Articles | Volume 24, issue 7
https://doi.org/10.5194/hess-24-3539-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-3539-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combining resistivity and frequency domain electromagnetic methods to investigate submarine groundwater discharge in the littoral zone
Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University, Krijgslaan 281-S8, Ghent, 9000, Belgium
Daan Hanssens
Research Group Soil Spatial Inventory Techniques, Department of
Environment, Ghent University, Coupure links 653, Ghent, 9000, Belgium
Philippe De Smedt
Research Group Soil Spatial Inventory Techniques, Department of
Environment, Ghent University, Coupure links 653, Ghent, 9000, Belgium
Kristine Walraevens
Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University, Krijgslaan 281-S8, Ghent, 9000, Belgium
Thomas Hermans
Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University, Krijgslaan 281-S8, Ghent, 9000, Belgium
Related authors
No articles found.
Gaston Matias Mendoza Veirana, Hana Grison, Jeroen Verhegge, Wim Cornelis, and Philippe De Smedt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3306, https://doi.org/10.5194/egusphere-2024-3306, 2024
Short summary
Short summary
This study explores the link between soil magnetic susceptibility and cation exchange capacity (CEC) to improve prediction models for CEC in European soils. Results show that magnetic susceptibility significantly enhances CEC prediction in sandy soils, achieving high accuracy (R2 = 0.94). This offers a rapid, cost-effective way to estimate CEC, emphasizing the value of geophysical data integration in soil assessment.
Gaston Matias Mendoza Veirana, Guillaume Blanchy, Ellen Van De Vijver, Jeroen Verhegge, Wim Cornelis, and Philippe De Smedt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2693, https://doi.org/10.5194/egusphere-2024-2693, 2024
Short summary
Short summary
This study explores two methods for predicting soil properties using the FDEM technique in Belgium. We compared deterministic models, which often require extensive data adjustments, to stochastic models. Our findings suggest that stochastic models are generally more effective for soil analysis, although each method has its limitations. This research helps improve soil property prediction, crucial for agriculture and environmental management.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Alberto Casillas-Trasvina, Bart Rogiers, Koen Beerten, Laurent Wouters, and Kristine Walraevens
Hydrol. Earth Syst. Sci., 26, 5577–5604, https://doi.org/10.5194/hess-26-5577-2022, https://doi.org/10.5194/hess-26-5577-2022, 2022
Short summary
Short summary
Heat in the subsurface can be used to characterize aquifer flow behaviour. The temperature data obtained can be useful for understanding the groundwater flow, which is of particular importance in waste disposal studies. Satellite images of surface temperature and a temperature–time curve were implemented in a heat transport model. Results indicate that conduction plays a major role in the aquifer and support the usefulness of temperature measurements.
Alemu Yenehun, Mekete Dessie, Fenta Nigate, Ashebir Sewale Belay, Mulugeta Azeze, Marc Van Camp, Derbew Fenetie Taye, Desale Kidane, Enyew Adgo, Jan Nyssen, Ann van Griensven, and Kristine Walraevens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-527, https://doi.org/10.5194/hess-2021-527, 2021
Manuscript not accepted for further review
Short summary
Short summary
Population growth, industrial expansion, and climate change are causing stress on the limited freshwater resources of the globe. Groundwater is one of the important freshwater resources. Hence, managing these limited resources is a key task for the sector experts. To do so, understanding recharge processes and its quantification is vital. In this study, three different methods using measured data are applied to estimate recharge and identify the controlling factors.
Gaël Dumont, Tamara Pilawski, Thomas Hermans, Frédéric Nguyen, and Sarah Garré
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-163, https://doi.org/10.5194/hess-2018-163, 2018
Preprint withdrawn
Short summary
Short summary
We used long time lapse geoelectrical profiles to monitor water infiltration through a landfill cover layer. The obtained electrical resistivity changes are smoothed and reflect both moisture variations, the background resistivity heterogeneity, and temperature and salinity changes due to water infiltration. Interpretation limits were investigated by using synthetic modelling. Using these results to avoid over-interpretation, field observations revealed zones where large infiltration occurs.
Related subject area
Subject: Coasts and Estuaries | Techniques and Approaches: Instruments and observation techniques
River plastic transport affected by tidal dynamics
Monitoring tidal hydrology in coastal wetlands with the “Mini Buoy”: applications for mangrove restoration
Combining continuous spatial and temporal scales for SGD investigations using UAV-based thermal infrared measurements
Analysis of data characterizing tide and current fluxes in coastal basins
Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology
Can mussels be used as sentinel organisms for characterization of pollution in urban water systems?
