Articles | Volume 22, issue 9
https://doi.org/10.5194/hess-22-5041-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-5041-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal drought prediction for semiarid northeastern Brazil: verification of six hydro-meteorological forecast products
José Miguel Delgado
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
Sebastian Voss
Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
Gerd Bürger
Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
Klaus Vormoor
Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
Aline Murawski
German Research Centre of Geosciences GFZ Potsdam, Potsdam, Germany
José Marcelo Rodrigues Pereira
Research Institute for Meteorology and Water Resources – FUNCEME, Fortaleza, Brazil
Eduardo Martins
Research Institute for Meteorology and Water Resources – FUNCEME, Fortaleza, Brazil
Francisco Vasconcelos Júnior
Research Institute for Meteorology and Water Resources – FUNCEME, Fortaleza, Brazil
Till Francke
Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
Related authors
No articles found.
Elodie Marret, Peter M. Grosse, Lena Scheiffele, Katya Dimitrova Petrova, Till Francke, Daniel Altdorff, Maik Heistermann, Merlin Schiel, Carsten Neumann, Daniel Scheffler, Mehdi Saberioon, Matthias Kunz, Miroslav Zboril, Jonas Marach, Marcel Reginatto, Anna Balenzano, Daniel Rasche, Christine Stumpp, Benjamin Trost, and Sascha E. Oswald
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-546, https://doi.org/10.5194/essd-2025-546, 2025
Preprint under review for ESSD
Short summary
Short summary
This data paper describes a comprehensive collection of soil moisture and related data from an extensive cosmic-ray neutron sensing (CRNS) network at an agricultural research site in north-east Germany. The data set comprises not only soil moisture observations at different spatio-temporal scales, but also a wealth of accompanying data that provide the context to interpret soil moisture dynamics within a broader hydrological and environmental framework.
Gerd Bürger and Maik Heistermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3584, https://doi.org/10.5194/egusphere-2025-3584, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
For four regions of Germany we project future extreme rainfall events from GCM projections. The fields are linked to the local events by classifying observed fields. Classifiers are conventional procedures along with modern schemes. Positive trends are identified for two antagonists model fields, causing large uncertainties of the local trends. Uncertainty is analyzed using the factors of event severity, emissions, GCMs, classifiers, and region. Positive trends outweigh the negative ones.
Till Francke and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 2783–2802, https://doi.org/10.5194/nhess-25-2783-2025, https://doi.org/10.5194/nhess-25-2783-2025, 2025
Short summary
Short summary
Brandenburg is among the driest federal states in Germany. The low groundwater recharge (GWR) is fundamental to both water supply and the support of natural ecosystems. In this study, we show that the decline of observed discharge and groundwater tables since 1980 can be explained by climate change in combination with an increasing leaf area index. Still, simulated GWR rates remain highly uncertain due to the uncertainty in precipitation trends.
Marie-Therese Schmehl, Yojana Adhikari, Cathrina Balthasar, Anja Binder, Danica Clerc, Sophia Dobkowitz, Werner Gerwin, Kristin Günther, Heinrich Hartong, Thilo Heinken, Carsten Hess, Pierre L. Ibisch, Florent Jouy, Loretta Leinen, Thomas Raab, Frank Repmann, Susanne Rönnefarth, Lilly Rohlfs, Marina Schirrmacher, Jens Schröder, Maren Schüle, Andrea Vieth-Hillebrand, and Till Francke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-313, https://doi.org/10.5194/essd-2025-313, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We present data recorded by eight institutions within the PYROPHOB project, running from 2020 to 2024 at two forest research sites in northeastern Germany. The aim of the project was to monitor abiotic and biotic parameters of forest regrowth under different management regimes on former wildfire sites. The multitude of collected data allows for detailed analyses of the observables separately, as well as their interaction for a more multidisciplinary view on forest recovery after a wildfire.
