Articles | Volume 24, issue 9
Hydrol. Earth Syst. Sci., 24, 4441–4461, 2020
https://doi.org/10.5194/hess-24-4441-2020
Hydrol. Earth Syst. Sci., 24, 4441–4461, 2020
https://doi.org/10.5194/hess-24-4441-2020
Research article
15 Sep 2020
Research article | 15 Sep 2020

Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe

Marc Girons Lopez et al.

Related authors

Benchmarking an operational hydrological model for providing seasonal forecasts in Sweden
Marc Girons Lopez, Louise Crochemore, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci., 25, 1189–1209, https://doi.org/10.5194/hess-25-1189-2021,https://doi.org/10.5194/hess-25-1189-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
High-resolution satellite products improve hydrological modeling in northern Italy
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022,https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Analysis of high streamflow extremes in climate change studies: how do we calibrate hydrological models?
Bruno Majone, Diego Avesani, Patrick Zulian, Aldo Fiori, and Alberto Bellin
Hydrol. Earth Syst. Sci., 26, 3863–3883, https://doi.org/10.5194/hess-26-3863-2022,https://doi.org/10.5194/hess-26-3863-2022, 2022
Short summary
A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022,https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL)
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022,https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Spatial extrapolation of stream thermal peaks using heterogeneous time series at a national scale
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022,https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary

Cited articles

Avanzi, F., De Michele, C., Morin, S., Carmagnola, C. M., Ghezzi, A., and Lejeune, Y.: Model complexity and data requirements in snow hydrology: seeking a balance in practical applications, Hydrol. Process., 30, 2106–2118, https://doi.org/10.1002/hyp.10782, 2016. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow-supplement, Nat. Clim. Change, 4, 583–586, https://doi.org/10.1038/NCLIMATE2246, 2014. 
Bergström, S.: The HBV Model, in Computer Models of Watershed Hydrology, in: Water Resources Publications, edited by: Singh, V. P., Highlands Ranch, CO, 443–476, 1995. 
Bergström, S.: Experience from applications of the HBV hydrological model from the perspective of prediction in ungauged basins, IAHS Publ., 307, 97–107, 2006. 
Download
Short summary
Snow processes are crucial for runoff in mountainous areas, but their complexity makes water management difficult. Temperature models are widely used as they are simple and do not require much data, but not much thought is usually given to which model to use, which may lead to bad predictions. We studied the impact of many model alternatives and found that a more complex model does not necessarily perform better. Finding which processes are most important in each area is a much better strategy.