Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 24, issue 7
Hydrol. Earth Syst. Sci., 24, 3451–3474, 2020
https://doi.org/10.5194/hess-24-3451-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 24, 3451–3474, 2020
https://doi.org/10.5194/hess-24-3451-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Jul 2020

Research article | 09 Jul 2020

Sensitivity of meteorological-forcing resolution on hydrologic variables

Fadji Z. Maina et al.

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020,https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020,https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?
Doris Duethmann, Günter Blöschl, and Juraj Parajka
Hydrol. Earth Syst. Sci., 24, 3493–3511, https://doi.org/10.5194/hess-24-3493-2020,https://doi.org/10.5194/hess-24-3493-2020, 2020
Short summary
Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region
Petra Hulsman, Hessel C. Winsemius, Claire I. Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 24, 3331–3359, https://doi.org/10.5194/hess-24-3331-2020,https://doi.org/10.5194/hess-24-3331-2020, 2020
Short summary
Assessing the impact of seasonal-rainfall anomalies on catchment-scale water balance components
Paolo Nasta, Carolina Allocca, Roberto Deidda, and Nunzio Romano
Hydrol. Earth Syst. Sci., 24, 3211–3227, https://doi.org/10.5194/hess-24-3211-2020,https://doi.org/10.5194/hess-24-3211-2020, 2020
Short summary

Cited articles

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system, J. Hydrol., 87, 61–77, https://doi.org/10.1016/0022-1694(86)90115-0, 1986. 
Arnaud, P., Bouvier, C., Cisneros, L., and Dominguez, R.: Influence of rainfall spatial variability on flood prediction, J. Hydrol., 260, 216–230, https://doi.org/10.1016/S0022-1694(01)00611-4, 2002. 
Belfort, B., Ramasomanana, F., Younes, A., and Lehmann, F.: An Efficient Lumped Mixed Hybrid Finite Element Formulation for Variably Saturated Groundwater Flow, Vadose Zone J., 8., 352–362, https://doi.org/10.2136/vzj2008.0108, 2009. 
Bergamaschi, L. and Putti, M.: Mixed finite elements and Newton-type linearizations for the solutions for the solution of Richards' equation, Int. J. Numer. Meth. Eng., 45, 1025–1046, 1999. 
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004. 
Publications Copernicus
Download
Short summary
Projecting the changes in water resources under a no-analog future climate requires integrated hydrologic models. However, these models are plagued by several sources of uncertainty. A hydrologic model was forced with various resolutions of meteorological forcing (0.5 to 40.5 km) to assess its sensitivity to these inputs. We show that most hydrologic variables reveal biases that are seasonally and spatially dependent, which can have serious implications for calibration and water management.
Projecting the changes in water resources under a no-analog future climate requires integrated...
Citation