Nazaré Suziane Soares, Carlos Alexandre Gomes Costa, Till Francke, Christian Mohr, Wolfgang Schwanghart, and Pedro Henrique Augusto Medeiros
EGUsphere, https://doi.org/10.5194/egusphere-2025-884, https://doi.org/10.5194/egusphere-2025-884, 2025
Short summary
Short summary
We use drone surveys to map river intermittency in reaches and classify them into "Wet", "Transition", "Dry" or "Not Determined". We train Random Forest models with 40 candidate predictors, and select altitude, drainage area, distance from dams and dynamic predictors. We separate different models based on dynamic predictors: satellite indices (a) and (b); or (c) accumulated precipitation (30 days). Model (a) is the most successful in simulating intermittency both temporally and spatially.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025, https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation is generally hindered by not knowing the truth. We propose a virtual framework in which this truth is fully known and the sensor observations for cosmic ray neutron sensing, remote sensing, and hydrogravimetry are simulated. This allows for the rigorous testing of these virtual sensors to understand their effectiveness and limitations.
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848, https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary
Short summary
The German federal state of Brandenburg is particularly prone to soil moisture droughts. To support the management of related risks, we introduce a novel soil moisture and drought monitoring network based on cosmic-ray neutron sensing technology. This initiative is driven by a collaboration of research institutions and federal state agencies, and it is the first of its kind in Germany to have started operation. In this brief communication, we outline the network design and share first results.
Marjorie Beate Kreis, Jean-Denis Taupin, Nicolas Patris, Patrick Lachassagne, Virginie Vergnaud-Ayraud, Julien Daniel Pierre Burte, Christian Leduc, and Eduardo Sávio Passos Rodrigues Martins
Proc. IAHS, 385, 393–398, https://doi.org/10.5194/piahs-385-393-2024, https://doi.org/10.5194/piahs-385-393-2024, 2024
Short summary
Short summary
This study used hydrodynamic and hydrogeochemical data to understand the salinization processes of the crystalline groundwater (GW) in Ceará, Brazil. Results demonstrate that GW is generally recent and recharged by meteoric waters mainly through localized infiltration. The study suggests that GW, originally bicarbonated, becomes progressively enriched in chloride due to the dissolution and leaching of salts that have precipitated in the unsaturated zone and pond sediments during dryer periods.
Marjorie B. Kreis, Jean-Denis Taupin, Nicolas Patris, and Eduardo S. P. R. Martins
Proc. IAHS, 385, 17–23, https://doi.org/10.5194/piahs-385-17-2024, https://doi.org/10.5194/piahs-385-17-2024, 2024
Short summary
Short summary
The isotopic characterization of rainwater in the semi-arid regions of Northeastern Brazil (NEB) was only addressed by a few studies. Moreover, the isotopic data available were mainly linked to the establishment of the Global Network of Isotopes in Precipitation, which was paralyzed in the 1990s despite the extensive use of these data to improve the global knowledge of hydrological processes. This study allowed to improve the characterization of the isotopic signal of precipitation in NEB.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024, https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive technique used to obtain estimates of soil water content (SWC) at a horizontal footprint of around 150 m and a vertical penetration depth of up to 30 cm. However, typical CRNS applications require the local calibration of a function which converts neutron counts to SWC. As an alternative, we propose a generalized function as a way to avoid the use of local reference measurements of SWC and hence a major source of uncertainty.
Stefano Gianessi, Matteo Polo, Luca Stevanato, Marcello Lunardon, Till Francke, Sascha E. Oswald, Hami Said Ahmed, Arsenio Toloza, Georg Weltin, Gerd Dercon, Emil Fulajtar, Lee Heng, and Gabriele Baroni
Geosci. Instrum. Method. Data Syst., 13, 9–25, https://doi.org/10.5194/gi-13-9-2024, https://doi.org/10.5194/gi-13-9-2024, 2024
Short summary
Short summary
Soil moisture monitoring is important for many applications, from improving weather prediction to supporting agriculture practices. Our capability to measure this variable is still, however, limited. In this study, we show the tests conducted on a new soil moisture sensor at several locations. The results show that the new sensor is a valid and compact alternative to more conventional, non-invasive soil moisture sensors that can pave the way for a wide range of applications.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Germano G. Ribeiro Neto, Sarra Kchouk, Lieke A. Melsen, Louise Cavalcante, David W. Walker, Art Dewulf, Alexandre C. Costa, Eduardo S. P. R. Martins, and Pieter R. van Oel
Hydrol. Earth Syst. Sci., 27, 4217–4225, https://doi.org/10.5194/hess-27-4217-2023, https://doi.org/10.5194/hess-27-4217-2023, 2023
Short summary
Short summary
People induce and modify droughts. However, we do not know exactly how relevant human and natural processes interact nor how to evaluate the co-evolution of people and water. Prospect theory can help us to explain the emergence of drought impacts leading to failed welfare expectations (“prospects”) due to water shortage. Our approach helps to explain socio-hydrological phenomena, such as reservoir effects, and can contribute to integrated drought management considering the local context.