Turbidity in the fluvial Gironde Estuary (southwest France) based on 10-year continuous monitoring: sensitivity to hydrological conditions
Flooding in river mouths: human caused or natural events? Five centuries of flooding events in the SW Netherlands, 1500–2000
Determining slack tide with a GPS receiver on an anchored buoy
Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island
Seasonal stratification and property distributions in a tropical estuary (Cochin estuary, west coast, India)
Suspended sediment load in the tidal zone of an Indonesian river
Deepwater Horizon oil spill impacts on Alabama beaches
Monitoring water quality in estuarine environments: lessons from the MAGEST monitoring program in the Gironde fluvial-estuarine system
Louise J. Schreyers, Tim H. M. van Emmerik, Thanh-Khiet L. Bui, Khoa L. van Thi, Bart Vermeulen, Hong-Q. Nguyen, Nicholas Wallerstein, Remko Uijlenhoet, and Martine van der Ploeg
Hydrol. Earth Syst. Sci., 28, 589–610, https://doi.org/10.5194/hess-28-589-2024, https://doi.org/10.5194/hess-28-589-2024, 2024
Short summary
Short summary
River plastic emissions into the ocean are of global concern, but the transfer dynamics between fresh water and the marine environment remain poorly understood. We developed a simple Eulerian approach to estimate the net and total plastic transport in tidal rivers. Applied to the Saigon River, Vietnam, we found that net plastic transport amounted to less than one-third of total transport, highlighting the need to better integrate tidal dynamics in plastic transport and emission models.
Thorsten Balke, Alejandra Vovides, Christian Schwarz, Gail L. Chmura, Cai Ladd, and Mohammad Basyuni
Hydrol. Earth Syst. Sci., 25, 1229–1244, https://doi.org/10.5194/hess-25-1229-2021, https://doi.org/10.5194/hess-25-1229-2021, 2021
Short summary
Short summary
Restoration of intertidal wetlands such as mangroves and saltmarshes requires accurate local data on tidal flooding and current velocities. We present the application of a low-cost underwater float equipped with an acceleration data logger, the Mini Buoy, to monitor inundation and tidal currents in intertidal environments. We demonstrate how this tool can be directly applied in hydrological site suitability assessments prior to mangrove restoration in tropical SE Asia.
Ulf Mallast and Christian Siebert
Hydrol. Earth Syst. Sci., 23, 1375–1392, https://doi.org/10.5194/hess-23-1375-2019, https://doi.org/10.5194/hess-23-1375-2019, 2019
Short summary
Short summary
Submarine groundwater discharge is highly variable in spatial and temporal terms. With a novel approach using a hovering drone over a predefined location which recorded 670 surface temperatures images over a period of 167 s, we are able to (i) enhance focused SGD patterns otherwise camouflaged by strong lateral flow dynamics, (ii) show size variation of up to 155 % (focused SGD) and 600 % (diffuse SGD), and (iii) reveal short-term periodicity of the order of 20 to 78 s for diffuse SGD.
Elvira Armenio, Francesca De Serio, and Michele Mossa
Hydrol. Earth Syst. Sci., 21, 3441–3454, https://doi.org/10.5194/hess-21-3441-2017, https://doi.org/10.5194/hess-21-3441-2017, 2017
Short summary
Short summary
The paper aims to investigate current and tide correlation in a basin named Mar Piccolo, located in the inner part of the Ionian Sea. It is considered highly vulnerable, being exposed to urban and industrial discharges as well as to intense naval traffic. A continuous monitoring action of the principal hydrodynamic parameters could be a useful managing tool, considering that the diffusion and dispersions of polluting tracers is strictly connected to currents, tide, and waves propagation.
Carlos Rocha, Cristina Veiga-Pires, Jan Scholten, Kay Knoeller, Darren R. Gröcke, Liliana Carvalho, Jaime Anibal, and Jean Wilson
Hydrol. Earth Syst. Sci., 20, 3077–3098, https://doi.org/10.5194/hess-20-3077-2016, https://doi.org/10.5194/hess-20-3077-2016, 2016
Short summary
Short summary
We combine radon and stable isotopes in water to determine total submarine groundwater discharge (SGD) in the Ria Formosa and discriminate its component modes. We show that tidal action filters the entire water volume in the lagoon through local beaches 3.5 times a year, driving an estimated 350Ton nitrogen/year into the system. Conversely, fresh groundwater is discharged into the lagoon only occasionally, adding ~ 61 Ton nitrogen/year, but is capable of driving new production in the system.
