Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1259-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1259-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of karst areas on runoff generation, lateral flow and interbasin groundwater flow at the storm-event timescale
Martin Le Mesnil
CORRESPONDING AUTHOR
LISAH, Univ. Montpellier, INRAE, IRD, Institut Agro, Montpellier,
France
BRGM, Univ. Montpellier, Montpellier, France
G-eau, INRAE, CIRAD, IRD, AgroParisTech, Institut Agro, BRGM,
Montpellier, France
Roger Moussa
LISAH, Univ. Montpellier, INRAE, IRD, Institut Agro, Montpellier,
France
Jean-Baptiste Charlier
BRGM, Univ. Montpellier, Montpellier, France
G-eau, INRAE, CIRAD, IRD, AgroParisTech, Institut Agro, BRGM,
Montpellier, France
Yvan Caballero
BRGM, Univ. Montpellier, Montpellier, France
G-eau, INRAE, CIRAD, IRD, AgroParisTech, Institut Agro, BRGM,
Montpellier, France
Related authors
No articles found.
Markus Giese, Yvan Caballero, Andreas Hartmann, and Jean-Baptiste Charlier
EGUsphere, https://doi.org/10.5194/egusphere-2024-2078, https://doi.org/10.5194/egusphere-2024-2078, 2024
Short summary
Short summary
Groundwater recharge and flow processes are difficult to quantify on a larger scale. Therefore, it is difficult to assess groundwater resources, substantially used for fresh water supply, and their changes over time. In karst areas, groundwater drainage networks over large areas are generated due to the soluble rocks. The observation of discharge from springs provides an alternative to estimate changes in groundwater resources over time, which can be connected to changing climatic conditions.
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Proc. IAHS, 385, 103–109, https://doi.org/10.5194/piahs-385-103-2024, https://doi.org/10.5194/piahs-385-103-2024, 2024
Short summary
Short summary
Mediterranean water resources are more than ever exposed to the increasing demand of demographic and climatic evolution. To better understand these challenges, this article aimed to collect a hydrological database, establish a new climatic classification for hydrology purposes, identify the physiographic variability and homogeneity in the case of mountainous karstic catchments under snow influence, and analyzed the hydrological balance of 55 catchments according to different functional models.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Valentin Dall'Alba, Philippe Renard, Julien Straubhaar, Benoit Issautier, Cédric Duvail, and Yvan Caballero
Hydrol. Earth Syst. Sci., 24, 4997–5013, https://doi.org/10.5194/hess-24-4997-2020, https://doi.org/10.5194/hess-24-4997-2020, 2020
Short summary
Short summary
Due to climate and population evolution, increased pressure is put on the groundwater resource, which calls for better understanding and models. In this paper, we describe a novel workflow to model the geological heterogeneity of coastal aquifers and apply it to the Roussillon plain (southern France). The main strength of the workflow is its capability to model aquifer heterogeneity when only sparse data are available while honoring the local geological trends and quantifying uncertainty.
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci., 24, 4503–4521, https://doi.org/10.5194/hess-24-4503-2020, https://doi.org/10.5194/hess-24-4503-2020, 2020
Short summary
Short summary
With serious concerns about global change rising in the Mediterranean, we established a new climatic classification to follow hydrological and ecohydrological activities. The classification coincided with a geographical distribution ranging from the most seasonal and driest class in the south to the least seasonal and most humid in the north. RCM scenarios showed that northern classes evolve to southern ones with shorter humid seasons and earlier snowmelt which might affect hydrologic regimes.
Mounir Mahdade, Nicolas Le Moine, Roger Moussa, Oldrich Navratil, and Pierre Ribstein
Hydrol. Earth Syst. Sci., 24, 3513–3537, https://doi.org/10.5194/hess-24-3513-2020, https://doi.org/10.5194/hess-24-3513-2020, 2020
Short summary
Short summary
We present an automatic procedure based on wavelet ridge extraction to identify some characteristics of alternating morphological units (e.g., pools to riffles). We used four hydro-morphological variables (velocity, hydraulic radius, bed shear stress, local channel direction angle). We find that the wavelengths are consistent with the values of the literature, and the use of a multivariate approach yields more robust results and ensures a consistent covariance of flow variables.
