Research article
05 Oct 2020
Research article | 05 Oct 2020
Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow
Shannon M. Sterling et al.
Related authors
Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe
Adriaan J. Teuling, Emile A. G. de Badts, Femke A. Jansen, Richard Fuchs, Joost Buitink, Anne J. Hoek van Dijke, and Shannon M. Sterling
Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019,https://doi.org/10.5194/hess-23-3631-2019, 2019
Short summary
Evaluating and improving the Community Land Model's sensitivity to land cover
Ronny Meier, Edouard L. Davin, Quentin Lejeune, Mathias Hauser, Yan Li, Brecht Martens, Natalie M. Schultz, Shannon Sterling, and Wim Thiery
Biogeosciences, 15, 4731–4757, https://doi.org/10.5194/bg-15-4731-2018,https://doi.org/10.5194/bg-15-4731-2018, 2018
Short summary
Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe
Adriaan J. Teuling, Emile A. G. de Badts, Femke A. Jansen, Richard Fuchs, Joost Buitink, Anne J. Hoek van Dijke, and Shannon M. Sterling
Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019,https://doi.org/10.5194/hess-23-3631-2019, 2019
Short summary
Evaluating and improving the Community Land Model's sensitivity to land cover
Ronny Meier, Edouard L. Davin, Quentin Lejeune, Mathias Hauser, Yan Li, Brecht Martens, Natalie M. Schultz, Shannon Sterling, and Wim Thiery
Biogeosciences, 15, 4731–4757, https://doi.org/10.5194/bg-15-4731-2018,https://doi.org/10.5194/bg-15-4731-2018, 2018
Short summary
Related subject area
Freshwater pearl mussels from northern Sweden serve as long-term, high-resolution stream water isotope recorders
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020,https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018,https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
An index of floodplain surface complexity
M. W. Scown, M. C. Thoms, and N. R. De Jager
Hydrol. Earth Syst. Sci., 20, 431–441, https://doi.org/10.5194/hess-20-431-2016,https://doi.org/10.5194/hess-20-431-2016, 2016
Short summary
Quantitative historical hydrology in Europe
G. Benito, R. Brázdil, J. Herget, and M. J. Machado
Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015,https://doi.org/10.5194/hess-19-3517-2015, 2015
Short summary
Variations in quantity, composition and grain size of Changjiang sediment discharging into the sea in response to human activities
J. H. Gao, J. Jia, Y. P. Wang, Y. Yang, J. Li, F. Bai, X. Zou, and S. Gao
Hydrol. Earth Syst. Sci., 19, 645–655, https://doi.org/10.5194/hess-19-645-2015,https://doi.org/10.5194/hess-19-645-2015, 2015
The KULTURisk Regional Risk Assessment methodology for water-related natural hazards – Part 1: Physical–environmental assessment
P. Ronco, V. Gallina, S. Torresan, A. Zabeo, E. Semenzin, A. Critto, and A. Marcomini
Hydrol. Earth Syst. Sci., 18, 5399–5414, https://doi.org/10.5194/hess-18-5399-2014,https://doi.org/10.5194/hess-18-5399-2014, 2014
Short summary
The use of taxation records in assessing historical floods in South Moravia, Czech Republic
R. Brázdil, K. Chromá, L. Řezníčková, H. Valášek, L. Dolák, Z. Stachoň, E. Soukalová, and P. Dobrovolný
Hydrol. Earth Syst. Sci., 18, 3873–3889, https://doi.org/10.5194/hess-18-3873-2014,https://doi.org/10.5194/hess-18-3873-2014, 2014
Inverse streamflow routing
M. Pan and E. F. Wood
Hydrol. Earth Syst. Sci., 17, 4577–4588, https://doi.org/10.5194/hess-17-4577-2013,https://doi.org/10.5194/hess-17-4577-2013, 2013
A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota
F. Gallart, N. Prat, E. M. García-Roger, J. Latron, M. Rieradevall, P. Llorens, G. G. Barberá, D. Brito, A. M. De Girolamo, A. Lo Porto, A. Buffagni, S. Erba, R. Neves, N. P. Nikolaidis, J. L. Perrin, E. P. Querner, J. M. Quiñonero, M. G. Tournoud, O. Tzoraki, N. Skoulikidis, R. Gómez, M. M. Sánchez-Montoya, and J. Froebrich
Hydrol. Earth Syst. Sci., 16, 3165–3182, https://doi.org/10.5194/hess-16-3165-2012,https://doi.org/10.5194/hess-16-3165-2012, 2012
Physical and chemical consequences of artificially deepened thermocline in a small humic lake – a paired whole-lake climate change experiment
M. Forsius, T. Saloranta, L. Arvola, S. Salo, M. Verta, P. Ala-Opas, M. Rask, and J. Vuorenmaa
Hydrol. Earth Syst. Sci., 14, 2629–2642, https://doi.org/10.5194/hess-14-2629-2010,https://doi.org/10.5194/hess-14-2629-2010, 2010
Cited articles
Akaike, H.: A new look at statistical-model identification, IEEE Trans.