Elke S. Reichwaldt and Anas Ghadouani
Hydrol. Earth Syst. Sci., 20, 2679–2689, https://doi.org/10.5194/hess-20-2679-2016, https://doi.org/10.5194/hess-20-2679-2016, 2016
Short summary
Short summary
We assessed if nitrogen stable isotopes in mussels are a suitable indicator, capable of resolving spatial and temporal variability of nutrient pollution in an urban estuary. Our results highlight the value of using stable isotope analysis as an integrative tool to establish an understanding of local processes and pollution levels in theses urban aquatic systems. We suggest that mussels can become a robust tool for the detection of emerging anthropogenic pollutants of concern in urban water systems.
I. Jalón-Rojas, S. Schmidt, and A. Sottolichio
Hydrol. Earth Syst. Sci., 19, 2805–2819, https://doi.org/10.5194/hess-19-2805-2015, https://doi.org/10.5194/hess-19-2805-2015, 2015
Short summary
Short summary
This study aims to analyse for the first time suspended sediment dynamics in the fluvial Gironde through a unique set of a 10-year continuous turbidity record. We demonstrate the following: the interest of turbidity-discharge hysteresis loops to evaluate the presence of sediment depositions; the relationships between features of the turbidity maximum zone (TMZ) and river flow; and the definition of hydrological indicators of the persistence and concentration of the TMZ.
A. M. J. de Kraker
Hydrol. Earth Syst. Sci., 19, 2673–2684, https://doi.org/10.5194/hess-19-2673-2015, https://doi.org/10.5194/hess-19-2673-2015, 2015
Short summary
Short summary
Natural floodings caused by storm floods also have important human components determining how disastrous they could be.
Man-made floodings during warfare were only successful if natural conditions and factors were fully used.
Strategic floodings during the 16th-17th centuries dramatically changed landscapes, from which valueble lessons were learnt to perfect this strategy in the 18th and 19th centuries.
M. Valk, H. H. G. Savenije, C. C. J. M. Tiberius, and W. M. J. Luxemburg
Hydrol. Earth Syst. Sci., 18, 2599–2613, https://doi.org/10.5194/hess-18-2599-2014, https://doi.org/10.5194/hess-18-2599-2014, 2014
J. Igel, T. Günther, and M. Kuntzer
Hydrol. Earth Syst. Sci., 17, 519–531, https://doi.org/10.5194/hess-17-519-2013, https://doi.org/10.5194/hess-17-519-2013, 2013
A. Shivaprasad, J. Vinita, C. Revichandran, P. D. Reny, M. P. Deepak, K. R. Muraleedharan, and K. R. Naveen Kumar
Hydrol. Earth Syst. Sci., 17, 187–199, https://doi.org/10.5194/hess-17-187-2013, https://doi.org/10.5194/hess-17-187-2013, 2013
F. A. Buschman, A. J. F. Hoitink, S. M. de Jong, P. Hoekstra, H. Hidayat, and M. G. Sassi
Hydrol. Earth Syst. Sci., 16, 4191–4204, https://doi.org/10.5194/hess-16-4191-2012, https://doi.org/10.5194/hess-16-4191-2012, 2012
J. S. Hayworth, T. P. Clement, and J. F. Valentine
Hydrol. Earth Syst. Sci., 15, 3639–3649, https://doi.org/10.5194/hess-15-3639-2011, https://doi.org/10.5194/hess-15-3639-2011, 2011
H. Etcheber, S. Schmidt, A. Sottolichio, E. Maneux, G. Chabaux, J.-M. Escalier, H. Wennekes, H. Derriennic, M. Schmeltz, L. Quéméner, M. Repecaud, P. Woerther, and P. Castaing
Hydrol. Earth Syst. Sci., 15, 831–840, https://doi.org/10.5194/hess-15-831-2011, https://doi.org/10.5194/hess-15-831-2011, 2011
Cited articles
Archie, G. E.: The electrical resistivity log as an aid in determining some
reservoir characteristics, T. AIME, 146, 54–62, https://doi.org/10.2118/942054-G, 1942.
Burnett, B., Bokuniewicz, H., Huettel, M., Moore, W. S., and Taniguchi, M.:
Groundwater and pore water inputs to the coastal zone, Biogeochemistry, 66, 3–33, https://doi.org/10.1023/B:BIOG.0000006066.21240.53, 2003.