Jean-Pierre Vergnes, Nicolas Roux, Florence Habets, Philippe Ackerer, Nadia Amraoui, François Besson, Yvan Caballero, Quentin Courtois, Jean-Raynald de Dreuzy, Pierre Etchevers, Nicolas Gallois, Delphine J. Leroux, Laurent Longuevergne, Patrick Le Moigne, Thierry Morel, Simon Munier, Fabienne Regimbeau, Dominique Thiéry, and Pascal Viennot
Hydrol. Earth Syst. Sci., 24, 633–654, https://doi.org/10.5194/hess-24-633-2020, https://doi.org/10.5194/hess-24-633-2020, 2020
Short summary
Short summary
The AquiFR hydrogeological modelling platform aims to provide
short-term-to-seasonal hydrological forecasts over France for daily water management and long-term simulations for climate impact studies. The results described in this study confirm the feasibility of gathering independent groundwater models into the same numerical tool. This new tool encourages the development of groundwater modelling, and it has the potential to be valuable for many operational and research applications.
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-381, https://doi.org/10.5194/hess-2019-381, 2019
Manuscript not accepted for further review
Short summary
Short summary
This Mediterranean climatic classification is useful in following up water resources management and ecohydrological applications. Climatic classes ranged from the most seasonal and dry in the South to the least seasonal and most humid in the North, showing up the climatic continuity and change trends visibility. The climate change impact simulated under RCP scenarios showed an increase of the average seasonality and aridity, with north classes slowly evolving towards moderate southern classes.
Camille Jourdan, Valérie Borrell-Estupina, David Sebag, Jean-Jacques Braun, Jean-Pierre Bedimo Bedimo, François Colin, Armand Crabit, Alain Fezeu, Cécile Llovel, Jules Rémy Ndam Ngoupayou, Benjamin Ngounou Ngatcha, Sandra Van-Exter, Eric Servat, and Roger Moussa
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-116, https://doi.org/10.5194/hess-2019-116, 2019
Publication in HESS not foreseen
Short summary
Short summary
In the theme Panta Rhei, this paper aims to develop a combined approach of data acquisition and a new semi-distributed non-stationary model taking into account land-use changes to reconstruct and predict annual runoff on an urban catchment in a data-sparse context. We use historical data and deploy a complementary short-term spatially-dense dedicated instrumentation. Applications were conducted on the tropical Mefou catchment (Yaoundé, Cameroon) to assess contributions of sub-catchments.
Philippe Cattan, Jean-Baptiste Charlier, Florence Clostre, Philippe Letourmy, Luc Arnaud, Julie Gresser, and Magalie Jannoyer
Hydrol. Earth Syst. Sci., 23, 691–709, https://doi.org/10.5194/hess-23-691-2019, https://doi.org/10.5194/hess-23-691-2019, 2019
Short summary
Short summary
We investigated the management of long-term environmental pollution by organochlorine pesticides. We selected the case of chlordecone on the island of Martinique. We propose a conceptual model of organochlorine fate accounting for physical conditions relative to soils and geology. This model explains pollution variability in water but also the dynamics of pollution trends. It helps to identify risky areas where pollution will last for a long time and where more attention is needed.
Cybèle Cholet, Jean-Baptiste Charlier, Roger Moussa, Marc Steinmann, and Sophie Denimal
Hydrol. Earth Syst. Sci., 21, 3635–3653, https://doi.org/10.5194/hess-21-3635-2017, https://doi.org/10.5194/hess-21-3635-2017, 2017
Short summary
Short summary
This paper aims to improve the understanding of transport processes in karst aquifers, which remains a great challenge due to its complex nature. A framework is proposed to identify and quantify the spatio-temporal variability of lateral exchanges along a karst conduit network during flood events, for both flow and solute transport. An inverse problem approach is used on discharge and water mineralization data sets and gives new insights into the hydrogeological behavior of such complex systems.