Autom. Control, 19, 716–723, 1974.
Baldigo, B. P. and Lawrence, G. B.: Composition of fish communities in
relation to stream acidification and habitat in the Neversink River, New
York, T. Am. Fish. Soc., 129, 60–76, 2000.
Bates, D., Maechler, M., Bolker, B., and Walker, S.: Fitting linear
mixed-effects models using lme4, J. Stat. Soft., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Beneš, F., Horecký, J., Senoo, T., Kamasová, L.,
Lamačová, A., Tátosová, J., Hardekopf, D. W., and
Stuchlík, E.: Evidence for responses in water chemistry and
macroinvertebrates in a strongly acidified mountain stream, Biologia, 72,
1049–1058, 2017.
Berger, T., Mathurin, F. A., Gustafsson, J. P., Peltola, P., and
Åström, M. E.: The impact of fluoride on Al abundance and speciation
in boreal streams, Chem. Geol., 409, 118–124, 2015.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R.,
Stevens, M. H. H., and White, J.-S. S.: Generalized linear mixed models: a
practical guide for ecology and evolution, Trends Ecol. Evol., 24, 127–135,
2009.
Brown, D.: Effect of calcium and aluminum concentrations on the survival of
brown trout (Salmo trutta) at low pH, B. Environ. Contam. Tox., 30,
582–587, 1983.
Burns, D. A., McHale, M. R., Driscoll, C. T., and Roy, K. M.: Response of
surface water chemistry to reduced levels of acid precipitation: comparison
of trends in two regions of New York, USA, Hydrol. Process., 20, 1611–1627, 2006.
Campbell, P. G., Hansen, H. J., Dubreuil, B., and Nelson, W. O.: Geochemistry
of Quebec north shore salmon rivers during snowmelt: organic acid pulse and
aluminum mobilization, Can. J. Fish. Aquat. Sci., 49, 1938–1952, 1992.
Chew, H., Johnston, L. M., Craig, D., and Inch, K.: Aluminum contamination of
groundwater: spring melt in Chalk River and Turkey Lakes
Watersheds–preliminary results, Can. J. Fish. Aquat. Sci., 45, s66–s71,
1988.
Christophersen, N., Vogt, R. D., Neal, C., Anderson, H. A., Ferrier, R. C.,
Miller, J. D., and Seip, H. M.: Controlling mechanisms for stream water
chemistry at the Pristine Ingabekken Site in mid-Norway: Some implications
for acidification models, Water Resour. Res., 26, 59–67, 1990.
Clair, T. A., Dennis, I. F., Scruton, D. A., and Gilliss, M.: Freshwater
acidification research in Atlantic Canada: a review of results and
predictions for the future, Environ. Rev., 15, 153–167, 2007.
Clair, T. A., Dennis, I. F., Vet, R., and Laudon, H.: Long-term trends in
catchment organic carbon and nitrogen exports from three acidified
catchments in Nova Scotia, Canada, Biogeochemistry, 87, 83–97, 2008.
Clair, T. A., Dennis, I. F., and Vet, R.: Water chemistry and dissolved
organic carbon trends in lakes from Canada's Atlanti
c Provinces: no recovery
from acidification measured after 25 years of lake monitoring, Can. J. Fish.
Aquat. Sci., 68, 663–674, 2011.
