Articles | Volume 24, issue 10
https://doi.org/10.5194/hess-24-4763-2020
https://doi.org/10.5194/hess-24-4763-2020
Research article
 | Highlight paper
 | 
05 Oct 2020
Research article | Highlight paper |  | 05 Oct 2020

Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow

Shannon M. Sterling, Sarah MacLeod, Lobke Rotteveel, Kristin Hart, Thomas A. Clair, Edmund A. Halfyard, and Nicole L. O'Brien

Related authors

The Surface Water Chemistry (SWatCh) database: a standardized global database of water chemistry to facilitate large-sample hydrological research
Lobke Rotteveel, Franz Heubach, and Shannon M. Sterling
Earth Syst. Sci. Data, 14, 4667–4680, https://doi.org/10.5194/essd-14-4667-2022,https://doi.org/10.5194/essd-14-4667-2022, 2022
Short summary
Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe
Adriaan J. Teuling, Emile A. G. de Badts, Femke A. Jansen, Richard Fuchs, Joost Buitink, Anne J. Hoek van Dijke, and Shannon M. Sterling
Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019,https://doi.org/10.5194/hess-23-3631-2019, 2019
Short summary
Evaluating and improving the Community Land Model's sensitivity to land cover
Ronny Meier, Edouard L. Davin, Quentin Lejeune, Mathias Hauser, Yan Li, Brecht Martens, Natalie M. Schultz, Shannon Sterling, and Wim Thiery
Biogeosciences, 15, 4731–4757, https://doi.org/10.5194/bg-15-4731-2018,https://doi.org/10.5194/bg-15-4731-2018, 2018
Short summary
Global patterns of annual actual evapotranspiration with land-cover type: knowledge gained from a new observation-based database
S. M. Ambrose and S. M. Sterling
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-12103-2014,https://doi.org/10.5194/hessd-11-12103-2014, 2014
Revised manuscript has not been submitted
Terrestrial liming to promote Atlantic Salmon recovery in Nova Scotia – approaches needed and knowledge gained after a trial application
S. M. Sterling, C. Angelidis, M. Armstrong, K. M. Biagi, T. A. Clair, N. Jackson, and A. Breen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-10117-2014,https://doi.org/10.5194/hessd-11-10117-2014, 2014
Revised manuscript has not been submitted

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Theory development
Rediscovering Robert E. Horton's lake evaporation formulae: new directions for evaporation physics
Solomon Vimal and Vijay P. Singh
Hydrol. Earth Syst. Sci., 26, 445–467, https://doi.org/10.5194/hess-26-445-2022,https://doi.org/10.5194/hess-26-445-2022, 2022
Short summary
Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model
Georgiy Kirillin, Ilya Aslamov, Vladimir Kozlov, Roman Zdorovennov, and Nikolai Granin
Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020,https://doi.org/10.5194/hess-24-1691-2020, 2020
Short summary
Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate
Jennifer C. Murphy
Hydrol. Earth Syst. Sci., 24, 991–1010, https://doi.org/10.5194/hess-24-991-2020,https://doi.org/10.5194/hess-24-991-2020, 2020
Short summary
Freshwater pearl mussels from northern Sweden serve as long-term, high-resolution stream water isotope recorders
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020,https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Integrating network topology metrics into studies of catchment-level effects on river characteristics
Eleanore L. Heasley, Nicholas J. Clifford, and James D. A. Millington
Hydrol. Earth Syst. Sci., 23, 2305–2319, https://doi.org/10.5194/hess-23-2305-2019,https://doi.org/10.5194/hess-23-2305-2019, 2019
Short summary

Cited articles

Akaike, H.: A new look at statistical-model identification, IEEE Trans. Autom. Control, 19, 716–723, 1974. 
Bailey, S. W., Driscoll, C. T., and Hornbeck, J. W.: Acid-base chemistry and aluminum transport in an acidic watershed and pond in New Hampshire, Biogeochemistry, 28, 69–91, 1995. 
Baldigo, B. P. and Lawrence, G. B.: Composition of fish communities in relation to stream acidification and habitat in the Neversink River, New York, T. Am. Fish. Soc., 129, 60–76, 2000. 
Bates, D., Maechler, M., Bolker, B., and Walker, S.: Fitting linear mixed-effects models using lme4, J. Stat. Soft., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015. 
Beneš, F., Horecký, J., Senoo, T., Kamasová, L., Lamačová, A., Tátosová, J., Hardekopf, D. W., and Stuchlík, E.: Evidence for responses in water chemistry and macroinvertebrates in a strongly acidified mountain stream, Biologia, 72, 1049–1058, 2017. 
Download
Short summary
Wild salmon numbers in Nova Scotia, Canada, have been plummeting in recent decades. In 2014, we launched an ionic aluminium monitoring program in Nova Scotia to see if this toxic element was a threat to salmon populations. We found that all 10 monitored rivers had ionic aluminium concentrations that exceeded the threshold for aquatic health. Our results demonstrate that elevated aluminium still threatens aquatic ecosystems and that delays in recovery from acid rain remains a critical issue.