Roger Moussa and Jean-Paul Lhomme
Hydrol. Earth Syst. Sci., 20, 4867–4879, https://doi.org/10.5194/hess-20-4867-2016, https://doi.org/10.5194/hess-20-4867-2016, 2016
Short summary
Short summary
A new physically based formulation is proposed to extend the Budyko framework under non-steady-state conditions, taking into account the change in water storage. The new formulation, which introduces an additional parameter, represents a generic framework applicable to any Budyko function at various time steps. It is compared to other formulations from the literature and the analytical solution of Greve et al. (2016) appears to be a particular case.
Jean-Paul Lhomme and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 4857–4865, https://doi.org/10.5194/hess-20-4857-2016, https://doi.org/10.5194/hess-20-4857-2016, 2016
Short summary
Short summary
The Budyko functions are matched with the complementary evaporation relationship. We show that there is a functional dependence between the Budyko functions and the drying power of the air. Examining the case where potential evaporation is calculated by means of a Priestley–Taylor type equation with a varying coefficient, we show that this coefficient should have a specified value as a function of the Budyko shape parameter and the aridity index.
Bruno Cheviron and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 3799–3830, https://doi.org/10.5194/hess-20-3799-2016, https://doi.org/10.5194/hess-20-3799-2016, 2016
Short summary
Short summary
This review paper investigates the determinants of modelling choices for numerous applications of 1-D free-surface flow and morphodynamics in hydrology and hydraulics. Each case study has a signature composed of given contexts (spatiotemporal scales, flow typology, and phenomenology) and chosen concepts (refinement and subscales of the flow model). This review proposes a normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.
Y. Caballero and B. Ladouche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-10109-2015, https://doi.org/10.5194/hessd-12-10109-2015, 2015
Revised manuscript has not been submitted
C. Leauthaud, G. Belaud, S. Duvail, R. Moussa, O. Grünberger, and J. Albergel
Hydrol. Earth Syst. Sci., 17, 3059–3075, https://doi.org/10.5194/hess-17-3059-2013, https://doi.org/10.5194/hess-17-3059-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Heavy-tailed flood peak distributions: What is the effect of the spatial variability of rainfall and runoff generation?
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
State updating in the Xin'anjiang Model: Joint assimilating streamflow and multi-source soil moisture data via Asynchronous Ensemble Kalman Filter with enhanced Error Models
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
The Significance of the Leaf-Area-Index on the Evapotranspiration Estimation in SWAT-T for Characteristic Land Cover Types of Western Africa
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Multi-model approach in a variable spatial framework for streamflow simulation
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Toward interpretable LSTM-based modeling of hydrological systems
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
What controls the tail behaviour of flood series: rainfall or runoff generation?
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
On the need for physical constraints in deep learning rainfall–runoff projections under climate change: a sensitivity analysis to warming and shifts in potential evapotranspiration
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-181, https://doi.org/10.5194/hess-2024-181, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small compared to large catchments, and that spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show an effect. The results can improve estimations of occurrence probabilities of extreme floods.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-211, https://doi.org/10.5194/hess-2024-211, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping better prepare for and respond to floods.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-131, https://doi.org/10.5194/hess-2024-131, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
ET is computed from vegetation (plant transpiration) and soil (soil evaporation). In Western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented with the leaf-area-index (LAI). In this study, we evaluate the importance of LAI for the ET calculation. We take a close look at the LAI-ET interaction and show the relevance to consider both, LAI and ET. Our work contributes to the understanding of the processes of the terrestrial water cycle.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024, https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Short summary
Hydrologists strive to “Be right for the right reasons” when modeling the hydrologic cycle; however, the datasets available to validate hydrological models are sparse, and in many cases, they comprise streamflow observations at the outlets of large catchments. In this work, we show that matching streamflow observations at the outlet of a large basin is not a reliable indicator of a correct description of the small-scale runoff processes.