Davies, J., Jenkins, A., Monteith, D. T., Evans, C. D., and Cooper, D. M.:
Trends in surface water chemistry of acidified UK freshwaters, 1988–2002,
Environ. Pollut., 137, 27–39, 2005.
Dennis, I. F. and Clair, T. A.: The distribution of dissolved aluminum in
Atlantic salmon (Salmo salar) rivers of Atlantic Canada and its potential
effect on aquatic populations, Can. J. Fish. Aquat. Sci., 69, 1174–1183,
2012.
Driscoll, C. T., Baker, J. P., Bisogni, J. J., and Schofield, C. L.: Effect
of aluminium speciation on fish in dilute acidified waters, Nature, 284,
161–164, 1980.
Erlandsson, M., Cory, N., Köhler, S., and Bishop, K.: Direct and indirect
effects of increasing dissolved organic carbon levels on pH in lakes
recovering from acidification, J. Geophys. Res.-Biogeo., 115, G03004, https://doi.org/10.1029/2009JG001082, 2010.
Evans, C. D., Cullen, J. M., Alewell, C., Kopácek, J., Marchetto, A., Moldan, F., Prechtel, A., Rogora, M., Veselý, J., and Wright, R.: Recovery from acidification in European surface waters, Hydrol. Earth Syst. Sci., 5, 283–298, https://doi.org/10.5194/hess-5-283-2001, 2001.
Farmer, G. J.: Effects of low environmental pH on Atlantic salmon (
Salmo salar L.) in
Nova Scotia, Department of Fisheries and Oceans Canada, Dartmouth, N.S., Canada, 2000.
Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S., and Cosby, B.
J.: Experimental acidification causes soil base-cation depletion at the Bear
Brook Watershed in Maine, Soil Sci. Soc. Am. J., 67, 1909–1919, 2003.
Freedman, B. and Clair, T. A.: Ion mass balances and seasonal fluxes from
four acidic brownwater streams in Nova Scotia, Can. J. Fish. Aquat. Sci.,
44, 538–548, 1987.
Gensemer, R. W. and Playle, R. C.: The bioavailability and toxicity of aluminum
in aquatic environments, Critical Reviews in Environmental Science and
Technology, 29, 315–450, https://doi.org/10.1080/10643389991259245, 1999.
Gensemer, R. W., Gondek, J. C., Rodriquez, P. H., Arbildua, J. J.,
Stubblefield, W. A., Cardwell, A. S., Santore, R. C., Ryan, A. C., Adams, W.
J., and Nordheim, E.: Evaluating the effects of pH, hardness, and dissolved
organic carbon on the toxicity of aluminum to freshwater aquatic organisms
under circumneutral conditions, Environ. Toxicol. Chem., 37,
49–60, 2018.
Gibson, A. J. F., Bowlby, H. D., Hardie, D. C., and O'Reilly, P. T.:
Populations on the brink: low abundance of Southern Upland Atlantic salmon
in Nova Scotia, Canada, N. Am. J. Fish. Manage., 31, 733–741, 2011.
Ginn, B. K., Cumming, B. F., and Smol, J. P.: Assessing pH changes since
pre-industrial times in 51 low-alkalinity lakes in Nova Scotia, Canada, Can.
J. Fish. Aquat. Sci., 64, 1043–1054, 2007.
Gorham, E., Underwood, J. K., Martini, F. B., and Ogden III, J. G.: Natural
and anthropogenic causes of lake acidification in Nova Scotia, Nature, 324, 451–453,
1986.
Helliweli, S., Batley, G. E., Florence, T. M., and Lumsden, B. C.: Speciation
and toxicity of aluminium in a model fresh water, Environ. Technol., 4,
141–144, 1983.
Hendershot, W. H., Dufresne, A., Lalande, H., and Courchesne, F.: Temporal
variation in aluminum speciation and concentration during snowmelt, in:
Acidic Precipitation, Springer, 1285–1291, 1986.
Hendershot, W. H., Courchense, F., and Jeffries, D. S.: Aluminum geochemistry at the
catchment scale in watersheds influenced by acidic precipitation. In
Sposito, G., The Environmental Chemistry of Aluminum, Lewis Publishers, NY,
1996.
Hesthagen, T. and Hansen, L. P.: Estimates of the annual loss of Atlantic
salmon, Salmo salar L., in Norway due to acidification, Aquacult. Res., 22,
85–92, 1991.
