Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-595-2018
https://doi.org/10.5194/hess-22-595-2018
Research article
 | 
24 Jan 2018
Research article |  | 24 Jan 2018

Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

Gopal Penny, Veena Srinivasan, Iryna Dronova, Sharachchandra Lele, and Sally Thompson

Related authors

Proximate and underlying drivers of socio-hydrologic change in the upper Arkavathy watershed, India
Veena Srinivasan, Gopal Penny, Sharachchandra Lele, Bejoy K. Thomas, and Sally Thompson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-543,https://doi.org/10.5194/hess-2017-543, 2017
Revised manuscript has not been submitted
Short summary
Why is the Arkavathy River drying? A multiple-hypothesis approach in a data-scarce region
V. Srinivasan, S. Thompson, K. Madhyastha, G. Penny, K. Jeremiah, and S. Lele
Hydrol. Earth Syst. Sci., 19, 1905–1917, https://doi.org/10.5194/hess-19-1905-2015,https://doi.org/10.5194/hess-19-1905-2015, 2015
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Sediment transport in South Asian rivers high enough to impact satellite gravimetry
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci., 28, 1527–1538, https://doi.org/10.5194/hess-28-1527-2024,https://doi.org/10.5194/hess-28-1527-2024, 2024
Short summary
On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024,https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Pairing remote sensing and clustering in landscape hydrology for large-scale change identification: an application to the subarctic watershed of the George River (Nunavik, Canada)
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024,https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary
Uncertainty assessment of satellite remote-sensing-based evapotranspiration estimates: a systematic review of methods and gaps
Bich Ngoc Tran, Johannes van der Kwast, Solomon Seyoum, Remko Uijlenhoet, Graham Jewitt, and Marloes Mul
Hydrol. Earth Syst. Sci., 27, 4505–4528, https://doi.org/10.5194/hess-27-4505-2023,https://doi.org/10.5194/hess-27-4505-2023, 2023
Short summary
Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022,https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary

Cited articles

Anand, P. B.: Water and Identity: An analysis of the Cauvery River water dispute, BCID Research Paper 3, Bradford Centre for International Development, University of Bradford, Bradford, UK, 1–41, http://hdl.handle.net/10454/2893 (last access: January 2018), 2004. a
ATREE, Srinivasan, V., and Lele, S.: Forum with traditional watermen (Neerghantis) in the upper Arkavathy sub-basin, 2015. a
Batchelor, C., Rama Mohan Rao, M., and Manohar Rao, S.: Watershed development: A solution to water shortages in semi-arid India or part of the problem, in: Land Use and Water Resources Research, 23 December 2015, Doddaballapura, KA, India, 1–10, http://www.rainfedfarming.org/documents/Groundwater/luwrrpap.pdf (last access: January 2018), 2003. a
Bivand, R. and Rundel, C.: rgeos: Interface to Geometry Engine – Open Source (GEOS), R package version 0.3-22, https://CRAN.R-project.org/package=rgeos (last access: January 2018), 2016. a
Bivand, R., Keitt, T., and Rowlingson, B.: rgdal: Bindings for the Geospatial Data Abstraction Library, R package version 1.0-4, https://CRAN.R-project.org/package=rgdal (last access: January 2018), 2016. a
Download
Short summary
Water resources in the Arkavathy watershed in southern India are changing due to human modification of the landscape, including changing agricultural practices and urbanization. We analyze surface water resources in man-made lakes in satellite imagery over a period of 4 decades and find drying in the northern part of the watershed (characterized by heavy agriculture) and wetting downstream of urban areas. Drying in the watershed is associated with groundwater-irrigated agriculture.