Articles | Volume 22, issue 7
https://doi.org/10.5194/hess-22-4125-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-4125-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment
Enrica Perra
CORRESPONDING AUTHOR
Dipartimento di Ingegneria Civile, Ambientale ed Architettura,
Università degli Studi di Cagliari, Cagliari, Italy
Centre Eau Terre Environnement, Institut National de la Recherche
Scientifique, Quebec City, Canada
Monica Piras
Dipartimento di Ingegneria Civile, Ambientale ed Architettura,
Università degli Studi di Cagliari, Cagliari, Italy
Consorzio Interuniversitario nazionale per la Fisica dell'Atmosfere e
dell'Idrosfere, Tolentino, Italy
Roberto Deidda
Dipartimento di Ingegneria Civile, Ambientale ed Architettura,
Università degli Studi di Cagliari, Cagliari, Italy
Consorzio Interuniversitario nazionale per la Fisica dell'Atmosfere e
dell'Idrosfere, Tolentino, Italy
Claudio Paniconi
Centre Eau Terre Environnement, Institut National de la Recherche
Scientifique, Quebec City, Canada
Giuseppe Mascaro
Consorzio Interuniversitario nazionale per la Fisica dell'Atmosfere e
dell'Idrosfere, Tolentino, Italy
School of Sustainable Engineering and the Built Environment and School
of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
Enrique R. Vivoni
School of Sustainable Engineering and the Built Environment and School
of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
Pierluigi Cau
Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna, Pula,
Cagliari, Italy
Pier Andrea Marras
Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna, Pula,
Cagliari, Italy
Ralf Ludwig
Physical Geography and Environmental Modeling, Department of
Geography, Ludwig-Maximilians-Universität, Munich, Germany
Swen Meyer
Physical Geography and Environmental Modeling, Department of
Geography, Ludwig-Maximilians-Universität, Munich, Germany
Leibniz-Institut für Gemüse- und Zierpflanzenbau
Großbeeren/Erfurt e.V., Grossbeeren, Germany
Related authors
No articles found.
Benjamin Poschlod, Laura Sailer, Alexander Sasse, Anastasia Vogelbacher, and Ralf Ludwig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2483, https://doi.org/10.5194/egusphere-2025-2483, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Europe was hit by severe droughts in recent years resulting in extreme low flow conditions in rivers. Here, we investigate future climate change effects on river droughts in Bavaria. We find increasing severity for the low peak discharge and low flow duration in a warmer climate. This is caused by hotter and drier summers, where the joint occurrence of heat and drought intensifies. Further, we show that conditions in the year before the drought gain more importance in a warmer climate.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864, https://doi.org/10.5194/egusphere-2024-2864, 2024
Preprint archived
Short summary
Short summary
We applied a biogeochemical model on grasslands in the pre-Alpine Ammer region in Germany and analyzed the influence of soil and climate on annual yields. In drought affected years, total yields were decreased by 4 %. Overall, yields decrease with rising elevation, but less so in drier and hotter years, whereas soil organic carbon has a positive impact on yields, especially in drier years. Our findings imply, that adapted management in the region allows to mitigate yield losses from drought.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Elizaveta Felsche and Ralf Ludwig
Nat. Hazards Earth Syst. Sci., 21, 3679–3691, https://doi.org/10.5194/nhess-21-3679-2021, https://doi.org/10.5194/nhess-21-3679-2021, 2021
Short summary
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and Lisbon, with a lead time of 1 month. An analysis of the variables that have the highest impact on the prediction is performed. The study shows that the North Atlantic Oscillation index and air pressure 1 month before the event have the highest importance for the prediction. Moreover, it shows that seasonality strongly influences the goodness of prediction for the Lisbon domain.
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, https://doi.org/10.5194/esd-12-401-2021, 2021
Benjamin Poschlod, Ralf Ludwig, and Jana Sillmann
Earth Syst. Sci. Data, 13, 983–1003, https://doi.org/10.5194/essd-13-983-2021, https://doi.org/10.5194/essd-13-983-2021, 2021
Short summary
Short summary
This study provides a homogeneous data set of 10-year rainfall return levels based on 50 simulations of the Canadian Regional Climate Model v5 (CRCM5). In order to evaluate its quality, the return levels are compared to those of observation-based rainfall of 16 European countries from 32 different sources. The CRCM5 is able to capture the general spatial pattern of observed extreme precipitation, and also the intensity is reproduced in 77 % of the area for rainfall durations of 3 h and longer.
Fabian von Trentini, Emma E. Aalbers, Erich M. Fischer, and Ralf Ludwig
Earth Syst. Dynam., 11, 1013–1031, https://doi.org/10.5194/esd-11-1013-2020, https://doi.org/10.5194/esd-11-1013-2020, 2020
Short summary
Short summary
We compare the inter-annual variability of three single-model initial-condition large ensembles (SMILEs), downscaled with three regional climate models over Europe for seasonal temperature and precipitation, the number of heatwaves, and maximum length of dry periods. They all show good consistency with observational data. The magnitude of variability and the future development are similar in many cases. In general, variability increases for summer indicators and decreases for winter indicators.
Fabian Willibald, Sven Kotlarski, Adrienne Grêt-Regamey, and Ralf Ludwig
The Cryosphere, 14, 2909–2924, https://doi.org/10.5194/tc-14-2909-2020, https://doi.org/10.5194/tc-14-2909-2020, 2020
Short summary
Short summary
Climate change will significantly reduce snow cover, but the extent remains disputed. We use regional climate model data as a driver for a snow model to investigate the impacts of climate change and climate variability on snow. We show that natural climate variability is a dominant source of uncertainty in future snow trends. We show that anthropogenic climate change will change the interannual variability of snow. Those factors will increase the vulnerabilities of snow-dependent economies.
Andrea Böhnisch, Ralf Ludwig, and Martin Leduc
Earth Syst. Dynam., 11, 617–640, https://doi.org/10.5194/esd-11-617-2020, https://doi.org/10.5194/esd-11-617-2020, 2020
Short summary
Short summary
North Atlantic air pressure variations influencing European climate variables are simulated in coarse-resolution global climate models (GCMs). As single-model runs do not sufficiently describe variations of their patterns, several model runs with slightly diverging initial conditions are analyzed. The study shows that GCM and regional climate model (RCM) patterns vary in a similar range over the same domain, while RCMs add consistent fine-scale information due to their higher spatial resolution.
