Articles | Volume 21, issue 7
Research article
11 Jul 2017
Research article |  | 11 Jul 2017

Analysis of data characterizing tide and current fluxes in coastal basins

Elvira Armenio, Francesca De Serio, and Michele Mossa

Abstract. Many coastal monitoring programmes have been carried out to investigate in situ hydrodynamic patterns and correlated physical processes, such as sediment transport or spreading of pollutants. The key point is the necessity to transform this growing amount of data provided by marine sensors into information for users. The present paper aims to outline that it is possible to recognize the recurring and typical hydrodynamic processes of a coastal basin, by conveniently processing some selected marine field data. The illustrated framework is made up of two steps. Firstly, a sequence of analysis with classic methods characterized by low computational cost was executed in both time and frequency domains on detailed field measurements of waves, tides, and currents. After this, some indicators of the hydrodynamic state of the basin were identified and evaluated. Namely, the assessment of the net flow through a connecting channel, the time delay of current peaks between upper and bottom layers, the ratio of peak ebb and peak flood currents and the tidal asymmetry factor exemplify results on the vertical structure of the flow, on the correlation between currents and tide and flood/ebb dominance. To demonstrate how this simple and generic framework could be applied, a case study is presented, referring to Mar Piccolo, a shallow water basin located in the inner part of the Ionian Sea (southern Italy).

Short summary
The paper aims to investigate current and tide correlation in a basin named Mar Piccolo, located in the inner part of the Ionian Sea. It is considered highly vulnerable, being exposed to urban and industrial discharges as well as to intense naval traffic. A continuous monitoring action of the principal hydrodynamic parameters could be a useful managing tool, considering that the diffusion and dispersions of polluting tracers is strictly connected to currents, tide, and waves propagation.