Burnett, W. C. and Dulaiova, H.: Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements, J. Environ. Radioactiv., 69, 21–35, https://doi.org/10.1016/S0265-931X(03)00084-5, 2003.
Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E.,
Charette, M. A., Kontar, E., Krupa, S., Kulkarni, K. M., Loveless, A., Moore,
W. S., Oberdorfer, J. A., Oliveira, J., Ozyurt, N., Povinec, P., Privitera,
A. M. G., Rajar, R., Ramessur, R. T., Scholten, J., Stieglitz, T., Taniguchi,
M., and Turner, J. V.: Quantifying submarine groundwater discharge in the
coastal zone via multiple methods, Sci. Total Environ., 367, 498–543, https://doi.org/10.1016/j.scitotenv.2006.05.009, 2006.
Callegary, J. B., Ferré, T. P. A., and Groom, R. W.: Vertical Spatial
Sensitivity and Exploration Depth of Low-Induction-Number
Electromagnetic-Induction Instruments, Vadose Zone J., 6, 158–167,
https://doi.org/10.2136/vzj2006.0120, 2007.
Cantarero, D. L. M., Blanco, A., Cardenas, M. B., Nadaoka, K., and Siringan,
F. P.: Offshore Submarine Groundwater Discharge at a Coral Reef Front
Controlled by Faults, Geochem. Geophy. Geosy., 20, 3170–3185, https://doi.org/10.1029/2019GC008310, 2019.
Cardenas, M. B., Zamora, P. B., Siringan, F. P., Lapus, M. R., Rodolfo, R. S., Jacinto, G. S., Diego-McGlone, M. L. S., Villanoy, C. L., Cabrera, O., and Senal, M. I.: Linking regional sources and pathways for submarine groundwater discharge at a reef by electrical resistivity tomography, 222Rn, and salinity measurements, Geophys. Res. Lett., 37, L16401,
https://doi.org/10.1029/2010GL044066, 2010.
Caterina, D., Beaujean, J., Robert, T., and Nguyen, F.: A comparison study of different image appraisal tools for electrical resistivity tomography, Near Surf. Geophys., 11, 639–657, https://doi.org/10.3997/1873-0604.2013022, 2013.
Caterina, D., Hermans, T., and Nguyen, F.: Case studies of incorporation of
prior information in electrical resistivity tomography: comparison of
different approaches, Near Surf. Geophys., 12, 451-465,
https://doi.org/10.3997/1873-0604.2013070, 2014.
Colman, J. A., Masterson, J. P., Pabich, W. J., and Walter, D. A.: Effects of
Aquifer Travel Time on Nitrogen Transport to a Coastal Embayment, Ground Water, 42, 1069–1078, https://doi.org/10.1111/j.1745-6584.2004.tb02644.x, 2004.
Cross, V. A., Bratton, J. F., Bergeron, E. M., Meunier, J. K., Crusius, J., and Koopmans, D.: Continuous resistivity profiling data from the upper Neuse
River Estuary, North Carolina, 2004–2005, Open-File Report 2005-1306, US Geological Survey, Virginia, 2006.
Cross, V. A., Bratton, J. F., Crusius, J., Kroeger, K. D., and Worley, C. R.:
Continuous resistivity profiling data from Northport Harbor and Manhasset Bay, Long Island, New York, Open-File Report 2011-1041, US Geological Survey, Virginia, https://doi.org/10.3133/ofr20111041, 2012.
Cross, V. A., Bratton, J. F., Kroeger, K. D., Crusius, J., and Worley, C. R.:
Continuous resistivity profiling data from Great South Bay, Long Island, New
York, Open-File Report 2011-1040, US Geological Survey, Virginia, 2013.
Cross, V. A., Bratton, J. F., Michael, H. A., Kroeger, K. D., Green, A., and
Bergeron, E. M.: Continuous resistivity profiling and seismic-reflection data
collected in April 2010 from Indian River Bay, Delaware, Open-File Report 2011-1039, US Geological Survey, Virginia, https://doi.org/10.3133/ofr20111039, 2014.
Dahlin, T. and Zhou, B.: A numerical comparison of 2D resistivity imaging with 10 electrode arrays, Geophys. Prospect., 52, 379–398, 2004.
Dahlin, T. and Zhou, B.: Multiple-gradient array measurements for multichannel 2D resistivity imaging, Near Surf. Geophys., 4, 113–123,
https://doi.org/10.3997/1873-0604.2005037, 2006.