Paolo Nasta, Carolina Allocca, Roberto Deidda, and Nunzio Romano
Hydrol. Earth Syst. Sci., 24, 3211–3227, https://doi.org/10.5194/hess-24-3211-2020, https://doi.org/10.5194/hess-24-3211-2020, 2020
Short summary
Short summary
Rainfall seasonal anomalies in a Mediterranean climate are assessed by using two distinct approaches: a static approach based on the standardized precipitation index and a dynamic approach that identifies the rainy season by considering rainfall magnitude, timing, and duration. The impact of rainfall seasonality on catchment-scale water balance components is evaluated through scenario-based simulations of the Soil Water Assessment Tool in the upper Alento River catchment in southern Italy.
Naika Meili, Gabriele Manoli, Paolo Burlando, Elie Bou-Zeid, Winston T. L. Chow, Andrew M. Coutts, Edoardo Daly, Kerry A. Nice, Matthias Roth, Nigel J. Tapper, Erik Velasco, Enrique R. Vivoni, and Simone Fatichi
Geosci. Model Dev., 13, 335–362, https://doi.org/10.5194/gmd-13-335-2020, https://doi.org/10.5194/gmd-13-335-2020, 2020
Short summary
Short summary
We developed a novel urban ecohydrological model (UT&C v1.0) that is able to account for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements in three cities in different climates (Singapore, Melbourne, Phoenix) and can be used to assess urban climate mitigation strategies that aim at increasing or changing urban green cover.
Winfried Hoke, Tina Swierczynski, Peter Braesicke, Karin Lochte, Len Shaffrey, Martin Drews, Hilppa Gregow, Ralf Ludwig, Jan Even Øie Nilsen, Elisa Palazzi, Gianmaria Sannino, Lars Henrik Smedsrud, and ECRA network
Adv. Geosci., 46, 1–10, https://doi.org/10.5194/adgeo-46-1-2019, https://doi.org/10.5194/adgeo-46-1-2019, 2019
Short summary
Short summary
The European Climate Research Alliance is a bottom-up association of European research institutions helping to facilitate the development of climate change research, combining the capacities of national research institutions and inducing closer ties between existing national research initiatives, projects and infrastructures. This article briefly introduces the network's structure and organisation, as well as project management issues and prospects.
Katrina E. Bennett, Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu, Enrique Vivoni, and Richard S. Middleton
Hydrol. Earth Syst. Sci., 22, 709–725, https://doi.org/10.5194/hess-22-709-2018, https://doi.org/10.5194/hess-22-709-2018, 2018
Short summary
Short summary
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change under climate and landscape disturbances in the San Juan River basin, a major sub-watershed of the Colorado River basin. Climate change coupled with landscape disturbance leads to reduced streamflow in the San Juan River basin. Disturbances are expected to be widespread in this region. Therefore, accounting for these changes within the context of climate change is imperative for water resource planning.
Erwin Isaac Polanco, Amr Fleifle, Ralf Ludwig, and Markus Disse
Hydrol. Earth Syst. Sci., 21, 4907–4926, https://doi.org/10.5194/hess-21-4907-2017, https://doi.org/10.5194/hess-21-4907-2017, 2017
Short summary
Short summary
In this research, SWAT was used to model the upper Blue Nile Basin where comparisons between ground and CFSR data were done. Furthermore, this paper introduced the SWAT error index (SEI), an additional tool to measure the level of error of hydrological models. This work proposed an approach or methodology that can effectively be followed to create better and more efficient hydrological models.
Klaus Haaken, Gian Piero Deidda, Giorgio Cassiani, Rita Deiana, Mario Putti, Claudio Paniconi, Carlotta Scudeler, and Andreas Kemna
Hydrol. Earth Syst. Sci., 21, 1439–1454, https://doi.org/10.5194/hess-21-1439-2017, https://doi.org/10.5194/hess-21-1439-2017, 2017
Short summary
Short summary
The paper presents a general methodology that will help understand how freshwater and saltwater may interact in natural porous media, with a particular view at practical applications such as the storage of freshwater underground in critical areas, e.g., semi-arid zones around the Mediterranean sea. The methodology is applied to a case study in Sardinia and shows how a mix of advanced monitoring and mathematical modeling tremendously advance our understanding of these systems.
Carlotta Scudeler, Luke Pangle, Damiano Pasetto, Guo-Yue Niu, Till Volkmann, Claudio Paniconi, Mario Putti, and Peter Troch
Hydrol. Earth Syst. Sci., 20, 4061–4078, https://doi.org/10.5194/hess-20-4061-2016, https://doi.org/10.5194/hess-20-4061-2016, 2016
Short summary
Short summary
Very few studies have applied a physically based hydrological model with integrated and distributed multivariate observation data of both flow and transport phenomena. In this study we address this challenge for a hillslope-scale unsaturated zone isotope tracer experiment. The results show how model complexity evolves as the number and detail of simulated responses increases. Possible gaps in process representation for simulating solute transport phenomena in very dry soils are discussed.
A. P. Schreiner-McGraw, E. R. Vivoni, G. Mascaro, and T. E. Franz
Hydrol. Earth Syst. Sci., 20, 329–345, https://doi.org/10.5194/hess-20-329-2016, https://doi.org/10.5194/hess-20-329-2016, 2016
Short summary
Short summary
Soil moisture estimates from a novel method were evaluated in two semiarid watersheds. We found good agreements between the technique and estimates derived from watershed instruments designed to close the water balance. We then investigated local hydrologic processes and link between evapotranspiration and soil moisture obtained from the novel measurements.
I. Beck, R. Ludwig, M. Bernier, T. Strozzi, and J. Boike
Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, https://doi.org/10.5194/esurf-3-409-2015, 2015
M. Piras, G. Mascaro, R. Deidda, and E. R. Vivoni
Hydrol. Earth Syst. Sci., 18, 5201–5217, https://doi.org/10.5194/hess-18-5201-2014, https://doi.org/10.5194/hess-18-5201-2014, 2014
Short summary
Short summary
We quantified the hydrologic impacts of climate change in the Rio Mannu basin (472.5 km2), Sardinia, Italy.