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Short summary
This study examines the relationship between air and river temperatures in Washington's Snoqualmie and Wenatchee basins. We used classification and regression approaches to show that the sensitivity of river temperature to air temperature is variable across basins and controlled largely by geology and snowmelt. Findings can be used to inform strategies for river basin restoration and conservation, such as identifying climate-insensitive areas of the basin that should be preserved and protected.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-57, https://doi.org/10.5194/hess-2024-57, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. In this work we investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analysis indicate that adding two vegetation is enough to improve the representation of evaporation, and the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024, https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Short summary
In some watersheds, the severity of the dry season has a large impact on aquatic ecosystems. In this study, we design a way to predict, 5–6 months in advance, how severe the dry season will be in a rural watershed in northern California. This early warning can support seasonal adaptive management. To predict these two values, we assess data about snow, rain, groundwater, and river flows. We find that maximum snowpack and total wet season rainfall best predict dry season severity.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt
Hydrol. Earth Syst. Sci., 28, 545–573, https://doi.org/10.5194/hess-28-545-2024, https://doi.org/10.5194/hess-28-545-2024, 2024
Short summary
Short summary
Virtual stream gauging enables continuous streamflow estimation where a gauge might be difficult or impractical to install. We reconstructed flow at 27 gauges of the National Ecological Observatory Network (NEON), informing ~199 site-months of missing data in the official record and improving that accuracy of official estimates at 11 sites. This study shows that machine learning, but also routine regression methods, can be used to supplement existing gauge networks and reduce monitoring costs.
Sungwook Wi and Scott Steinschneider
Hydrol. Earth Syst. Sci., 28, 479–503, https://doi.org/10.5194/hess-28-479-2024, https://doi.org/10.5194/hess-28-479-2024, 2024
Short summary
Short summary
We investigate whether deep learning (DL) models can produce physically plausible streamflow projections under climate change. We address this question by focusing on modeled responses to increases in temperature and potential evapotranspiration and by employing three DL and three process-based hydrological models. The results suggest that physical constraints regarding model architecture and input are necessary to promote the physical realism of DL hydrological projections under climate change.
Cited articles
Bailly-Comte, V., Jourde, H., and Pistre, S.: Conceptualization and
classification of groundwater–surface water hydrodynamic interactions in
karst watersheds: Case of the karst watershed of the Coulazou River
(Southern France), J. Hydrol., 376, 456–462,
https://doi.org/10.1016/j.jhydrol.2009.07.053, 2009.
Bailly-Comte, V., Borrell-Estupina, V., Jourde, H., and Pistre, S.: A
conceptual semidistributed model of the Coulazou River as a tool for
assessing surface water-karst groundwater interactions during flood in
Mediterranean ephemeral rivers: karst contribution to surface flow, Water
Resour. Res., 48, W09534, 2012.
Bakalowicz, M.: Karst groundwater: a challenge for new resources,
Hydrogeol. J., 13, 148–160,
https://doi.org/10.1007/s10040-004-0402-9, 2005.
Basha, H. A.: Flow Recession Equations for Karst Systems, Water Resour.
Res., 56, e2020WR027384, https://doi.org/10.1029/2020WR027384, 2020.
Bell, F. C. and Om Kar, S.: Characteristic response times in design flood
estimation, J. Hydrol., 8, 173–196,
https://doi.org/10.1016/0022-1694(69)90120-6, 1969.
Bonacci, O.: Karst hydrogeology/hydrology of dinaric chain and isles,
Environ. Earth Sci., 74, 37–55,
https://doi.org/10.1007/s12665-014-3677-8, 2015.