Davies, G., Huang, J., Monteiro Santos, F. A., and Triantafilis, J.: Modeling
Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion
Software, Groundwater, 53, 424–431, https://doi.org/10.1111/gwat.12231, 2015.
Day-Lewis, F. D., White, E. A., Johnson, D., and Lane Jr., J. W.: Continuous
resistivity profiling to delineate submarine groundwater discharge – examples and limitations, Leading Edge, 25, 724–728, https://doi.org/10.1190/1.2210056, 2006.
De Breuck, W., De Moor, G., Maréchal, R., and Tavernier, R.: Diepte van het grensvlak tussen zoet en zout water in de freatische laag van het Belgische kustgebied (1963–1773), Verziltingskaart, Militair Geografisch
Instituut, Brussel, 1974.
de Franco, E., Biella, G., Tosi, L., Teatini, P., Lozej, A., Chiozzotto, B.,
Giada, M., Rizzetto, F., Claude, C., Mayer, A., Bassan, V., and Gasparetto-Stori, G.: Monitoring the saltwater intrusion by time lapse
electrical resistivity tomography: The Chioggia test site (Venice Lagoon,
Italy), J. Appl. Geophys., 69, 117–130, https://doi.org/10.1016/j.jappgeo.2009.08.004, 2009.
Delefortrie, S., De Smedt, P., Saey, T., Van De Vijver, E., and Van Meirvenne, M.: An efficient calibration procedure for correction of drift in EMI survey data, J. Appl. Geophys., 110, 115–125, https://doi.org/10.1016/j.jappgeo.2014.09.004, 2014.
Delefortrie, S., Saey, T., De Pue, J., Van De Vijver, E., De Smedt, P., and Van Meirvenne, M.: Evaluating corrections for a horizontal offset between sensor and position data for surveys on land, Precis. Agricult., 17, 349–364, https://doi.org/10.1007/s11119-015-9423-8, 2015.
Delsman, J. R., van Baaren, E. S., Vermaas, T., Karaoulis, M. C., Bootsma,
H. P., de Louw, P. G. B., Pauw, P., Oude Essink, G. H. P., Dabekaussen, W.,
Van Camp, M., Walraevens, K., Vandenbohede, A., Teilmann,
R., and Thofte, S.: TOPSOIL Airborne EM kartering van zoet
en zout grondwater in Vlaanderen (FRESHEM Vlaanderen): deelopdrachten 1 tot en met 3, report,
Deltares, Delft, 111 pp., 2019.
De Moor, G. and De Breuck, W.: De freatische waters in het Oostelijk Kustgebied en de Vlaamse Vallei, Natuurlijk Tijdschrift, 51, 3–68, 1969.
Dimova, N. T., Swarzenski, P. W., Dulaiova, H., and Glenn, C. R.: Utilizing
multichannel electrical resistivity methods to examine the dynamics of the
fresh water–seawater interface in two Hawaiian groundwater systems, J. Geophys. Res., 117, C02012, https://doi.org/10.1029/2011JC007509, 2012.
Duque, C., Michael, H. A., and Wilson, A. M.: The Subterranean Estuary: Technical Term, Simple Analogy, or Source of Confusion?, Water Resour. Res., 56, e2019WR026554, https://doi.org/10.1029/2019WR026554, 2020.
Evans, R. L., Law, L. K., St. Louis, B., Cheesman, D., and Sananikone, K.: The shallow porosity structure of the Eel shelf, northern California: results of a towed electromagnetic survey, Mar. Geol., 154, 211–226,
https://doi.org/10.1016/S0025-3227(98)00114-5, 1999.
Francés, A. P., Ramalho, E. C., Fernandes, J., Groen, M., Hugman, R.,
Khalil, M. A., De Plaen, J., and Monteiro Santos, F. A.:Contribution of
hydrogeophysics to the hydrogeological conceptual model of the
Albufeira-Ribeira de Quarteira coastal aquifer in Algarve, Portugal,
Hydrogeol. J., 23, 1553–1572, https://doi.org/10.1007/s10040-015-1282-x, 2015.
Goebel, M., Pidlisecky, A., and Knight, R.: Resistivity imaging reveals
complex pattern of saltwater intrusion along Monterey coast, J. Hydrol., 551, 746–755, https://doi.org/10.1016/j.jhydrol.2017.02.037, 2017.
Goebel, M., Knight, R., and Halkjær, M.: Mapping saltwater intrusion with an airborne electromagnetic method in the offshore coastal environment, Monterey Bay, California, J. Hydrol.: Reg. Stud., 23, 100602, https://doi.org/10.1016/j.ejrh.2019.100602, 2019.