We created high-resolution climate forcings for a physically based distributed hydrologic model by combining four climate models with two statistical downscaling tools of precipitation and potential evapotranspiration. A significant diminution of mean annual runoff at the basin outlet (mean of -32%), and a reduction of soil water content and actual evapotranspiration are expected.
G.-Y. Niu, D. Pasetto, C. Scudeler, C. Paniconi, M. Putti, P. A. Troch, S. B. DeLong, K. Dontsova, L. Pangle, D. D. Breshears, J. Chorover, T. E. Huxman, J. Pelletier, S. R. Saleska, and X. Zeng
Hydrol. Earth Syst. Sci., 18, 1873–1883, https://doi.org/10.5194/hess-18-1873-2014, https://doi.org/10.5194/hess-18-1873-2014, 2014
R. Deidda, M. Marrocu, G. Caroletti, G. Pusceddu, A. Langousis, V. Lucarini, M. Puliga, and A. Speranza
Hydrol. Earth Syst. Sci., 17, 5041–5059, https://doi.org/10.5194/hess-17-5041-2013, https://doi.org/10.5194/hess-17-5041-2013, 2013
G. Mascaro, M. Piras, R. Deidda, and E. R. Vivoni
Hydrol. Earth Syst. Sci., 17, 4143–4158, https://doi.org/10.5194/hess-17-4143-2013, https://doi.org/10.5194/hess-17-4143-2013, 2013
M. J. Muerth, B. Gauvin St-Denis, S. Ricard, J. A. Velázquez, J. Schmid, M. Minville, D. Caya, D. Chaumont, R. Ludwig, and R. Turcotte
Hydrol. Earth Syst. Sci., 17, 1189–1204, https://doi.org/10.5194/hess-17-1189-2013, https://doi.org/10.5194/hess-17-1189-2013, 2013
J. A. Velázquez, J. Schmid, S. Ricard, M. J. Muerth, B. Gauvin St-Denis, M. Minville, D. Chaumont, D. Caya, R. Ludwig, and R. Turcotte
Hydrol. Earth Syst. Sci., 17, 565–578, https://doi.org/10.5194/hess-17-565-2013, https://doi.org/10.5194/hess-17-565-2013, 2013
G. Mascaro, R. Deidda, and M. Hellies
Hydrol. Earth Syst. Sci., 17, 355–369, https://doi.org/10.5194/hess-17-355-2013, https://doi.org/10.5194/hess-17-355-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Extended-range forecasting of stream water temperature with deep-learning models
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Projections of streamflow intermittence under climate change in European drying river networks
Economic valuation of subsurface water contributions to watershed ecosystem services using a fully integrated groundwater–surface-water model
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model
Multi-variable process-based calibration of a behavioural hydrological model
Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
A Distributed Hybrid Physics-AI Framework for Learning Corrections of Internal Hydrological Fluxes and Enhancing High-Resolution Regionalized Flood Modeling
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Soil moisture and precipitation intensity control the transit time distribution of quick flow in a flashy headwater catchment
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
Hydrological regime index for non-perennial rivers
Constraining pesticide degradation in conceptual distributed catchment models with compound-specific isotope analysis (CSIA)
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Comparative Hydrological Modeling of Snow-Cover and Frozen Ground Impacts Under Topographically Complex Conditions
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Assesing the Value of High-Resolution Data and Parameters Transferability Across Temporal Scales in Hydrological Modeling: A Case Study in Northern China
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Controls on spatial and temporal variability of soil moisture across a heterogeneous boreal forest landscape
Where can rewetting of forested peatland reduce extreme flows?
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025, https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
Short summary
Hydrologic models are needed to provide simulations of water availability, floods, and droughts. The accuracy of these simulations is often quantified with so-called performance scores. A common thought is that different models are more or less applicable to different landscapes, depending on how the model works. We show that performance scores are not helpful in distinguishing between different models and thus cannot easily be used to select an appropriate model for a specific place.
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025, https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Short summary
We developed the first high-resolution, integrated surface water–groundwater hydrologic model of the entirety of continental China using ParFlow. The model shows good performance in terms of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision-making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025, https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Short summary
Land changes and landscape features critically impact water systems. Studying two watersheds in China’s Greater Bay Area, we found slope strongly influences water processes in mountainous areas. However, this relationship is weak in the lower regions of steeper watersheds. Urbanization leads to an increase in annual surface runoff, while flatter watersheds exhibit a buffering capacity against this effect. However, this buffering capacity diminishes with increasing annual rainfall intensity.
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025, https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Short summary
Hydrological droughts affect ecosystems and socioeconomic activities worldwide. Despite the fact that they are commonly described with the Standardized Streamflow Index (SSI), there is limited understanding of what they truly reflect in terms of water cycle processes. Here, we used state-of-the-art hydrological models in Andean basins to examine drivers of SSI fluctuations. The results highlight the importance of careful selection of indices and timescales for accurate drought characterization and monitoring.
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025, https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Short summary
Accurate early-warning systems are crucial for reducing the damage caused by flooding events. In this study, we explored the potential of long short-term memory networks for enhancing the forecast accuracy of hydrologic models employed in operational flood forecasting. The presented approach elevated the investigated hydrologic model’s forecast accuracy for further ahead predictions and at flood event runoff.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025, https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Short summary
Common intuition holds that higher input data resolution leads to better results. To assess the benefits of high-resolution data, we conduct simulation experiments using data with various temporal resolutions across multiple catchments and find that higher-resolution data do not always improve model performance, challenging the necessity of pursuing such data. In catchments with small areas or significant flow variability, high-resolution data is more valuable.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025, https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Short summary
The quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantifies deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025, https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until we observe overparameterization.