Hindar, A.: Recommended liming strategies for salmon rivers in Nova Scotia,
Canada, NIVA, 2001.
Hooper, R. P. and Shoemaker, C. A.: Aluminum mobilization in an acidic
headwater stream: temporal variation and mineral dissolution disequilibria,
Science, 229, 463–465, 1985.
Houle, D., Ouimet, R., Couture, S., and Gagnon, C.: Base cation reservoirs in
soil control the buffering capacity of lakes in forested catchments, Can. J.
Fish. Aquat. Sci., 63, 471–474, 2006.
Howells, G., Dalziel, T., Reader, J. P., and Solbe, J. F.: EIFAC water
quality criteria for European freshwater fish: report on aluminium, Chem.
Ecol., 4, 117–173, 1990.
Jansen, B., Nierop, K. G., and Verstraten, J. M.: Mobility of Fe (II), Fe
(III) and Al in acidic forest soils mediated by dissolved organic matter:
influence of solution pH and metal/organic carbon ratios, Geoderma, 113,
323–340, 2003.
Kerekes, J., Beauchamp, S., Tordon, R., Tremblay, C., and Pollock, T.:
Organic versus anthropogenic acidity in tributaries of the Kejimkujik
watersheds in western Nova Scotia, Water Air Soil Pollut., 31, 165–1793,
1986.
Keys, K.: Acid Deposition and Base Cation Depletion in Northeastern Forest
Soils:
a Review with Focus on Nova Scotia Conditions, Dalhousie University, Halifax, N.S., Canada, 2015.
Kopáček, J., Turek, J., Hejzlar, J., Kaňa, J., and Porcal, P.:
Element fluxes in watershed-lake ecosystems recovering from acidification:
Čertovo Lake, the Bohemian Forest, 2001–2005, Biologia, 61, S41–S426,
2006.
Kroglund, F. and Staurnes, M.: Water quality requirements of smolting
Atlantic salmon (Salmo salar) in limed acid rivers, Can. J. Fish. Aquat.
Sci., 56, 2078–2086, 1999.
Kroglund, F., Finstad, B., Stefansson, S. O., Nilsen, T. O., Kristensen, T.,
Rosseland, B. O., Teien, H. C., and Salbu, B.: Exposure to moderate acid
water and aluminum reduces Atlantic salmon post-smolt survival, Aquaculture,
273, 360–373, 2007.
Lacroix, G. L.: Ecological and physiological responses of Atlantic salmon in
acidic organic rivers of Nova Scotia, Canada, Water Air Soil Pollut., 46,
375–386, 1989.
Lacroix, G. L. and Kan, K. T.: Speciation of Aluminum in Acidic Rivers of Nova Scotia Supporting Atlantic Salmon: A Methodological Evaluation, Canadian Technical Report of Fisheries and Aquatic Sciences, Department of Fisheries and Oceans Canada, St. Andrews, NB, 1986.
Lacroix, G. L. and Townsend, D. R.: Responses of juvenile Atlantic salmon
(Salmo salar) to episodic increases in acidity of Nova Scotia rivers, Can.
J. Fish. Aquat. Sci., 44, 1475–1484, 1987.
Langan, S. J. and Wilson, M. J.: Predicting the regional occurrence of acid
surface waters in Scotland using an approach based on geology, soils and
land use, J. Hydrol., 138, 515–528, 1992.
Lawrence, G. B., Dukett, J. E., Houck, N., Snyder, P., and Capone, C.:
Increases in dissolved organic carbon accelerate loss of toxic Al in
Adirondack lakes recovering from acidification, Environ. Sci. Technol., 47, 7095–7100, 2013.
LaZerte, B. D.: Forms of aqueous aluminum in acidified catchments of central
Ontario: a methodological analysis, Can. J. Fish. Aquat. Sci., 41, 766–776,
1984.
Lydersen, E.: The solubility and hydrolysis of aqueous aluminium hydroxides
in dilute fresh waters at different temperatures, Hydrol. Res., 21,
195–204, 1990.