Bonacci, O. and Bojanić, D.: Rhythmic karst springs, Hydrol.
Sci., J., 36, 35–47, https://doi.org/10.1080/02626669109492483,
1991.
Bonacci, O., Ljubenkov, I., and Roje-Bonacci, T.: Karst flash floods: an example from the Dinaric karst (Croatia), Nat. Hazards Earth Syst. Sci., 6, 195–203, https://doi.org/10.5194/nhess-6-195-2006, 2006.
Bouaziz, L., Weerts, A., Schellekens, J., Sprokkereef, E., Stam, J., Savenije, H., and Hrachowitz, M.: Redressing the balance: quantifying net intercatchment groundwater flows, Hydrol. Earth Syst. Sci., 22, 6415–6434, https://doi.org/10.5194/hess-22-6415-2018, 2018.
Champeaux, J. L., Laurantin, O., Mercier, B., et al.: Quantitative precipitation estimations using rain gauges and radar networks: inventory and prospects at Meteo-France, in: WMO Joint Meeting of CGS Expert Team on Surface-based Remotely-sensed Observations and CIMO Expert Team on Operational Remote Sensing, 2011.
Charlier, J.-B., Bertrand, C., and Mudry, J.: Conceptual hydrogeological
model of flow and transport of dissolved organic carbon in a small Jura
karst system, J. Hydrol., 460/461, 52–64,
https://doi.org/10.1016/j.jhydrol.2012.06.043, 2012.
Charlier J.-B., Desprats J.-F., and Ladouche B.: Appui au SCHAPI 2014 – Module 1 – Rôle et contribution des eaux souterraines d'origine karstique dans les crues de la Loue à Chenecey-Buillon, BRGM/RP‐63844‐FR report, 109 pp., available at: https://infoterre.brgm.fr/rapports/RP-63844-FR.pdf (last access: 22 April 2020), 2014.
Charlier, J.-B., Moussa, R., Bailly-Comte, V., Danneville, L., Desprats,
J.-F., Ladouche, B., and Marchandise, A.: Use of a flood-routing model to
assess lateral flows in a karstic stream: implications to the
hydrogeological functioning of the Grands Causses area (Tarn River, Southern
France), Environ. Earth Sci., 74, 7605–7616,
https://doi.org/10.1007/s12665-015-4704-0, 2015.
Charlier, J., Moussa, R., David, P., and Desprats, J.: Quantifying peakflow
attenuation/amplification in a karst river using the diffusive wave model
with lateral flow, Hydrol. Process., 33, 2337–2354,
https://doi.org/10.1002/hyp.13472, 2019.
Cholet, C., Charlier, J.-B., Moussa, R., Steinmann, M., and Denimal, S.: Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection–diffusion equation, Hydrol. Earth Syst. Sci., 21, 3635–3653, https://doi.org/10.5194/hess-21-3635-2017, 2017.
Covino, T., McGlynn, B., and Mallard, J.: Stream-groundwater exchange and
hydrologic turnover at the network scale: hydrologic turnover at the network
scale, Water Resour. Res., 47, W12521,
https://doi.org/10.1029/2011WR010942, 2011.
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J.-D.,
Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., and Gaume, E.: The
catastrophic flash-flood event of 8–9 September 2002 in the Gard Region,
France: a first case study for the Cévennes-Vivarais Mediterranean
Hydrometeorological Observatory, J. Hydrometeorol., 6, 34–52,
2005.
De Waele, J., Martina, M. L. V., Sanna, L., Cabras, S., and Cossu, Q. A.:
Flash flood hydrology in karstic terrain: Flumineddu Canyon, central-east
Sardinia, Geomorphology, 120, 162–173,
https://doi.org/10.1016/j.geomorph.2010.03.021, 2010.
Dingman, S. L.: Physical Hydrology, Third Edition, Waveland Press, Long Grove, Illinois, USA, 2015.