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025, https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for 32 consecutive days at 54 stations in Switzerland with our best-performing data-driven model. The average forecast error is 0.38 °C for 1 d ahead and increases to 0.90 °C for 32 d ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025, https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Short summary
Long short-term memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff hydrological modelling. However, most studies focus on predictions at a daily scale, limiting the benefits of sub-daily (e.g. hourly) predictions in applications like flood forecasting. In this study, we introduce a new architecture, multi-frequency LSTM (MF-LSTM), designed to use inputs of various temporal frequencies to produce sub-daily (e.g. hourly) predictions at a moderate computational cost.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Tariq Aziz, Steven K. Frey, David R. Lapen, Susan Preston, Hazen A. J. Russell, Omar Khader, Andre R. Erler, and Edward A. Sudicky
Hydrol. Earth Syst. Sci., 29, 1549–1568, https://doi.org/10.5194/hess-29-1549-2025, https://doi.org/10.5194/hess-29-1549-2025, 2025
Short summary
Short summary
This study determines the value of subsurface water for ecosystem services' supply in an agricultural watershed in Ontario, Canada. Using a fully integrated water model and an economic valuation approach, the research highlights subsurface water's critical role in maintaining watershed ecosystem services. The study informs on the sustainable use of subsurface water and introduces a new method for managing watershed ecosystem services.
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025, https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
Short summary
Data-driven techniques have shown the potential to outperform process-based models in rainfall–runoff simulations. Hybrid models, combining both approaches, aim to enhance accuracy and maintain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions, we test their generalization capabilities for extreme hydrological events.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025, https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Short summary
This study reconstructs daily runoff in Switzerland (1962–2023) using a deep-learning model, providing a spatially contiguous dataset on a medium-sized catchment grid. The model outperforms traditional hydrological methods, revealing shifts in Swiss water resources, including more frequent dry years and declining summer runoff. The reconstruction is publicly available.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025, https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Short summary
Owing to differences in the existing published results, we conducted a detailed analysis of the runoff components and future trends in the Yarlung Tsangpo River basin and found that the contributions of snowmelt and glacier melt runoff to streamflow (both ~5 %) are limited and much lower than previous results. The streamflow in this area will continuously increase in the future, but the overestimated contribution of glacier melt could lead to an underestimation of this increasing trend.
Moritz Maximilian Heuer, Hadysa Mohajerani, and Markus Christian Casper
EGUsphere, https://doi.org/10.5194/egusphere-2025-636, https://doi.org/10.5194/egusphere-2025-636, 2025
Short summary
Short summary
This study presents a calibration approach for water balance models. The different calibration steps aim at calibrating different hydrological processes: evapotranspiration, the runoff partitioning into surface runoff, interflow and groundwater recharge, as well as the groundwater behaviour. This allows for selection of a model parameterisation that correctly predicts the discharge at catchment outlet and simultaneously correctly depicts the underlying hydrological processes.
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 903–924, https://doi.org/10.5194/hess-29-903-2025, https://doi.org/10.5194/hess-29-903-2025, 2025
Short summary
Short summary
This study develops an integrated framework based on the novel Driving index for changes in Precipitation–Runoff Relationships (DPRR) to explore the controlling changes in precipitation–runoff relationships in non-stationary environments. According to the quantitative results of the candidate driving factors, the possible process explanations for changes in the precipitation–runoff relationships are deduced. The main contribution offers a comprehensive understanding of hydrological processes.
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025, https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine learning (ML) models are increasingly being applied for flood forecasting. Such models are typically trained on large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets that maximise the spatio-temporal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025, https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms claims raised by historians that the eastward diversion project of the Tone River in Japan was conducted 4 centuries ago to increase low flows and subsequent travelling possibilities surrounding the capital, Edo (Tokyo), using inland navigation. We showed that great steps forward can be made for improving quality of life with small human engineering waterworks and small interventions in the regime of natural flows.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025, https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets which undermines the robustness of hydrological inferences. This study proposes a Multisource Dataset Correction Framework grounded in Physical Hydrological Process Modelling to enhance water budget closure, termed PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025, https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small catchments compared to large catchments, and spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show effects. The results can improve estimations of probabilities of extreme floods.
Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3665, https://doi.org/10.5194/egusphere-2024-3665, 2025
Short summary
Short summary
Understanding and modeling flash flood-prone areas remains challenging due to limited data and scale-relevant hydrological theory. While machine learning shows promise, its integration with process-based models is difficult. We present an approach incorporating machine learning into a high-resolution hydrological model to correct internal fluxes and transfer parameters between watersheds. Results show improved accuracy, advancing development of learnable and interpretable process-based models.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025, https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping to better prepare for and respond to floods.
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024, https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-359, https://doi.org/10.5194/hess-2024-359, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Using advances in transit time estimation and tracer data, we tested if fast-flow transit times are controlled solely by soil moisture or are also controlled by precipitation intensity. We used soil moisture-dependent and precipitation intensity-conditional transfer functions. We showed that significant portion of event water bypasses the soil matrix through fast flow paths (overland flow, tile drains, preferential flow paths) in dry soil conditions for both low and high-intensity precipitation.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-338, https://doi.org/10.5194/hess-2024-338, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The Desaguadero-Salado-Chadiluevú-Curacó (DSCC) River is a semiarid river which is severely dammed in its tributaries which collect the snowmelt runoff. This runoff feeds mostly gravitational irrigation systems of very low efficiency. As a result, the DSCC River does not have natural runoff. The proposed Hydrological Regime Index (HRI) is able to discriminate and quantify regime alterations under permanent and non-permanent flow conditions and with low and high impoundment conditions.
Sylvain Payraudeau, Pablo Alvarez-Zaldivar, Paul van Dijk, and Gwenaël Imfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-2840, https://doi.org/10.5194/egusphere-2024-2840, 2024
Short summary
Short summary
Our study focuses on the rising concern of pesticides damaging aquatic ecosystems, which puts drinking water, the environment, and human health at risk. We provided more accurate estimates of how pesticides break down and spread in small water systems, helping to improve pesticide management practices. By using unique chemical markers in our analysis, we enhanced the accuracy of our predictions, offering important insights for better protection of water sources and natural ecosystems.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-324, https://doi.org/10.5194/hess-2024-324, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The hydrology of cold regions in the human population is poorly understood due to complex motion and limited data, hindering streamflow analysis. Using existing models, we compared runoff from an extended model with snowmelt and frozen ground, validating its reliability and integration. This study focuses on the effects of snowmelt and frozen ground on runoff, affecting precipitation type, surface-groundwater partitioning, and evapotranspiration.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2966, https://doi.org/10.5194/egusphere-2024-2966, 2024
Short summary
Short summary
We assessed the value of high-resolution data and parameters transferability across temporal scales based on 7 catchments in northern China. We found that higher resolution data does not always improve model performance, questioning the need for such data; Model parameters are transferable across different data resolutions, but not across computational time steps. It is recommended to utilize smaller computational time step when building hydrological models even without high-resolution data.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Francesco Zignol, William Lidberg, Caroline Greiser, Johannes Larson, Raúl Hoffrén, and Anneli M. Ågren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2909, https://doi.org/10.5194/egusphere-2024-2909, 2024
Short summary
Short summary
We investigated the factors influencing soil moisture variations across a boreal forest catchment in northern Sweden, where data is usually scarce. We found that soil moisture is shaped by topographical features, vegetation and soil characteristics, and weather conditions. The insights presented in this study will help improve models that predict soil moisture over space and time, which is crucial for forest management and nature conservation in the face of climate change and biodiversity loss.