McCormick, S. D., Lerner, D. T., Monette, M. Y., Nieves-Puigdoller, K.,
Kelly, J. T., and Björnsson, B. T.: Taking it with you when you go: how
perturbations to the freshwater environment, including temperature, dams,
and contaminants, affect marine survival of salmon, in: American Fisheries
Society Symposium, 2009.
Monette, M. Y. and McCormick, S. D.: Impacts of short-term acid and aluminum
exposure on Atlantic salmon (Salmo salar) physiology: a direct comparison of
parr and smolts, Aquat. Toxicol., 86, 216–226, 2008.
Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L., and Malcolm, I.
A.: Trends in the hydrochemistry of acid-sensitive surface waters in the UK
1988–2008, Ecol. Indic., 37, 287–303, 2014.
Mulder, J., Christophersen, N., Hauhs, M., Vogt, R. D., Andersen, S., and
Andersen, D. O.: Water flow paths and hydrochemical controls in the Birkenes
catchment as inferred from a rainstorm high in seasalts, Water Resour. Res.,
26, 611–622, 1990.
Neal, C., Smith, C. J., Walls, J., and Dunn, C. S.: Major, minor and trace
element mobility in the acidic upland forested catchment of the upper River
Severn, Mid Wales, J. Geol. Soc., 143, 635–648, 1986.
Neville, C. M.: Physiological response of juvenile rainbow trout, Salmo
gairdneri, to acid and aluminum–prediction of field responses from
laboratory data, Can. J. Fish. Aquat. Sci., 42, 2004–2019, 1985.
Nilsen, T. O., Ebbesson, L. O., Handeland, S. O., Kroglund, F., Finstad, B.,
Angotzi, A. R., and Stefansson, S. O.: Atlantic salmon (Salmo salar L.)
smolts require more than two weeks to recover from acidic water and
aluminium exposure, Aquat. Toxicol., 142, 33–44, 2013.
Nilsen, T. O., Ebbesson, L. O., Kverneland, O. G., Kroglund, F., Finstad, B.,
and Stefansson, S. O.: Effects of acidic water and aluminum exposure on gill
Na, K-ATPase
α-subunit isoforms, enzyme activity, physiology and
return rates in Atlantic salmon (
Salmo salar L.), Aquat. Toxicol., 97,
250–259, 2010.
Nilsson, S. I.: Budgets of aluminium species, iron and manganese in the Lake
Gårdsjön catchment in SW Sweden, Ecol. Bull., 37, 120–132,
1985.
Norton, S. A., Kahl, J. S., Henriksen, A., and Wright, R. F.: Buffering of pH Depressions by Sediments in Streams and Lakes, in: Acidic Precipitation, Advances in Environmental Science, edited by: Norton, S. A., Lindberg, S. E., and Page, A. L., vol 4. Springer, New York, NY, https://doi.org/10.1007/978-1-4612-4456-1_5, 1990.
Parent, L. and Campbell, P. G. C.: Aluminum bioavailability to the green
alga
Chlorella pyrenoidosa in acidified synthetic soft water, Environ. Toxicol. Chem., 13,
587–598, 1994.
Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D., and Reeves,
G. H.: Why aren't there more Atlantic salmon (Salmo salar)?, Can. J. Fish.
Aquat. Sci., 55, 281–287, 1998.
Poléo, A. B.: Aluminium polymerization – a mechanism of acute toxicity
of aqueous aluminium to fish, Aquat. Toxicol., 31, 347–356, 1995.
R Core Team.: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna Austria, available at:
https://www.r-project.org/ (last access: 7 August 2020), 2019.
Raudenbush, S. W., Yang, M.-L., and Yosef, M.: Maximum likelihood for
generalized linear models with nested random effects via high-order,
multivariate Laplace approximation, J. Comput. Graph. Stat., 9, 141–157,
2000.
Regish, A. M., Kelly, J. T., O'Dea, M. F., and McCormick, S. D.: Sensitivity
of Na /K -ATPase isoforms to acid and aluminum explains differential effects
on Atlantic salmon osmoregulation in fresh water and seawater, Can. J. Fish.
Aquat. Sci., 75, 1319–1328, 2018.
Rodushkin, I., Moiseenko, T., and Kudravsjeva, L.: Aluminium in the surface
waters of the Kola Peninsula, Russia, Sci. Total Environ., 163, 55–59, 1995.
