller, J. F.: Geometric mean vs. Arithmetic mean in
extrusion residence time studies, Polym. Eng. Sci., 41, 743–751,
https://doi.org/10.1002/pen.10770, 2001.
van der Velde, Y., Heidbüchel, I., Lyon, S. W., Nyberg, L., Rodhe, A., Bishop,
K., and Troch, P. A.: Consequences of mixing assumptions for time-variable
travel time distributions, Hydrol. Process., 29, 3460–3474, https://doi.org/10.1002/hyp.10372, 2015.
van der Velde, Y., Torfs, P. J. J. F., Zee, S. E. A. T. M., and Uijlenhoet,
R.: Quantifying catchment-scale mixing and its effect on time-varying travel
time distributions, Water Resour. Res., 48, W06536,
https://doi.org/10.1029/2011WR011310, 2012.
von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments, Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, 2018.
Wang, L., van Meerveld, H. J., and Seibert, J.: When should stream water be
sampled to be most informative for event-based, multi-criteria model
calibration?, Hydrol. Res., 48, 1566–1584, https://doi.org/10.2166/nh.2017.197, 2017.
Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., and Yao, A.: Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China, Hydrol. Earth Syst. Sci., 16, 4621–4632, https://doi.org/10.5194/hess-16-4621-2012, 2012.
Wijesekara, G. N., Farjad, B., Gupta, A., Qiao, Y., Delaney, P., and Marceau,
D. J.: A Comprehensive Land-Use/Hydrological Modeling System for Scenario
Simulations in the Elbow River Watershed, Alberta, Canada, Environ. Manage.,
53, 357–381, https://doi.org/10.1007/s00267-013-0220-8, 2014.
Wolock, D. M., Fan, J., and Lawrence, G. B.: Effects of basin size on
low-flow stream chemistry and subsurface contact time in the Neversink River
watershed, New York, Hydrol. Process., 11, 1273–1286,
https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1273::AID-HYP557>3.0.CO;2-S, 1997.
Yang, J., Heidbüchel, I., Musolff, A., Reinstorf, F., and Fleckenstein,
J. H.: Exploring the dynamics of transit times and subsurface mixing in a
small agricultural catchment, Water Resour. Res., 54, 2317–2335,
https://doi.org/10.1002/2017WR021896, 2018.
Zhang, C. and Zhang, S.: A robust-symmetric mean: A new way of mean calculation
for environmental data, GeoJournal, 40, 209–212,
https://doi.org/10.1007/BF00222547, 1996.
Zimmer, M. A., Bailey, S. W., McGuire, K. J., and Bullen, T. D.: Fine scale
variations of surface water chemistry in an ephemeral to perennial drainage
network, Hydrol. Process., 27, 3438–3451,
https://doi.org/10.1002/hyp.9449, 2012.
Short summary
A numerical model was used to estimate annual and seasonal mean travel times across 14 long-term nested monitored catchments in the boreal region. The estimated travel times and young water fractions were consistent with observed variations of base cation concentration and stable water isotopes, δ18O. Soil type was the most important factor regulating the variation in mean travel times among sub-catchments, while the areal coverage of mires increased the young water fraction.
A numerical model was used to estimate annual and seasonal mean travel times across 14 long-term...