Maria Elenius, Charlotta Pers, Sara Schützer, and Berit Arheimer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-271, https://doi.org/10.5194/hess-2024-271, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Simulations of peatland rewetting in Sweden under various conditions of climate, local hydrology and rewetting practices showed insubstantial changes in landscape flow extremes due to mixing with runoff from various landcover. The impact on local hydrological extremes are governed by groundwater levels prior to rewetting and reduced tree cover, hence wetland allocation and management practices are crucial if the purpose is to reduce flow extremes in peatland streams.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Cited articles
Acero, F. J., García, J. A., Cruz Gallego, M., Parey, S., and
Dacunha-Castelle, D.: Trends in summer extreme temperatures over the Iberian
Peninsula using nonurban station data, J. Geophys. Res.-Atmos., 119, 39–53,
https://doi.org/10.1002/2013JD020590, 1002.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large
area hydrologic modeling and assessment, part I: model development, J. Am.
Water Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x,
1998.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Allen, P. M.: Continental
scale simulation of the hydrologic balance, J. Am. Water Resour. Assoc., 35,
1037–1051, https://doi.org/10.1111/j.1752-1688.1999.tb04192.x, 1999.
Bae, D.-H., Jung, I.-W., and Lettenmaier, D. P.: Hydrologic uncertainties in
climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea, J.
Hydrol., 401, 90–105, https://doi.org/10.1016/J.JHYDROL.2011.02.012, 2011.
Bartholmes, J. and Todini, E.: Coupling meteorological and hydrological
models for flood forecasting, Hydrol. Earth Syst. Sci., 9, 333–346,
https://doi.org/10.5194/hess-9-333-2005, 2005.
Bastola, S., Murphy, C., and Sweeney, J.: The role of hydrological modelling
uncertainties in climate change impact assessments of Irish river catchments,
Adv. Water Resour., 34, 562–576, https://doi.org/10.1016/j.advwatres.2011.01.008, 2011.
Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa, M.,
and Schär, C.: Quantifying uncertainty sources in an ensemble of
hydrological climate-impact projections, Water Resour. Res., 49, 1523–1536,
https://doi.org/10.1029/2011WR011533, 2013.
Camporese, M., Paniconi, C., Putti, M., and Orlandini, S.: Surface-subsurface
flow modeling with path-based runoff routing, boundary condition-based
coupling, and assimilation of multisource observation data, Water Resour.
Res., 46, W02512, https://doi.org/10.1029/2008WR007536, 2010.
Cassiani, G., Ursino, N., Deiana, R., Vignoli, G., Boaga, J., Rossi, M.,
Perri, M. T., Blaschek, M., Duttmann, R., Meyer, S., Ludwig, R., Soddu, A.,
Dietrich, P., and Werban, U.: Noninvasive Monitoring of Soil Static
Characteristics and Dynamic States: A Case Study Highlighting Vegetation
Effects on Agricultural Land, Vadose Zone J., 11, https://doi.org/10.2136/vzj2011.0195,
2012.
Cau, P., Cadeddu, A., Gallo, C., Lecca, G., and Marrocu, M.: Estimating the
water balance of the Sardinian island using the SWAT model, L'Acqua, 5,
29–38, 2005.
Ciarapica, L. and Todini, E.: TOPKAPI: a model for the representation of the
rainfall-runoff process at different scales, Hydrol. Process., 16, 207–229,
https://doi.org/10.1002/hyp.342, 2002.
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta,
H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural
Errors (FUSE): A modular framework to diagnose differences between
hydrological models, Water Resour. Res., 44, W00B02,
https://doi.org/10.1029/2007WR006735, 2008.
Cornelissen, T., Diekkrüger, B., and Giertz, S.: A comparison of
hydrological models for assessing the impact of land use and climate change
on discharge in a tropical catchment, J. Hydrol., 498, 221–236,
https://doi.org/10.1016/J.JHYDROL.2013.06.016, 2013.
Dams, J., Nossent, J., Senbeta, T. B., Willems, P., and Batelaan, O.:
Multi-model approach to assess the impact of climate change on runoff, J.
Hydrol., 529, 1601–1616, https://doi.org/10.1016/J.JHYDROL.2015.08.023, 2015.
Deidda, R.: Rainfall downscaling in a space-time multifractal framework,
Water Resour. Res., 36, 1779–1794, https://doi.org/10.1029/2000WR900038, 2000.
Deidda, R., Benzi, R., and Siccardi, F.: Multifractal modeling of anomalous
scaling laws in rainfall, Water Resour. Res., 35, 1853–1867,
https://doi.org/10.1029/1999WR900036, 1999.
Deidda, R., Marrocu, M., Caroletti, G., Pusceddu, G., Langousis, A.,
Lucarini, V., Puliga, M., and Speranza, A.: Regional climate models'
performance in representing precipitation and temperature over selected
Mediterranean areas, Hydrol. Earth Syst. Sci., 17, 5041–5059,
https://doi.org/10.5194/hess-17-5041-2013, 2013.
del Río, S., Herrero, L., Fraile, R., and Penas, A.: Spatial
distribution of recent rainfall trends in Spain (1961–2006), Int. J.
Climatol., 31, 656–667, https://doi.org/10.1002/joc.2111, 2011.
Duveiller, G., Fasbender, D., and Meroni, M.: Revisiting the concept of a
symmetric index of agreement for continuous datasets, Sci. Rep.-UK, 6, 19401,
https://doi.org/10.1038/srep19401, 2016.