Eakin, T. E.: A regional interbasin groundwater system in the White River
Area, southeastern Nevada, Water Resour. Res., 2, 251–271,
https://doi.org/10.1029/WR002i002p00251, 1966.
Eckhardt, K.: How to construct recursive digital filters for baseflow
separation, Hydrol. Process., 19, 507–515,
https://doi.org/10.1002/hyp.5675, 2005.
Edijatno De Oliveira Nascimento, N., Yang, X., Makhlouf, Z., and Michel, C.:
GR3J: a daily watershed model with three free parameters, Hydrol.
Sci. J., 44, 263–277,
https://doi.org/10.1080/02626669909492221, 1999.
Fan, Y.: Are catchments leaky?, WIRES-Water,
6, 6:e1386, https://doi.org/10.1002/wat2.1386, 2019.
Gárfias-Soliz, J., Llanos-Acebo, H., and Martel, R.: Time series and
stochastic analyses to study the hydrodynamic characteristics of karstic
aquifers, Hydrol. Process., 24, 300–316, https://doi.org/10.1002/hyp.7487,
2009.
Genereux, D. P., Jordan, M. T., and Carbonell, D.: A paired-watershed budget
study to quantify interbasin groundwater flow in a lowland rain forest,
Costa Rica: rainforest watershed budgets, Water Resour. Res., 41, W04011,
https://doi.org/10.1029/2004WR003635, 2005.
Gustard, A., Bullock, A., and Dixon, J. M.: Low flow estimation in the United
Kingdom, Institute of Hydrology, Wallingford, UK, 20–23, 1992.
Hakoun, V. and Manlay, A.: Rhydro: a set of tools to access discharge and water levels data from the French databases (Version v1), Zenodo, https://doi.org/10.5281/zenodo.3744183, 2020.
Hartmann, A., Weiler, M., Wagener, T., Lange, J., Kralik, M., Humer, F., Mizyed, N., Rimmer, A., Barberá, J. A., Andreo, B., Butscher, C., and Huggenberger, P.: Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties, Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, 2013.
Laaha, G. and Blöschl, G.: Seasonality indices for regionalizing low
flows, Hydrol. Process., 20, 3851–3878,
https://doi.org/10.1002/hyp.6161, 2006.
Le Bas, C.: “bdgsf_classe_ru.zip”, Carte de la Réserve Utile en eau issue de la Base de Données Géographique des Sols de France, https://doi.org/10.15454/JPB9RB/HUY6TJ, Portail Data INRAE, V2, 2018.
Lebecherel, L., Andréassian, V., and Perrin, C.: On regionalizing the
Turc-Mezentsev water balance formula: Turc-Mezentsev water balance formula,
Water Resour. Res., 49, 7508–7517,
https://doi.org/10.1002/2013WR013575, 2013.
Le Mesnil, M., Charlier, J.-B., Moussa, R., Caballero, Y., and Dörfliger,
N.: Interbasin groundwater flow: Characterization, role of karst areas,
impact on annual water balance and flood processes, J. Hydrol.,
585, 124583, https://doi.org/10.1016/j.jhydrol.2020.124583, 2020.
Le Moine, N., Andréassian, V., Perrin, C., and Michel, C.: How can
rainfall-runoff models handle intercatchment groundwater flows? Theoretical
study based on 1040 French catchments: dealing with IGF in rainfall-runoff
models, Water Resour. Res., 43, W06428, https://doi.org/10.1029/2006WR005608, 2007.
Le Moine, N., Andréassian, V., and Mathevet, T.: Confronting surface- and
groundwater balances on the La Rochefoucauld-Touvre karstic system
(Charente, France): closing the catchment-scale water balance – a case
study, Water Resour. Res., 44, W03403, https://doi.org/10.1029/2007WR005984, 2008.
