Articles | Volume 22, issue 10
https://doi.org/10.5194/hess-22-5281-2018
https://doi.org/10.5194/hess-22-5281-2018
Research article
 | Highlight paper
 | 
15 Oct 2018
Research article | Highlight paper |  | 15 Oct 2018

The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia

Alistair Grinham, Simon Albert, Nathaniel Deering, Matthew Dunbabin, David Bastviken, Bradford Sherman, Catherine E. Lovelock, and Christopher D. Evans

Related authors

Adaptively monitoring streamflow using a stereo computer vision system
Nicholas Reece Hutley, Ryan Beecroft, Daniel Wagenaar, Josh Soutar, Blake Edwards, Nathaniel Deering, Alistair Grinham, and Simon Albert
Hydrol. Earth Syst. Sci., 27, 2051–2073, https://doi.org/10.5194/hess-27-2051-2023,https://doi.org/10.5194/hess-27-2051-2023, 2023
Short summary
Methane and nitrous oxide sources and emissions in a subtropical freshwater reservoir, South East Queensland, Australia
K. Sturm, Z. Yuan, B. Gibbes, U. Werner, and A. Grinham
Biogeosciences, 11, 5245–5258, https://doi.org/10.5194/bg-11-5245-2014,https://doi.org/10.5194/bg-11-5245-2014, 2014

Related subject area

Subject: Biogeochemical processes | Techniques and Approaches: Instruments and observation techniques
Geophysically based analysis of breakthrough curves and ion exchange processes in soil
Shany Ben Moshe, Pauline Kessouri, Dana Erlich, and Alex Furman
Hydrol. Earth Syst. Sci., 25, 3041–3052, https://doi.org/10.5194/hess-25-3041-2021,https://doi.org/10.5194/hess-25-3041-2021, 2021
Short summary
Spatio-temporal controls of C–N–P dynamics across headwater catchments of a temperate agricultural region from public data analysis
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021,https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Pesticide peak concentration reduction in a small vegetated treatment system controlled by chemograph shape
Jan Greiwe, Oliver Olsson, Klaus Kümmerer, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 497–509, https://doi.org/10.5194/hess-25-497-2021,https://doi.org/10.5194/hess-25-497-2021, 2021
Short summary
On the role of operational dynamics in biogeochemical efficiency of a soil aquifer treatment system
Shany Ben Moshe, Noam Weisbrod, Felix Barquero, Jana Sallwey, Ofri Orgad, and Alex Furman
Hydrol. Earth Syst. Sci., 24, 417–426, https://doi.org/10.5194/hess-24-417-2020,https://doi.org/10.5194/hess-24-417-2020, 2020
Short summary
Hydrological tracers for assessing transport and dissipation processes of pesticides in a model constructed wetland system
Elena Fernández-Pascual, Marcus Bork, Birte Hensen, and Jens Lange
Hydrol. Earth Syst. Sci., 24, 41–60, https://doi.org/10.5194/hess-24-41-2020,https://doi.org/10.5194/hess-24-41-2020, 2020
Short summary

Cited articles

Aben, R. C., Barros, N., Van Donk, E., Frenken, T., Hilt, S., Kazanjian, G., Lamers, L. P., Peeters, E. T., Roelofs, J. G., and Domis, L. N. S.: Cross continental increase in methane ebullition under climate change, Nat. Commun., 8, 1–8, 2017. 
ABS: Australian Bureau of Statistics: Queensland region, available at: http://stat.abs.gov.au/, last access: 14 March 2018. 
Albert, S., Leon, J. X., Grinham, A. R., Church, J. A., Gibbes, B. R., and Woodroffe, C. D.: Interactions between sea-level rise and wave exposure on reef island dynamics in the Solomon Islands, Environ. Res. Lett., 11, 054011, https://doi.org/10.1088/1748-9326/11/5/054011, 2016. 
Allen, D., Mendham, D., Cowie, A., Wang, W., Dalal, R., and Raison, R.: Nitrous oxide and methane emissions from soil are reduced following afforestation of pasture lands in three contrasting climatic zones, Soil Res., 47, 443–458, 2009. 
Aselmann, I. and Crutzen, P.: Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions, J. Atmos. Chem., 8, 307–358, 1989. 
Download
Short summary
Artificial water bodies are a major source of methane and an important contributor to flooded land greenhouse gas emissions. Past studies focussed on large water supply or hydropower reservoirs with small artificial water bodies (ponds) almost completely ignored. This regional study demonstrated ponds accounted for one-third of flooded land surface area and emitted over 1.6 million t CO2 eq. yr−1 (10 % of land use sector emissions). Ponds should be included in regional GHG inventories.