Gerd Bürger and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 3065–3077, https://doi.org/10.5194/nhess-23-3065-2023, https://doi.org/10.5194/nhess-23-3065-2023, 2023
Short summary
Short summary
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify reanalyzed daily atmospheric fields of convective indices according to CatRaRE, using conventional statistical and more recent machine learning algorithms, and apply them to present and future atmospheres. Increasing trends are projected for CatRaRE-type probabilities, from reanalyzed as well as from simulated atmospheric fields.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 25, 4807–4824, https://doi.org/10.5194/hess-25-4807-2021, https://doi.org/10.5194/hess-25-4807-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil moisture in footprints extending over hectometres in the horizontal and decimetres in the vertical. This study, however, demonstrates the potential of CRNS to obtain spatio-temporal patterns of soil moisture beyond isolated footprints. To that end, we analyse data from a unique observational campaign that featured a dense network of more than 20 neutron detectors in an area of just 1 km2.
Erwin Rottler, Axel Bronstert, Gerd Bürger, and Oldrich Rakovec
Hydrol. Earth Syst. Sci., 25, 2353–2371, https://doi.org/10.5194/hess-25-2353-2021, https://doi.org/10.5194/hess-25-2353-2021, 2021
Short summary
Short summary
The mesoscale hydrological model (mHM) forced with an ensemble of climate projection scenarios was used to assess potential future changes in flood seasonality in the Rhine River basin. Results indicate that future changes in flood characteristics are controlled by increases in precipitation sums and diminishing snowpacks. The decreases in snowmelt can counterbalance increasing precipitation, resulting in only small and transient changes in streamflow maxima.
Cited articles
Bürger, G.: Expanded downscaling for generating local weather scenarios,
Clim. Res., 7, 111–128, https://doi.org/10.3354/cr007111, 1996. a
de Aragão Araújo, J. A.: Barragens no Nordeste do Brasil, DNOCS,
Fortaleza, 1990. a
de Araújo, J. C. and Bronstert, A.: A method to assess hydrological
drought in semi-arid environments and its application to the Jaguaribe River
basin, Brazil, Water Int., 41, 213–230, https://doi.org/10.1080/02508060.2015.1113077,
2016. a, b
de Castro, T. N., Souza, F., Alves, J. M. B., Pontes, R. S. T., dos Reis, L.
L. N., and Daher, S.: Neo-fuzzy neuron model for seasonal rainfall forecast:
A case study of Ceara's eight homogenous regions, J. Intell. Fuzzy Syst., 25,
389–394, https://doi.org/10.3233/IFS-2012-0645, 2013. a
Doesken, N., McKee, T., and Kleist, J.: Development of a Surface Water Supply
Index for the Western United States, Tech. Rep. Climatology Report 91-3,
Colorado Climate Center, Department of Atmospheric Science, Colorado State
University, available at:
http://climate.colostate.edu/pdfs/climo_rpt_91-3.pdf (last access:
24 September 2018), 1991. a
Dutra, E., Di Giuseppe, F., Wetterhall, F., and Pappenberger, F.: Seasonal
forecasts of droughts in African basins using the Standardized Precipitation
Index, Hydrol. Earth Syst. Sci., 17, 2359–2373,
https://doi.org/10.5194/hess-17-2359-2013, 2013. a
Fioreze, A. P., Bubel, A. P. M., Callou, A. É. P., Mendonça, B. C.
d. S., Nunes, C. M., Pinto, C. G., Viana, C. F. G., Junior, D. S. R.,
Martins, E. S. P. R., Rodrigues, F. S. F., Filho, F. d. A. d. S., Teixeira,
F. J. C., Viana, F. L., Nascentes, J. C. d. M., Filho, J. G. C. G.,
Júnior, J. A. d. L., Campos, J. N. B., Carvalho, J. O. d., Gonçalves,
J. Y. d. B., Burte, J., Silva, L. M. C. d., Azevedo, L. G. T. d., Bursztyn,
M., Cerqueira, M. R. S., Coimbra, T. P., Nobre, P., Vieira, R. F., Alves, R.