López-Chicano, M., Calvache, M. L., Martín-Rosales, W., and Gisbert,
J.: Conditioning factors in flooding of karstic poljes – the case of the
Zafarraya polje (South Spain), Catena, 49, 331–352,
https://doi.org/10.1016/S0341-8162(02)00053-X, 2002.
Lvovich, M. I.: World water resources, present and future, GeoJournal, 3,
423–433, https://doi.org/10.1007/BF00455981, 1979.
Lyne, V. and Hollick, M.: Stochastic time-variable rainfall-runoff modelling, Institute of Engineers Australia National Conference, Vol. 1979, Institute of Engineers Australia, Barton, Australia, 1979.
Maillet, E. T.: Essais d'hydraulique souterraine & fluviale, A. Hermann, Paris, France, 1905.
Mallard, J., McGlynn, B., and Covino, T.: Lateral inflows, stream-groundwater
exchange, and network geometry influence stream water composition, Water
Resour. Res., 50, 4603–4623, https://doi.org/10.1002/2013WR014944,
2014.
Maréchal, J. C., Ladouche, B., and Dörfliger, N.: Karst flash
flooding in a Mediterranean karst, the example of Fontaine de Nîmes,
Eng. Geol., 99, 138–146,
https://doi.org/10.1016/j.enggeo.2007.11.013, 2008.
Marty, R., Zin, I., and Obled, C.: Sensitivity of hydrological ensemble
forecasts to different sources and temporal resolutions of probabilistic
quantitative precipitation forecasts: flash flood case studies in the
Cévennes-Vivarais region (Southern France): sensitivity of hydrological
ensemble forecasts to PQPF, Hydrol. Process., 27, 33–44,
https://doi.org/10.1002/hyp.9543, 2013.
Merz, R. and Blöschl, G.: Regionalisation of catchment model parameters,
J. Hydrol., 287, 95–123,
https://doi.org/10.1016/j.jhydrol.2003.09.028, 2004.
Moussa, R.: Analytical Hayami solution for the diffusive wave flood routing
problem with lateral inflow, Hydrol. Process., 10, 1209–1227,
https://doi.org/10.1002/(SICI)1099-1085(199609)10:9<1209::AID-HYP380>3.0.CO;2-2, 1996.
Moussa, R. and Bocquillon, C.: Criteria for the choice of flood-routing
methods in natural channels, J. Hydrol., 186, 1–30,
https://doi.org/10.1016/S0022-1694(96)03045-4, 1996.
Moussa, R. and Majdalani, S.: Evaluating lateral flow in an experimental
channel using the diffusive wave inverse problem, Adv. Water
Resour., 127, 120–133, https://doi.org/10.1016/j.advwatres.2019.03.009,
2019.
Nathan, R. J. and McMahon, T. A.: Evaluation of automated techniques for
base flow and recession analyses, Water Resour. Res., 26,
1465–1473, https://doi.org/10.1029/WR026i007p01465, 1990.
Nguyen, V. T., Dietrich, J., and Uniyal, B.: Modeling interbasin groundwater
flow in karst areas: Model development, application, and calibration
strategy, Environ. Modell. Softw., 124, 104606,
https://doi.org/10.1016/j.envsoft.2019.104606, 2020.
Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.:
Spatial proximity, physical similarity, regression and ungaged catchments: A
comparison of regionalization approaches based on 913 French catchments, Water Resour. Res., 44, W03413, https://doi.org/10.1029/2007WR006240, 2008.
Parajka, J., Merz, R., and Blöschl, G.: A comparison of regionalisation methods for catchment model parameters, Hydrol. Earth Syst. Sci., 9, 157–171, https://doi.org/10.5194/hess-9-157-2005, 2005.
Perrin, J.-L. and Tournoud, M.-G.: Hydrological processes controlling flow
generation in a small Mediterranean catchment under karstic influence,
Hydrol. Sci. J., 54, 1125–1140,
https://doi.org/10.1623/hysj.54.6.1125, 2009.