Goldman, M., Gilad, D., Ronen, A., and Melloul, A.: Mapping of seawater
intrusion into the coastal aquifer of Israel by the time domain
electromagnetic method, Geoexploration, 28, 153–174,
https://doi.org/10.1016/0016-7142(91)90046-F, 1991.
Goldman, M., Gvirtzman, H., and Hurwitz, S.: Mapping saline groundwater
beneath the Sea Galilee and its vicinity using time domain electromagnetic (TDEM) geophysical technique, Israel J. Earth Sci., 53, 187–197, https://doi.org/10.1560/P1W7-UYDE-WJFW-CVHB, 2004.
Greenwood, W. J., Kruse, S., and Swarzenski, P.: Extending Electromagnetic
Methods to Map Coastal Pore Water Salinities, Groundwater, 44, 292–299,
https://doi.org/10.1111/j.1745-6584.2005.00137.x, 2006.
Hanssens, D., Delefortrie, S., Bobe, C., Hermans, T., and De Smedt, P.: Improving the reliability of soil EC-mapping: Robust apparent electrical
conductivity (rECa) estimation in ground-based frequency domain electromagnetics, Geoderma, 337, 1155–1163,
https://doi.org/10.1016/j.geoderma.2018.11.030, 2019.
Henderson, R. D., Day-Lewis, F. D., Abarca, E., Harvey, C. F., Karam, H. N.,
Liu, L., and Lane Jr., J. W.: Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in
Waquoit Bay, Massachusetts, USA, Hydrogeol. J., 18, 178–185,
https://doi.org/10.1007/s10040-009-0498-z, 2010.
Hermans, T. and Paepen, M.: Combined inversion of land and marine electrical
resistivity tomography for submarine groundwater discharge and saltwater
intrusion characterization, Geophys. Res. Lett., 47, e2019GL085877, https://doi.org/10.1029/2019GL085877, 2020.
Hermans, T., Vandenbohede, A., Lebbe, L., Martin, R., Kemna, A., Beaujean, J., and Nguyen, F.: Imaging artificial salt water infiltration using electrical resitistivity tomography constrained by geostatistical data, J. Hydrol., 438–439, 168–180, https://doi.org/10.1016/j.jhydrol.2012.03.021, 2012.
Hoefel, F. G. and Evans, R. L.: Impact of Low Salinity Porewater on Seafloor
Electromagnetic Data: A Means of Detecting Submarine Groundwater Discharge?,
Estuar. Coast. Shelf Sci., 52, 179–189, https://doi.org/10.1006/ecss.2000.0718, 2001.
Kinnear, J. A., Binley, A., Duque, C., and Engesgaard, P. K.: Using geophysics to map areas of potential groundwater discharge into Ringkøbing Fjord, Denmark, Leading Edge, 32, 792–796, https://doi.org/10.1190/tle32070792.1, 2013.
Krantz, D. E., Manheim, F. T., Bratton, J. F., and Phelan, D. J.: Hydrogeologic Setting and Ground Water Flow Beneath a Section of Indian River Bay, Delaware, Groundwater, 42, 1035–1051, https://doi.org/10.1111/j.1745-6584.2004.tb02642.x, 2004.
Lapointe, B. E., Barile, P. J., Littler, M. M., and Littler, D. S.: Macroalgal blooms on southeast Florida coral reefs II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen, Harmful Algae, 4, 1103–1122, https://doi.org/10.1016/j.hal.2005.06.002, 2005.
Lebbe, L.: Hydrogeologie van het duingebied ten westen van De Panne, PhD thesis, Ghent University, Belgium, 164 pp., 1978.
Lebbe, L.: The subterranean flow of fresh and salt water underneath the
Western Belgian beach, in: Proceedings of the 7th Salt Water Intrusion Meeting, Uppsala, Sweden, 193–219, 1981.
Lebbe, L.: Mathematical model of the evolution of the fresh water lens under
the dunes and beach with semi-diurnal tides, Geologia applicata e idrogeologia, 18, 211–226, 1983.
Lebbe, L.: Numerische simulatie van grondwaterkwaliteitsproblemen als hulp
bij het beheer van de watervoorraden in het Vlaamse kustgebied, Tijdschrift
BECEWA, 76, 67–88, 1984.
Lebbe, L.: Parameter identifcation in fresh-saltwater flow based on borehole
resistivities and freshwater head data, Adv. Water Resour., 22, 791–806, https://doi.org/10.1016/S0309-1708(98)00054-2, 1999.
