Articles | Volume 23, issue 11
https://doi.org/10.5194/hess-23-4803-2019
https://doi.org/10.5194/hess-23-4803-2019
Research article
 | 
25 Nov 2019
Research article |  | 25 Nov 2019

Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics

Kamal Ahmed, Dhanapala A. Sachindra, Shamsuddin Shahid, Mehmet C. Demirel, and Eun-Sung Chung

Related authors

Spatiotemporal changes in aridity of Pakistan during 1901–2016
Kamal Ahmed, Shamsuddin Shahid, Xiaojun Wang, Nadeem Nawaz, and Najeebullah Khan
Hydrol. Earth Syst. Sci., 23, 3081–3096, https://doi.org/10.5194/hess-23-3081-2019,https://doi.org/10.5194/hess-23-3081-2019, 2019
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023,https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Historical rainfall data in northern Italy predict larger meteorological drought hazard than climate projections
Rui Guo and Alberto Montanari
Hydrol. Earth Syst. Sci., 27, 2847–2863, https://doi.org/10.5194/hess-27-2847-2023,https://doi.org/10.5194/hess-27-2847-2023, 2023
Short summary
Daytime-only mean data enhance understanding of land–atmosphere coupling
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023,https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022,https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022,https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary

Cited articles

Abbasian, M., Moghim, S., and Abrishamchi, A.: Performance of the general circulation models in simulating temperature and precipitation over Iran, Theor. Appl. Climatol., 135, 1465–1483, https://doi.org/10.1007/s00704-018-2456-y, 2019. 
Acharya, N., Singh, A., Mohanty, U. C., Nair, A., and Chattopadhyay, S.: Performance of general circulation models and their ensembles for the prediction of drought indices over India during summer monsoon, Nat. Hazards, 66, 851–871, https://doi.org/10.1007/s11069-012-0531-8, 2013. 
Afshar, A. A., Hasanzadeh, Y., Besalatpour, A. A., and Pourreza-Bilondi, M.: Climate change forecasting in a mountainous data scarce watershed using CMIP5 models under representative concentration pathways, Theor. Appl. Climatol., 129, 683–699, https://doi.org/10.1007/s00704-016-1908-5, 2016. 
Ahmadalipour, A., Rana, A., Moradkhani, H., and Sharma, A.: Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis, Theor. Appl. Climatol., 128, 71–87, https://doi.org/10.1007/s00704-015-1695-4, 2017. 
Ahmed, K., Shahid, S., and Harun, S. B.: Spatial interpolation of climatic variables in a predominantly arid region with complex topography, Environment Systems and Decisions, 34, 555–563, 2014. 
Download
Short summary
This study evaluated the performance of 36 CMIP5 GCMs in simulating seasonal precipitation and maximum and minimum temperature over Pakistan using spatial metrics (SPAtial EFficiency, fractions skill score, Goodman–Kruskal's lambda, Cramer's V, Mapcurves, and Kling–Gupta efficiency) for the period 1961–2005. NorESM1-M, MIROC5, BCC-CSM1-1, and ACCESS1-3 were identified as the most suitable GCMs for simulating all three climate variables over Pakistan.