Rotteveel, L. and Sterling, S.: Five Aluminum Seasonality Regimes Identified
in Chronically Acidified Rivers of Nova Scotia, Environ. Sci.
Technol., 54, 807–817, 2019.
Seip, H. M., Andersen, D. O., Christophersen, N., Sullivan, T. J., and Vogt,
R. D.: Variations in concentrations of aqueous aluminium and other chemical
species during hydrological episodes at Birkenes, southernmost Norway,
J. Hydrol., 108, 387–405, 1989.
Simpson, S. L., Vardanega, C. R., Jarolimek, C., Jolley, D. F., Angel, B. M., and
Mosley, L. M.: Metal speciation and potential bioavailability changes during
discharge and neutralisation of acidic drainage water, Chemosphere, 103,
172–180, 2014.
Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K.,
Høgåsen, T., Bowman, J., Mannio, J., Monteith, D. T., Mosello, R., and
Rogora, M.: Regional scale evidence for improvements in surface water
chemistry 1990–2001, Environ. Pollut., 137, 165–176, 2005.
Staurnes, M., Hansen, L. P., Fugelli, K., and Haraldstad, Ø: Short-term
exposure to acid water impairs osmoregulation, seawater tolerance, and
subsequent marine survival of smolts of Altantic salmon (Salmo salar), Can.
J. Fish. Aquat. Sci., 53, 1695–1704, 1996.
Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon,
P. J., Driscoll, C. T., Forsius, M., Johannessen, M., Kahl, J. S., and
Kellogg, J. H.: Regional trends in aquatic recovery from acidification in
North America and Europe, Nature, 401, 575, 1999.
Sullivan, T. J., Christophersen, N., Muniz, I. P., Seip, H. M., and Sullivan,
P. D.: Aqueous aluminium chemistry response to episodic increases in
discharge, Nature, 323, 324–327, 1986.
Tipping, E.: Acid-sensitive waters of the English Lake District: a
steady-state model of streamwater chemistry in the upper Duddon catchment,
Environ. Pollut., 60, 181–208, 1989.
Tomlinson, G. H., Tomlinson, F. L., Grennfelt, P., Httl, R., Httermann, A.,
Mehne, B. M., and von Tiedemann, S.: Effects of acid deposition on the forests
of Europe and North America, CRC Press Inc., 281 pp., 1990.
Watt, W. D.: A summary of the impact of acid rain on Atlantic salmon (Salmo
salar) in Canada, Water Air Soil Pollut., 35, 27–35, 1987.
Watt, W. D., Scott, C. D., Zamora, P. J., and White, W. J.: Acid toxicity
levels in Nova Scotian rivers have not declined in synchrony with the
decline in sulfate levels, Water Air Soil Pollut., 118, 203–229, 2000.
Wauer, G. and Teien, H.: Risk of acute toxicity for fish during aluminium
application to hardwater lakes, Sci. Total Environ., 408, 4020–4025, 2010.
Weyhenmeyer, G. A., Hartmann, J., Hessen, D. O., Kopáček, J., Hejzlar, J., Jacquet, S., Hamilton, S. K., Verburg, P., Leach, T. H., Schmid, M., and Flaim, G.:
Widespread diminishing anthropogenic effects on calcium in freshwaters,
Sci. Rep.-UK, 18, 10450, https://doi.org/10.1038/s41598-019-46838-w, 2019.
Whitfield, C. J., Aherne, J., Watmough, S. A., Dillon, P. J., and Clair, T.
A.: Recovery from acidification in Nova Scotia: temporal trends and critical
loads for 20 headwater lakes, Can. J. Fish. Aquat. Sci., 63, 1504–1514,
2006.
Whitfield, C. J., Aherne, J., Dillon, P. J., and Watmough, S. A.: Modelling acidification, recovery and target loads for headwater catchments in Nova Scotia, Canada, Hydrol. Earth Syst. Sci., 11, 951–963, https://doi.org/10.5194/hess-11-951-2007, 2007.
Witters, H. E., Van Puymbroeck, S., Vangenechten, J., and Vanderborght, O.:
The effect of humic substances on the toxicity of aluminium to adult rainbow
trout, Oncorhynchus mykiss (Walbaum), J. Fish Biol., 37, 43–53, 1990.