Lebbe, L. and Walraevens, K.: Hydrogeological SWIM-excursion to the western
coastal plain of Belgium, in: Proceedings of the 10th Salt Water Intrusion
Meeting, 16–20 May 1988, Ghent, Belgium, 359–375, 1988.
Loke, M. H.: RES2DINV ver. 3.71. Rapid 2-D resistivity & IP inversion
using the least squares method, available at: https://www.geotomosoft.com/downloads.php
(last access: 3 July 2018), 2011.
McNeill, J. D.: Electromagnetic terrain conductivity measurement at low induction numbers, Technical Note, Geonics, Canada, 15 pp., 1980.
Michael, H. A., Mulligan, A. E., and Harvey, C. F.: Seasonal oscillations in
water exchange between aquifers and the coastal ocean, Nature, 436, 1145–1148, https://doi.org/10.1038/nature03935, 2005.
Moore, W. S.: The Effect of Submarine Groundwater Discharge on the Ocean,
Annu. Rev. Mar. Sci., 2, 59–88, https://doi.org/10.1146/annurev-marine-120308-081019, 2010.
Obikoya, I. B. and Bennell, J. D.: Geophysical Investigation of the Fresh-Saline Water Interface in the Coastal Area of Abergwyngregyn, J. Environ. Protect., 3, 1039–1046, https://doi.org/10.4236/jep.2012.39121, 2012.
Ogilvy, R. D., Meldrum, P. I., Wilkinson, P. B., Chambers, J. E., Sen, M.,
Pulido-Bosch, A., Gisbert, J., Jorreto, S., Frances, I., and Tsourlos, P.:
Automated monitoring of coastal aquifers with electrical resistivity tomography, Near Surf. Geophys., 7, 367–376, https://doi.org/10.3997/1873-0604.2009027, 2009.
Oldenburg, D. W. and Li, Y.: Estimating depth of investigation in dc resistivity and IP surveys, Geophysics, 64, 403–416,
https://doi.org/10.1190/1.1444545, 1999.
Paepen, M., Hanssens, D., De Smedt, P., Walraevens, K., and Hermans, T.: Combining resistivity and frequency domain electromagnetic methods to investigate submarine groundwater discharge (SGD) in the littoral zone, Marine Data Archive, https://doi.org/10.14284/414, 2020.
Paine, J.: Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, and airborne electromagnetic induction methods, Water Resour. Res., 39, 1059,
https://doi.org/10.1029/2001WR000710, 2003.
Palacios, A., Ledo, J. J., Linde, N., Luquot, L., Bellmunt, F., Folch, A.,
Marcuello, A., Queralt, P., Pezard, P. A., Martínez, L., Bosch, D., and
Carrera, J.: Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer, Hydrol. Earth Syst. Sci., 24, 2121–2139, https://doi.org/10.5194/hess-24-2121-2020, 2020.
Pauw, P. S.: The onshore and offshore groundwater salinity distribution between Egmondd aan Zee and Castricum aan Zee, MS thesis, Vrije Universiteit, Amsterdam, the Netherlands, 53 pp., 2009.
Rodellas, V., Stieglitz, T. C., Andrisoa, A., Cook, P. G., Raimbault, P.,
Tamborski, J. J., and Radakovitch, O.: Groundwater-driven nutrient inputs to
coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients, Sci. Total Environ., 642, 764–780,
https://doi.org/10.1016/j.scitotenv.2018.06.095, 2018.
Russoniello, C. J., Fernandez, C., Bratton, J. F., Banaszak, J. F., Krantz, D. E., Andres, A. S., Konikow, L. F., and Michael, H. A.: Geologic effects on
groundwater salinity and discharge into an estuary, J. Hydrol., 498, 1–12, https://doi.org/10.1016/j.jhydrol.2013.05.049, 2013.
Siemon, B., Christiansen, A. V., and Auken, E.: A review of helicopter-borne
electromagnetic methods for groundwater exploration, Near Surf. Geophys., 7, 629–646, https://doi.org/10.3997/1873-0604.2009043, 2009.
Swarzenski, P. W. and Izbicki, J. A.: Coastal groundwater dynamics off Santa
Barbara, California: Combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity, Estuar. Coast. Shelf Sci., 83, 77–89, https://doi.org/10.1016/j.ecss.2009.03.027, 2009.
Swarzenski, P. W., Burnett, B., Reich, C., Dulaiova, H., Peterson, R., and
Meunier, J.: Novel geophysical and geochemical techniques used to study
submarine groundwater discharge in Biscayne Bay, Florida, Fact Sheet 3117, US Geological Survey, Virginia, 2004.
