Articles | Volume 23, issue 3
Hydrol. Earth Syst. Sci., 23, 1567–1580, 2019
https://doi.org/10.5194/hess-23-1567-2019
Hydrol. Earth Syst. Sci., 23, 1567–1580, 2019
https://doi.org/10.5194/hess-23-1567-2019
Technical note
18 Mar 2019
Technical note | 18 Mar 2019

Technical note: Laboratory modelling of urban flooding: strengths and challenges of distorted scale models

Xuefang Li et al.

Related authors

INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022,https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Behind the scenes of streamflow model performance
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021,https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Numerical study of the Martelange mine to be used as underground reservoir for constructing an Underground Pumped Storage Hydropower plant
Estanislao Pujades, Philippe Orban, Pierre Archambeau, Sebastien Erpicum, and Alain Dassargues
Adv. Geosci., 45, 51–56, https://doi.org/10.5194/adgeo-45-51-2018,https://doi.org/10.5194/adgeo-45-51-2018, 2018
Short summary
Formation, breaching and flood consequences of a landslide dam near Bujumbura, Burundi
Léonidas Nibigira, Hans-Balder Havenith, Pierre Archambeau, and Benjamin Dewals
Nat. Hazards Earth Syst. Sci., 18, 1867–1890, https://doi.org/10.5194/nhess-18-1867-2018,https://doi.org/10.5194/nhess-18-1867-2018, 2018
Short summary
Hydrodynamics of long-duration urban floods: experiments and numerical modelling
Anaïs Arrault, Pascal Finaud-Guyot, Pierre Archambeau, Martin Bruwier, Sébastien Erpicum, Michel Pirotton, and Benjamin Dewals
Nat. Hazards Earth Syst. Sci., 16, 1413–1429, https://doi.org/10.5194/nhess-16-1413-2016,https://doi.org/10.5194/nhess-16-1413-2016, 2016
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Instruments and observation techniques
Sources and pathways of biocides and their transformation products in urban storm water infrastructure of a 2 ha urban district
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021,https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Assessing different imaging velocimetry techniques to measure shallow runoff velocities during rain events using an urban drainage physical model
Juan Naves, Juan T. García, Jerónimo Puertas, and Jose Anta
Hydrol. Earth Syst. Sci., 25, 885–900, https://doi.org/10.5194/hess-25-885-2021,https://doi.org/10.5194/hess-25-885-2021, 2021
Short summary
Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021,https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
Reconstituting past flood events: the contribution of citizen science
Bocar Sy, Corine Frischknecht, Hy Dao, David Consuegra, and Gregory Giuliani
Hydrol. Earth Syst. Sci., 24, 61–74, https://doi.org/10.5194/hess-24-61-2020,https://doi.org/10.5194/hess-24-61-2020, 2020
Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network
Matthew Moy de Vitry, Simon Kramer, Jan Dirk Wegner, and João P. Leitão
Hydrol. Earth Syst. Sci., 23, 4621–4634, https://doi.org/10.5194/hess-23-4621-2019,https://doi.org/10.5194/hess-23-4621-2019, 2019
Short summary

Cited articles

Araud, Q.: Simulation des écoulements en milieu urbain lors d'un événement pluvieux extrême, Université de Strasbourg, 2012. 
Arrault, A., Finaud-Guyot, P., Archambeau, P., Bruwier, M., Erpicum, S., Pirotton, M., and Dewals, B.: Hydrodynamics of long-duration urban floods: experiments and numerical modelling, Nat. Hazards Earth Syst. Sci., 16, 1413–1429, https://doi.org/10.5194/nhess-16-1413-2016, 2016. 
Bazin, P.-H., Mignot, E., and Paquier, A.: Computing flooding of crossroads with obstacles using a 2-D numerical model, J. Hydraul. Res., 55, 72–84, https://doi.org/10.1080/00221686.2016.1217947, 2017. 
Brown, R. and Chanson, H.: Suspended sediment properties and suspended sediment flux estimates in an inundated urban environment during a major flood event, Water Resour. Res., 48, W11523, doi:10.1029/2012WR012381, 2012. 
Brown, R. and Chanson, H.: Turbulence and suspended sediment measurements in an urban environment during the Brisbane River flood of january 2011, J. Hydraul. Eng., 139, 244–253, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000666, 2013. 
Download
Short summary
With a growing urban flood risk worldwide, flood risk management tools need to be validated against reference data. Field and remote-sensing observations provide valuable data on inundation extent and depth but virtually no information on flow velocity. Laboratory scale models have the potential to deliver complementary data, provided that the model scaling is performed carefully. In this paper, we reanalyse existing laboratory data to discuss challenges related to the scaling of urban floods.