El Kenawy, A., López-Moreno, J. I., and Vicente-Serrano, S. M.: Recent
trends in daily temperature extremes over northeastern Spain (1960–2006),
Nat. Hazards Earth Syst. Sci., 11, 2583–2603,
https://doi.org/10.5194/nhess-11-2583-2011, 2011.
Filion, R., Bernier, M., Paniconi, C., Chokmani, K., Melis, M., Soddu, A.,
Talazac, M., and Lafortune, F.-X.: Remote sensing for mapping soil moisture
and drainage potential in semi-arid regions: Applications to the Campidano
plain of Sardinia, Italy, Sci. Total Environ., 543, 862–876,
https://doi.org/10.1016/j.scitotenv.2015.07.068, 2016.
Gädeke, A., Hölzel, H., Koch, H., Pohle, I., and Grünewald, U.:
Analysis of uncertainties in the hydrological response of a model-based
climate change impact assessment in a subcatchment of the Spree River,
Germany, Hydrol. Proc., 28, 3978–3998, https://doi.org/10.1002/hyp.9933, 2014.
Gatel, L., Lauvernet, C., Carluer, N., and Paniconi, C.: Effect of surface
and subsurface heterogeneity on the hydrological response of a grassed buffer
zone, J. Hydrol., 542, 637–647, https://doi.org/10.1016/J.JHYDROL.2016.09.038, 2016.
Gauthier, M. J., Camporese, M., Rivard, C., Paniconi, C., and Larocque, M.: A
modeling study of heterogeneity and surface water-groundwater interactions in
the Thomas Brook catchment, Annapolis Valley (Nova Scotia, Canada), Hydrol.
Earth Syst. Sci., 13, 1583–1596, https://doi.org/10.5194/hess-13-1583-2009,
2009.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707,
https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean
region, Global Planet. Change, 63, 90–104,
https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range, and
reliability of regional climate changes from AOGCM simulations via the
“Reliability Ensemble Averaging” (REA) method, J. Clim., 15, 1141–1158,
https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2, 2002.
Graham, L. P., Hagemann, S., Jaun, S., and Beniston, M.: On interpreting
hydrological change from regional climate models, Clim. Change, 81, 97–122,
https://doi.org/10.1007/s10584-006-9217-0, 2007.
Hargreaves, G. H.: Defining and Using Reference Evapotranspiration, J. Irrig.
Drain. Eng., 120, 1132–1139, https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132),
1994.
Hargreaves, G. H. and Allen, R. G.: History and Evaluation of Hargreaves
Evapotranspiration Equation, J. Irrig. Drain. Eng., 129, 53–63,
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53), 2003.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional
climate predictions, B. Am. Meteorol. Soc., 90, 1095–1107,
https://doi.org/10.1175/2009BAMS2607.1, 2009.
Hawkins, G. A., Vivoni, E. R., Robles-Morua, A., Mascaro, G., Rivera, E., and
Dominguez, F.: A climate change projection for summer hydrologic conditions
in a semiarid watershed of central Arizona, J. Arid Environ., 118, 9–20,
https://doi.org/10.1016/j.jaridenv.2015.02.022, 2015.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D.,
and New, M.: A European daily high-resolution gridded data set of surface
temperature and precipitation for 1950–2006, J. Geophys. Res., 113, D20119,
https://doi.org/10.1029/2008JD010201, 2008.
Im, E.-S., Jung, I.-W., Chang, H., Bae, D.-H., and Kwon, W.-T.:
Hydroclimatological response to dynamically downscaled climate change
simulations for Korean basins, Clim. Change, 100, 485–508,
https://doi.org/10.1007/s10584-009-9691-2, 2010.
IPCC: Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global
and Sectoral Aspects, Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M.
D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C.,
Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R.,
and White L. L., Cambridge University Press, Cambridge, UK, New York, NY,
USA, 1132 pp., 2014.
Ivanov, V. Y., Vivoni, E. R., Bras, R. L., and Entekhabi, D.: Catchment
hydrologic response with a fully distributed triangulated irregular network
model, Water Resour. Res., 40, W11102, https://doi.org/10.1029/2004WR003218, 2004.
Jasper, K., Gurtz, J., and Lang, H.: Advanced flood forecasting in Alpine
watersheds by coupling meteorological observations and forecasts with a
distributed hydrological model, J. Hydrol., 267, 40–52,
https://doi.org/10.1016/S0022-1694(02)00138-5, 2002.
Jiang, L. and Islam, S.: A methodology for estimation of surface
evapotranspiration over large areas using remote sensing observations,
Geophys. Res. Lett., 26, 2773–2776, https://doi.org/10.1029/1999GL006049, 1999.
Jiang, T., Chen, Y. D., Xu, C., Chen, X., Chen, X., and Singh, V. P.:
Comparison of hydrological impacts of climate change simulated by six
hydrological models in the Dongjiang Basin, South China, J. Hydrol., 336,
316–333, https://doi.org/10.1016/J.JHYDROL.2007.01.010, 2007.
Kay, A. L., Davies, H. N., Bell, V. A., and Jones, R. G.: Comparison of
uncertainty sources for climate change impacts: flood frequency in England,
Clim. Change, 92, 41–63, https://doi.org/10.1007/s10584-008-9471-4, 2009.
Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi, G.,
Coon, E. T., Cordano, E., Endrizzi, S., Kikinzon, E., Mouche, E., Mügler,
C., Park, Y.-J., Refsgaard, J. C., Stisen, S., and Sudicky, E.: The
integrated hydrologic model intercomparison project, IH-MIP2: A second set of
benchmark results to diagnose integrated hydrology and feedbacks, Water
Resour. Res., 53, 867–890, https://doi.org/10.1002/2016WR019191, 2017.
Kunstmann, H., Krause, J., and Mayr, S.: Inverse distributed hydrological
modelling of Alpine catchments, Hydrol. Earth Syst. Sci., 10, 395–412,
https://doi.org/10.5194/hess-10-395-2006, 2006.
Liston, G. E. and Elder, K.: A Meteorological Distribution System for
High-Resolution Terrestrial Modeling (MicroMet), J. Hydrometeorol., 7,
217–234, https://doi.org/10.1175/JHM486.1, 2006.
