Articles | Volume 22, issue 4
Hydrol. Earth Syst. Sci., 22, 2135–2162, 2018
https://doi.org/10.5194/hess-22-2135-2018
Hydrol. Earth Syst. Sci., 22, 2135–2162, 2018
https://doi.org/10.5194/hess-22-2135-2018

Research article 06 Apr 2018

Research article | 06 Apr 2018

Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product

Charlotte Marie Emery et al.

Related authors

Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters
Charlotte Marie Emery, Sylvain Biancamaria, Aaron Boone, Sophie Ricci, Mélanie C. Rochoux, Vanessa Pedinotti, and Cédric H. David
Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020,https://doi.org/10.5194/hess-24-2207-2020, 2020
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Stochastic approaches
Do small and large floods have the same drivers of change? A regional attribution analysis in Europe
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021,https://doi.org/10.5194/hess-25-1347-2021, 2021
Short summary
Deep learning for the estimation of water-levels using river cameras
Remy Vandaele, Sarah L. Dance, and Varun Ojha
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-20,https://doi.org/10.5194/hess-2021-20, 2021
Revised manuscript accepted for HESS
Short summary
Flood trends in Europe: are changes in small and big floods different?
Miriam Bertola, Alberto Viglione, David Lun, Julia Hall, and Günter Blöschl
Hydrol. Earth Syst. Sci., 24, 1805–1822, https://doi.org/10.5194/hess-24-1805-2020,https://doi.org/10.5194/hess-24-1805-2020, 2020
Short summary
A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019,https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary
Discharge hydrograph estimation at upstream-ungauged sections by coupling a Bayesian methodology and a 2-D GPU shallow water model
Alessia Ferrari, Marco D'Oria, Renato Vacondio, Alessandro Dal Palù, Paolo Mignosa, and Maria Giovanna Tanda
Hydrol. Earth Syst. Sci., 22, 5299–5316, https://doi.org/10.5194/hess-22-5299-2018,https://doi.org/10.5194/hess-22-5299-2018, 2018
Short summary

Cited articles

Alkama, R., Decharme, B., Douville, H., Becker, M., Cazenave, A., Sheffield, J., Voldoire, A., Tyteca, S., and Moigne, P. L.: Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges, J. Hydrometeorol., 11, 583–600, 2010.
Anderson, J. L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D, 230, 99–111, 2007.
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, 2006.
Arora, V., Chiew, F., and Grayson, R.: A river flow routing scheme for general circulation models, J. Geophys. Res., 104, 14347–14357, 1999.
Biancamaria, S., Durant, M., Andreadis, K. M., Bates, P. D., Boone, A., Mognard, N. M., Rodriguez, E., Alsdorf, D. E., Lettenmaier, D. P., and Clark, E. A.: Assimilation of virtual wide swath altimetry to improve Arctic river modeling, Remote Sens. Environ., 115, 373–381, 2011.
Download
Short summary
This study uses remotely sensed river discharge data to correct river storage and discharge in a large-scale hydrological model. The method is based on an ensemble Kalman filter and also introduces an additional technique that allows for better constraint of the correction (called localization). The approach is applied over the entire Amazon basin. Results show that the method is able to improve river discharge and localization to produce better results along main tributaries.