Piggott, A. R., Moin, S., and Southam, C.: A revised approach to the UKIH
method for the calculation of baseflow, Hydrol. Sci. J.,
50, 920, https://doi.org/10.1623/hysj.2005.50.5.911, 2005.
Raghunath, H. M.: Hydrology: Principles, Analysis And Design, New Age
International, New Delhi, India, 2006.
Rutledge, A. T.: Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records: Update. No. 98, US Department of the Interior, US Geological Survey, 1998.
Satterthwaite, F. E.: An Approximate Distribution of Estimates of Variance
Components, Biometrics Bull., 2, 110–114,
https://doi.org/10.2307/3002019, 1946.
Scanlon, B. R., Mace, R. E., Barrett, M. E., and Smith, B.: Can we simulate
regional groundwater flow in a karst system using equivalent porous media
models? Case study, Barton Springs Edwards aquifer, USA, J.
Hydrol., 276, 137–158,
https://doi.org/10.1016/S0022-1694(03)00064-7, 2003.
Schaller, M. F. and Fan, Y.: River basins as groundwater exporters and
importers: Implications for water cycle and climate modeling, J.
Geophys. Res., 114, D04103, 2009.
Sivapalan, M., Yaeger, M. A., Harman, C. J., Xu, X., and Troch, P. A.:
Functional model of water balance variability at the catchment scale: 1.
Evidence of hydrologic similarity and space-time symmetry: space-time
symmetry of water variability, Water Resour. Res., 47, W02522,
https://doi.org/10.1029/2010WR009568, 2011.
Sloto, R. A. and Crouse, M. Y.: HYSEP: A Computer Program for
Streamflow Hydrograph Separation and Analysis, ater-resources investigations report, vol. 96, p. 4040, 1996.
Tabary, P.: The New French Operational Radar Rainfall Product. Part I:
Methodology, Weather Forecast., 22, 393–408,
https://doi.org/10.1175/WAF1004.1, 2007.
Tang, W. and Carey, S. K.: HydRun: A Matlab toolbox for rainfall-runoff
analysis, Hydrol. Process., 31, 2670–2682,
https://doi.org/10.1002/hyp.11185, 2017.
Thiéry, D.: Logiciel GARDÉNIA, version 8.2, Guide d'utilisation, BRGM/RP-62797-FR report, 143 p., Orléans, available at: http://infoterre.brgm.fr/rapports/RP-62797-FR.pdf (last access: 9 March 2021), 2014.
Thornthwaite, C. W.: An Approach toward a Rational Classification of
Climate, Geogr. Rev., 38, 55–94, https://doi.org/10.2307/210739,
1948.
Todini, E.: The ARNO rainfall – runoff model, J. Hydrol.,
175, 339–382, https://doi.org/10.1016/S0022-1694(96)80016-3, 1996.
Tóth, J.: A theoretical analysis of groundwater flow in small drainage
basins, J. Geophys. Res., 68, 4795–4812,
https://doi.org/10.1029/JZ068i016p04795, 1963.
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux,
J.-M.: A 50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644,
https://doi.org/10.1002/joc.2003, 2010.
Zanon, F., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., Bonnifait, L.,
and Delrieu, G.: Hydrological analysis of a flash flood across a climatic
and geologic gradient: The September 18, 2007 event in Western Slovenia,
J. Hydrol., 394, 182–197,
https://doi.org/10.1016/j.jhydrol.2010.08.020, 2010.
Short summary
We present an innovative approach consisting of the statistical analysis and comparison of 15 hydrological descriptors, characterizing catchment response to rainfall events. The distribution of these descriptors is analysed according to the occurrence of karst areas inside 108 catchments. It shows that karst impacts on storm events mainly result in river losses and that interbasin groundwater flows can represent a significant part of the catchment water budget ah the event timescale.
We present an innovative approach consisting of the statistical analysis and comparison of 15...