Swarzenski, P. W., Burnett, W. C., Greenwood, W. J., Herut, B., Peterson, R.,
Dimova, N., Shalem, Y., Yechieli, Y., and Weinstein, Y.: Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel, Geophys. Res. Lett., 33, L24405, https://doi.org/10.1029/2006GL028282, 2006.
Swarzenski, P. W., Reich, C., and Rudnick, D.: Examining Submarine Ground-Water Discharge into Florida Bay by using 222Rn and Continuous Resistivity Profiling, Open-File Report 2008-1342, US Geological Survey, Virginia, 2009.
Taniguchi, M., Burnett, W. C., Cable, J. E., and Turner, J. V.: Investigation
of submarine groundwater discharge, Hydrol. Process., 16, 2115–2129, https://doi.org/10.1002/hyp.1145, 2002.
Taniguchi, M., Ishitobi, T., Burnett, W. C., and Wattayakorn, G.: Evaluating
Ground Water–Sea Water Interactions via Resistivity and Seepage Meters,
Groundwater, 45, 729–735, https://doi.org/10.1111/j.1745-6584.2007.00343.x, 2007.
Taniguchi, M., Dulai, H., Burnett, K. M., Santos, I. R., Sugimoto, R., Stieglitz, T., Kim, G., Moosdorf, N., and Burnett, W. C.: Submarine Groundwater Discharge: Updates on Its Measurement Techniques, Geophysical
Drivers, Magnitudes, and Effects, Front. Environ. Sci., 7, 1–26, https://doi.org/10.3389/fenvs.2019.00141, 2019.
Van Camp, M. and Walraevens, K.: Direct groundwater discharge to the North
Sea. A case study for the Western Belgian coast, in: Proceedings of the 18th Salt Water Intrusion Meeting, 31 May–3 June 2004, Cartagena, Spain, 139–150, 2004.
Vandenbohede, A. and Lebbe, L.: Occurrence of salt water above fresh water
in dynamic equilibrium in a coastal groundwater flow system near De Panne,
Belgium, Hydrogeol. J., 14, 462–472, https://doi.org/10.1007/s10040-005-0446-5, 2006.
Vandenbohede, A. and Lebbe, L.: Effects of tides on a sloping shore:
groundwater dynamics and propagation of the tidal wave, Hydrogeol. J., 15, 645–658, https://doi.org/10.1007/s10040-006-0128-y, 2007.
Vandenbohede, A. and Lebbe, L.: Heat transport in a coastal groundwater flow
system near De Panne, Belgium, Hydrogeol. J., 19, 1225–1238,
https://doi.org/10.1007/s10040-011-0756-8, 2011.
Vandenbohede, A., Luyten, K., and Lebbe, L.: Effects of Global Change on
Heterogeneous Coastal Aquifers: A Case Study in Belgium, J. Coast. Res., 24, 160–170, https://doi.org/10.2112/05-0447.1, 2008a.
Vandenbohede, A., Lebbe, L., Gysens, S., Delecluyse, K., and DeWolf, P.:
Salt water infiltrations in two artificial inlets in the Belgian dunes area,
J. Hydrogeol., 360, 77–86, https://doi.org/10.1016/j.jhydrol.2008.07.018, 2008b.
Viezzoli, A., Tosi, L., Teatini, P., and Silvestri, S.: Surface water–groundwater exchange in transitional coastal environments by airborne
electromagnetics: The Venice Lagoon example, Geophys. Res. Lett., 37, L01402, https://doi.org/10.1029/2009GL041572, 2010.
Viezzoli, A., Munday, T., and Cooper, Y. L.: Airborne electromagnetics for groundwater salinity mapping: case studies of coastal and inland salinisation from around the world, Bollettino di Geofisica Teorica ed Applicata, 53, 581–600, https://doi.org/10.4430/bgta0067, 2012.
Short summary
Fresh groundwater can flow to oceans and seas, possibly adding nutrients and pollutants to coastal ecosystems. For the first time, three complementary (salinity-sensitive) geophysical methods are combined to delineate the outflow in a very dynamic coastal environment. This provides temporal and spatial information on the salt- and freshwater distribution on land, in the intertidal zone, and offshore and visualizes the fresh-groundwater discharge around the low-water line at De Westhoek, Belgium.
Fresh groundwater can flow to oceans and seas, possibly adding nutrients and pollutants to...