F. F., Chacon, S. S., and Paulino, W. D.: A questão da Água no
Nordeste, Ministério da Ciência e Tecnologia (MCT), available at:
http://livroaberto.ibict.br/handle/1/669 (last access: 24 September
2018), 2012. a
Formiga-Johnsson, R. M. and Kemper, K.: Institutional and Policy Analysis of
River Basin Management: The Jaguaribe River Basin, Ceara, Brazil, SSRN
Scholarly Paper ID 757424, Social Science Research Network, Rochester, NY,
available at: https://papers.ssrn.com/abstract=757424 (last access:
24 September 2018), 2005. a
Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach,
R. S., Fiorino, M., Gleckler, P. J., Hnilo, J. J., Marlais, S. M., Phillips,
T. J., Potter, G. L., Santer, B. D., Sperber, K. R., Taylor, K. E., and
Williams, D. N.: An Overview of the Results of the Atmospheric Model
Intercomparison Project (AMIP I), B. Am. Meteorol. Soc., 80, 29–56,
https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2, 1999. a, b
Hastenrath, S.: Exploring the climate problems of Brazil's Nordeste:
a review, Climatic Change, 112, 243–251, https://doi.org/10.1007/s10584-011-0227-1,
2012. a
Hastenrath, S. and Greischar, L.: Further Work on the Prediction of Northeast
Brazil Rainfall Anomalies, J. Climate, 6, 743–758,
https://doi.org/10.1175/1520-0442(1993)006<0743:FWOTPO>2.0.CO;2, 1993. a
IPECE: Anuário Estatístico do Ceará, available at:
http://www.ipece.ce.gov.br/index.php/anuario-estatistico-do-ceara (last
access: 24 September 2018), 2017. a
Juang, H.-M. H., Hong, S.-Y., and Kanamitsu, M.: The NCEP Regional Spectral
Model: An Update, B. Am. Meteorol. Soc., 78, 2125–2143,
https://doi.org/10.1175/1520-0477(1997)078<2125:TNRSMA>2.0.CO;2, 1997. a
Marengo, J. A., Torres, R. R., and Alves, L. M.: Drought in Northeast Brazil
– past, present, and future, Theor. Appl. Climatol., 129, 1189–1200,
https://doi.org/10.1007/s00704-016-1840-8, 2017. a
McKee, T. B., Doesken, N. J., and Kleist, J.: The Relationship of Drought
Frequency and Duration of Time Scales, Eighth Conference on Applied
Climatology, Anaheim, California, American Meteorological Society, available
at: http://clima.cptec.inpe.br/~rclima1/pdf/paper_spi.pdf (last access:
24 September 2018), 1993. a
Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Ferranti,
L., Magnusson, L., Mogensen, K., Palmer, T., and Vitart, F.: The new ECMWF
seasonal forecast system (System 4), ECMWF Research Department, Technical
Memorandum No. 656, available at:
https://www.ecmwf.int/sites/default/files/elibrary/2011/11209-new-ecmwf-seasonal-forecast-system-system-4.pdf
(last access: 24 September 2018), 2011. a
Moura, A. D. and Hastenrath, S.: Climate Prediction for Brazil's Nordeste:
Performance of Empirical and Numerical Modeling Methods, J. Climate, 17,
2667–2672, https://doi.org/10.1175/1520-0442(2004)017<2667:CPFBNP>2.0.CO;2, 2004. a
Murawski, A., Bürger, G., Vorogushyn, S., and Merz, B.: Can local climate
variability be explained by weather patterns? A multi-station evaluation for
the Rhine basin, Hydrol. Earth Syst. Sci., 20, 4283–4306,
https://doi.org/10.5194/hess-20-4283-2016, 2016. a
Philipp, A., Della-Marta, P. M., Jacobeit, J., Fereday, D. R., Jones, P. D.,
Moberg, A., and Wanner, H.: Long-Term Variability of Daily North
Atlantic–European Pressure Patterns since 1850 Classified by Simulated
Annealing Clustering, J. Climate, 20, 4065–4095, https://doi.org/10.1175/JCLI4175.1,
2007. a
Philipp, A., Beck, C., Huth, R., and Jacobeit, J.: Development and comparison
of circulation type classifications using the COST 733 dataset and software,