Liu, Z. and Todini, E.: Towards a comprehensive physically-based
rainfall-runoff model, Hydrol. Earth Syst. Sci., 6, 859–881,
https://doi.org/10.5194/hess-6-859-2002, 2002.
Liu, Z., Martina, M. L. V., and Todini, E.: Flood forecasting using a fully
distributed model: application of the TOPKAPI model to the Upper Xixian
Catchment, Hydrol. Earth Syst. Sci., 9, 347–364,
https://doi.org/10.5194/hess-9-347-2005, 2005.
Liuzzo, L., Noto, L. V., Vivoni, E. R., and La Loggia, G.: Basin-Scale Water
Resources Assessment in Oklahoma under Synthetic Climate Change Scenarios
Using a Fully Distributed Hydrologic Model, J. Hydrol. Eng., 15, 107–122,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000166, 2010.
Ludwig, R., Soddu, A., Duttmann, R., Baghdadi, N., Benabdallah, S., Deidda,
R., Marrocu, M., Strunz, G., Wendland, F., Engin, G., Paniconi, C.,
Prettenthaler, F., Lajeunesse, I., Afifi, S., Cassiani, G., Bellin, A.,
Mabrouk, B., Bach, H., and Ammerl, T.: Climate-induced changes on the
hydrology of Mediterranean basins – A research concept to reduce uncertainty
and quantify risk, Fresenius Environ. Bull., 19, 2379–2384, 2010.
Mahmood, T. H. and Vivoni, E. R.: Forest ecohydrological response to bimodal
precipitation during contrasting winter to summer transitions, Ecohydrology,
7, 998–1013, https://doi.org/10.1002/eco.1424, 2014.
Majone, B., Villa, F., Deidda, R., and Bellin, A.: Impact of climate change
and water use policies on hydropower potential in the south-eastern Alpine
region., Sci. Total Environ., 543, 965–80,
https://doi.org/10.1016/j.scitotenv.2015.05.009, 2016.
Marras, P., Muroni, D., Manca, S., Soru, C., Pusceddu, G., Marrocu, M., and
Cau, P.: The SWAT model and a web-based information system to assess the
water balance of Sardinia (Italy), SWAT International Conference, Pernambuco,
Brazil, 28 July–1 August 2014.
Martina, M. L. V., Todini, E., and Libralon, A.: A Bayesian decision approach
to rainfall thresholds based flood warning, Hydrol. Earth Syst. Sci., 10,
413–426, https://doi.org/10.5194/hess-10-413-2006, 2006.
Mascaro, G., Vivoni, E. R., and Deidda, R.: Implications of ensemble
quantitative precipitation forecast errors on distributed streamflow
forecasting, J. Hydrometeorol., 11, 69–86, https://doi.org/10.1175/2009JHM1144.1, 2010.
Mascaro, G., Deidda, R., and Hellies, M.: On the nature of rainfall
intermittency as revealed by different metrics and sampling approaches,
Hydrol. Earth Syst. Sci., 17, 355–369,
https://doi.org/10.5194/hess-17-355-2013, 2013a.
Mascaro, G., Piras, M., Deidda, R., and Vivoni, E. R.: Distributed hydrologic
modeling of a sparsely monitored basin in Sardinia, Italy, through
hydrometeorological downscaling, Hydrol. Earth Syst. Sci., 17, 4143–4158,
https://doi.org/10.5194/hess-17-4143-2013, 2013b.
Mascaro, G., Vivoni, E. R., and Méndez-Barroso, L. A.: Hyperresolution
hydrologic modeling in a regional watershed and its interpretation using
empirical orthogonal functions, Adv. Water Resour., 83, 190–206,
https://doi.org/10.1016/j.advwatres.2015.05.023, 2015.
Maurer, E. P. and Hidalgo, H. G.: Utility of daily vs. monthly large-scale
climate data: an intercomparison of two statistical downscaling methods,
Hydrol. Earth Syst. Sci., 12, 551–563,
https://doi.org/10.5194/hess-12-551-2008, 2008.
Maurer, E. P., Brekke, L. D., and Pruitt, T.: Contrasting Lumped and
Distributed Hydrology Models for Estimating Climate Change Impacts on
California Watersheds1, JAWRA J. Am. Water Resour. Assoc., 46, 1024–1035,
https://doi.org/10.1111/j.1752-1688.2010.00473.x, 2010.
Mausbach, M. J. and Dedrick, A. R.: The length we go: Measuring environmental
benefits of conservation practices, J. Soil Water Conserv., 59, 96–103,
2004.
Meyer, S., Blaschek, M., and Duttmann, R.: Improved hydrological model
parametrization for climate change impact assessment under data scarcity –
The potential of field monitoring techniques and geostatistics, Sci. Total
Environ., 543, 906–923, https://doi.org/10.1016/J.SCITOTENV.2015.07.116, 2016.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19,
205–34, 1965.
Najafi, M. R., Moradkhani, H., and Jung, I. W.: Assessing the uncertainties
of hydrologic model selection in climate change impact studies, Hydrol.
Process., 25, 2814–2826, https://doi.org/10.1002/hyp.8043, 2011.
Nakićeović, N., Alcamo, J., Davis, G., de Vries, H. J. M., Fenhann,
J., Gaffin, S., Gregory, K., Grubler, A., Jung, T. Y., Kram, T., La Rovere,
E. L., Michaelis, L., Mori, S., Morita, T., Papper, W., Pitcher, H., Price,
L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M.,
Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z.:
Emissions Scenarios, A Special Report of Working Group III of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, 599 pp., 2000.
Orlandini, S. and Rosso, R.: Diffusion Wave Modeling of Distributed Catchment
Dynamics, J. Hydrol. Eng., 1, 103–113,
https://doi.org/10.1061/(ASCE)1084-0699(1996)1:3(103), 1996.
Paniconi, C. and Wood, E. F.: A detailed model for simulation of catchment
scale subsurface hydrologic processes, Water Resour. Res., 29, 1601–1620,
https://doi.org/10.1029/92WR02333, 1993.
Pechlivanidis, I. G., Arheimer, B., Donnelly, C., Hundecha, Y., Huang, S.,
Aich, V., Samaniego, L., Eisner, S., and Shi, P.: Analysis of hydrological
extremes at different hydro-climatic regimes under present and future
conditions, Clim. Change, 141, 467–481, https://doi.org/10.1007/s10584-016-1723-0, 2017.
Penman, H. L.: Natural evaporation from open water, hare soil and grass, P.
Roy. Soc. Lond. A Mat., 193, 120–145, https://doi.org/10.1098/RSPA.1948.0037, 1948.
Perra, E., Piras, M., Deidda, R., Mascaro, G., and Paniconi, C.:
Investigating parameter transferability across models and events for a
semiarid Mediterranean catchment, Hydrol. Process., submitted, 2018.
Piras, M.: Evaluation of climate change impacts on the hydrologic response of
a sparsely-monitored basin in Sardinia, Italy, through distributed hydrologic
simulations and hydrometeorological downscaling, PhD Thesis, University of
Cagliari, Italy, 2014.
Piras, M., Mascaro, G., Deidda, R., and Vivoni, E. R.: Quantification of
hydrologic impacts of climate change in a Mediterranean basin in Sardinia,
Italy, through high-resolution simulations, Hydrol. Earth Syst. Sci., 18,
5201–5217, https://doi.org/10.5194/hess-18-5201-2014, 2014.
Pulina, M. A.: L'evapotraspirazione potenziale in Sardegna in funzione dello
studio del regime idrico dei suoli, Studi Sassaresi, Annali della Facoltà
di Agraria dell'Università di Sassari, 1986.
Schulla, J.: Hydrologische Modellierung von Flussgebieten zur Abschatzung der
Folgen von Klimaanderungen, Zurcher Geographische Schriften, ETH Zurich,
Heft 69, 187 pp., 1997.
Schulla, J.: Model description WaSiM (Water balance Simulation Model),
Hydrology Software Consulting, Regensdorferstrasse, Zurich, available at:
http://www.wasim.ch/downloads/doku/wasim/wasim_2012_ed2_en.pdf (last
access: 18 July 2018), 2015.
Schulla, J., and Jasper, K.: Model Description WASIM-ETH (Water Balance
Simulation Model ETH), ETH-Zurich, Zurich, available at:
http://www.wasim.ch/downloads/doku/wasim/wasim_2007_en.pdf (last
access: 18 July 2018), 2001.
Scudeler, C., Paniconi, C., Pasetto, D., and Putti, M.: Examination of the
seepage face boundary condition in subsurface and coupled surface/subsurface
hydrological models, Water Resour. Res., 53, 1799–1819,
https://doi.org/10.1002/2016WR019277, 2017.
Sousa, P. M., Trigo, R. M., Aizpurua, P., Nieto, R., Gimeno, L., and
Garcia-Herrera, R.: Trends and extremes of drought indices throughout the
20th century in the Mediterranean, Nat. Hazards Earth Syst. Sci., 11, 33–51,
https://doi.org/10.5194/nhess-11-33-2011, 2011.
Sulis, M., Paniconi, C., Rivard, C., Harvey, R., and Chaumont, D.: Assessment
of climate change impacts at the catchment scale with a detailed hydrological
model of surface-subsurface interactions and comparison with a land surface
model, Water Resour. Res., 47, W01513, https://doi.org/10.1029/2010WR009167, 2011.
Sulis, M., Paniconi, C., Marrocu, M., Huard, D., and Chaumont, D.: Hydrologic
response to multimodel climate output using a physically based model of
groundwater/surface water interactions, Water Resour. Res., 48, W12510,
https://doi.org/10.1029/2012WR012304, 2012.
Tebaldi, C., Smith, R. L., Nychka, D., and Mearns, L. O.: Quantifying
uncertainty in projections of regional climate change: A Bayesian approach to
the analysis of multimodel ensembles, J. Climate, 18, 1524–1540,
https://doi.org/10.1175/JCLI3363.1, 2005.
Thompson, J. R., Green, A. J., Kingston, D. G., and Gosling, S. N.:
Assessment of uncertainty in river flow projections for the Mekong River
using multiple GCMs and hydrological models, J. Hydrol., 486, 1–30,
https://doi.org/10.1016/j.jhydrol.2013.01.029, 2013.
van der Linden, P. and Mitchell, J. F. B.: ENSEMBLES: Climate change and its
impacts: Summary of research and results from the ENSEMBLES project, Met
Office Hadley Centre, Exeter, UK, 2009.
Vansteenkiste, T., Tavakoli, M., Ntegeka, V., De Smedt, F., Batelaan, O.,
Pereira, F., and Willems, P.: Intercomparison of hydrological model
structures and calibration approaches in climate scenario impact projections,
J. Hydrol., 519, 743–755, https://doi.org/10.1016/J.JHYDROL.2014.07.062, 2014.
Vicente-Serrano, S. M. and Cuadrat-Prats, J. M.: Trends in drought intensity
and variability in the middle Ebro valley (NE of the Iberian peninsula)
during the second half of the twentieth century, Theor. Appl. Climatol., 88,
247–258, https://doi.org/10.1007/s00704-006-0236-6, 2007.
Volk, M., Hirschfeld, J., Schmidt, G., Bohn, C., Dehnhardt, A., Liersch, S.,
and Lymburner, L.: A SDSS-based Ecological-economic Modelling Approach for
Integrated River Basin Management on Different Scale Levels – The Project
FLUMAGIS, Water Resour. Manag., 21, 2049–2061,
https://doi.org/10.1007/s11269-007-9158-z, 2007.
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic
Implications of Dynamical and Statistical Approaches to Downscaling Climate
Model Outputs, Clim. Change, 62, 189–216,
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004.
Xoplaki, E., González-Rouco, J. F., Luterbacher, J., and Wanner, H.:
Mediterranean summer air temperature variability and its connection to the
large-scale atmospheric circulation and SSTs, Clim. Dynam., 20, 723–739,
https://doi.org/10.1007/s00382-003-0304-x, 2003.
Xu, C., Widén, E., and Halldin, S.: Modelling hydrological consequences
of climate change – Progress and challenges, Adv. Atmos. Sci., 22, 789–797,
https://doi.org/10.1007/BF02918679, 2005.
Xu, C.-Y. and Singh, V. P.: Review on Regional Water Resources Assessment
Models under Stationary and Changing Climate, Water Resour. Manag., 18,
591–612, https://doi.org/10.1007/s11269-004-9130-0, 2004.