Int. J. Climatol., 36, 2673–2691, https://doi.org/10.1002/joc.3920, 2016. a
Richardson, D. S., Bidlot, J., Ferranti, L., Ghelli, A., Haiden, T., Hewson,
T., Janousek, M., Prates, F., and Vitart, F.: Verification statistics and
evaluations of ECMWF forecasts in 2011–2012, ECMWF Research Department,
Technical Memorandum No. 688, available at:
https://www.ecmwf.int/sites/default/files/elibrary/2012/11917-verification-statistics-and-evaluations-ecmwf-forecasts
(last access: 24 September 2018), 2012. a
Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch,
M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U.,
Schubert, S., and Windelband, M.: Simulation of the present-day climate with
the ECHAM-3 model: impact of model physics and resolution, Report,
Max-Planck-Institut für Meteorologie, 93, 1992. a, b
Seibert, M., Merz, B., and Apel, H.: Seasonal forecasting of hydrological
drought in the Limpopo Basin: a comparison of statistical methods, Hydrol.
Earth Syst. Sci., 21, 1611–1629, https://doi.org/10.5194/hess-21-1611-2017, 2017. a
Stockdale, T. N., Anderson, D. L. T., Alves, J. O. S., and Balmaseda, M. A.:
Global seasonal rainfall forecasts using a coupled ocean–atmosphere model,
Nature, 392, 370–373, https://doi.org/10.1038/32861, 1998. a
Trambauer, P., Werner, M., Winsemius, H. C., Maskey, S., Dutra, E., and
Uhlenbrook, S.: Hydrological drought forecasting and skill assessment for the
Limpopo River basin, southern Africa, Hydrol. Earth Syst. Sci., 19,
1695–1711, https://doi.org/10.5194/hess-19-1695-2015, 2015.
a
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Globa Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2009. a
Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S.,
Lorenzo-Lacruz, J., Azorin-Molina, C., and Morán-Tejeda, E.: Accurate
Computation of a Streamflow Drought Index, J. Hydrol. Eng., 17, 318–332,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433, 2012. a
Vitart, F.: Evolution of ECMWF sub-seasonal forecast skill scores over the
past 10 years, ECMWF Research Department, Technical Memorandum Nr. 694,
available at:
https://www.ecmwf.int/sites/default/files/elibrary/2013/12932-evolution-ecmwf-sub-seasonal-forecast-skill-scores
(last access: 24 September 2018), 2013. a
Wetterhall, F., Pappenberger, F., He, Y., Freer, J., and Cloke, H. L.:
Conditioning model output statistics of regional climate model precipitation
on circulation patterns, Nonlin. Processes Geophys., 19, 623–633,
https://doi.org/10.5194/npg-19-623-2012, 2012. a
World Meteorological Organization (WMO): Guidelines on Ensemble Prediction
Systems and Forecasting, WMO-No. 1091, Geneva, available at:
http://library.wmo.int/pmb_ged/wmo_1091_en.pdf (last access:
24 September 2018), 2012a. a
World Meteorological Organization (WMO): Standardized Precipitation Index
User Guide (M. Svoboda, M. Hayes and D. Wood), WMO-No. 1090, Geneva,
available at: https://library.wmo.int/pmb_ged/wmo_1090_en.pdf, (last
access: 24 September 2018), 2012b. a
Short summary
The feasibility of drought prediction is assessed in the Brazilian northeast. The models were provided by a regional agency and a European meteorological agency and downscaling was done using three empirical models. This work showed that the combination of different forecast and downscaling models can provide skillful predictions of drought events on timescales relevant to water managers. But the models also showed little to no skill for quantitative predictions of monthly precipitation.
The feasibility of drought prediction is assessed in the Brazilian northeast. The models were...