Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2135-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-2135-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product
Charlotte Marie Emery
CORRESPONDING AUTHOR
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
now at: JPL, Pasadena, CA, USA
Adrien Paris
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
GET, Université de Toulouse, UPS, CNRS, IRD, Toulouse, France
LMI OCE IRD/UNB, Campus Darcy Ribeiro, Brasilia, Brazil
now at: CLS, Ramonville-Saint-Agne, France
Sylvain Biancamaria
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Aaron Boone
Meteo France CNRS, CNRM UMR 3589, Toulouse, France
Stéphane Calmant
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Pierre-André Garambois
ICUBE – UMR 7357, Fluid Mechanics Team, INSA, Strasbourg, France
Joecila Santos da Silva
CESTU, Universidade do Estado do Amazonas, Manaus, Brazil
Related authors
No articles found.
Matthieu Lafaysse, Marie Dumont, Basile De Fleurian, Mathieu Fructus, Rafife Nheili, Léo Viallon-Galinier, Matthieu Baron, Aaron Boone, Axel Bouchet, Julien Brondex, Carlo Carmagnola, Bertrand Cluzet, Kévin Fourteau, Ange Haddjeri, Pascal Hagenmuller, Giulia Mazzotti, Marie Minvielle, Samuel Morin, Louis Quéno, Léon Roussel, Pierre Spandre, François Tuzet, and Vincent Vionnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-4540, https://doi.org/10.5194/egusphere-2025-4540, 2025
Short summary
Short summary
This article is a comprehensive description of the 3.0 stable release of the Crocus snowpack model. It describes various new implementations since the last reference article in 2012 and a review of the available scientific evaluations and applications of the model. This provides guidance for the future of numerical snow modelling.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 29, 2321–2337, https://doi.org/10.5194/hess-29-2321-2025, https://doi.org/10.5194/hess-29-2321-2025, 2025
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale, making it applicable to monitoring clay shrinkage damage to buildings. A comparison with the number of insurance claims for subsidence shows that the presence of trees near individual houses must be taken into account. Significant soil moisture droughts occurred in France in 2003, 2018, 2019, 2020, and 2022. Particularly high index values are observed in 2022. It is found that droughts will become more severe in the future.
Belén Martí, Jannis Groh, Guylaine Canut, and Aaron Boone
EGUsphere, https://doi.org/10.5194/egusphere-2025-1783, https://doi.org/10.5194/egusphere-2025-1783, 2025
Short summary
Short summary
The characterization of vegetation at two sites proved insufficient to simulate adequately the evapotranspiration. A dry surface layer was implemented in the land surface model SURFEX-ISBA v9.0. It is compared to simulations without a soil resistance. The application to an alfalfa site and a natural grass site in semiarid conditions results in an improvement in the estimation of the latent heat flux. The surface energy budget and the soil and vegetation characteristics are explored in detail.
Tanguy Ronan Lunel, Belen Marti, Aaron Boone, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3562, https://doi.org/10.5194/egusphere-2024-3562, 2025
Short summary
Short summary
Modelling evapotranspiration is essential for understanding the water cycle. While irrigation is known to increase evapotranspiration, it is less known that it also modifies local weather, which can in turn partially reduce evapotranspiration. This latter phenomenon is overlooked in some land surface model configurations. This study investigates and quantifies the impact of this oversight, showing that land surface models overestimate evapotranspiration by about 25% for crops in irrigated areas.
Malak Sadki, Gaëtan Noual, Simon Munier, Vanessa Pedinotti, Kaushlendra Verma, Clément Albergel, Sylvain Biancamaria, and Alice Andral
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-328, https://doi.org/10.5194/hess-2024-328, 2024
Revised manuscript under review for HESS
Short summary
Short summary
This study explores how 20 years of remote-sensed discharge data from the ESA CCI improve large-scale hydrological models, CTRIP and MGB, through data assimilation. Using an EnKF framework across the Niger and Congo basins, it shows how assimilating denser temporal discharge data reduces biases and improves flow variability, enhancing accuracy. These findings underscore the role of long-term discharge data in refining models for climate assessments, water management, and forecasting.
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Michel Le Page, Younes Fakir, Lionel Jarlan, Aaron Boone, Brahim Berjamy, Saïd Khabba, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 25, 637–651, https://doi.org/10.5194/hess-25-637-2021, https://doi.org/10.5194/hess-25-637-2021, 2021
Short summary
Short summary
In the context of major changes, the southern Mediterranean area faces serious challenges with low and continuously decreasing water resources mainly attributed to agricultural use. A method for projecting irrigation water demand under both anthropogenic and climatic changes is proposed. Time series of satellite imagery are used to determine a set of semiempirical equations that can be easily adapted to different future scenarios.
Cited articles
Alkama, R., Decharme, B., Douville, H., Becker, M., Cazenave, A., Sheffield, J., Voldoire, A., Tyteca, S., and Moigne, P. L.: Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges, J. Hydrometeorol., 11, 583–600, 2010.
Anderson, J. L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D, 230, 99–111, 2007.
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, 2006.
Arora, V., Chiew, F., and Grayson, R.: A river flow routing scheme for general circulation models, J. Geophys. Res., 104, 14347–14357, 1999.
Biancamaria, S., Durant, M., Andreadis, K. M., Bates, P. D., Boone, A., Mognard, N. M., Rodriguez, E., Alsdorf, D. E., Lettenmaier, D. P., and Clark, E. A.: Assimilation of virtual wide swath altimetry to improve Arctic river modeling, Remote Sens. Environ., 115, 373–381, 2011.
Birkett, C. M.: The contribution of TOPEX/Poseidon to the global monitoring of climatically sensitive lakes, J. Geophys. Res., 100, 25179–25204, 1995.
Birkett, C. M.: Contribution of the TOPEX NASA altimeter to the global monitoring of large rivers and wetlands, Water Resour. Res., 34, 1223–1239, 1998.
Birkett, C. M., Mertes, L. A. K., Dunne, T., Costa, M. H., and Jasinski, M. J.: Surface water dynamics in the Amazon basin: Application of satellite radar altimetry, J. Geophys. Res., 107, 8059, https://doi.org/10.1029/2001JD000609, 2002.
Blackadar, A.-F.: Modeling the nocturnal boundary layer, in: Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality, American Meteorological Society, Boston, 46–49, 1976.
Boone, A., Calvet, J.-C., and Noilhan, J.: Inclusion of a Third Soil Layer in a Land Surface Scheme Using the Force-Restore Method, J. Hydrometeorol., 38, 1611–1630, 1999.
Burgers, G., Leeuwen, P. J. V., and Evensen, G.: Analysis Scheme in the Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–1724, 1998.
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, 2008.
Coe, M.: A linked global model of terrestrial hydrologic processes: Simulation of modern rivers, lakes, and wetlands, J. Geophys. Res., 103, 8885–8899, 1998.
Collischon, W., Allasia, D., da Silva, B. C., and Tucci, C. E. M.: The MGB-IPH model for large-scale rainfall-runoff modelling, Hydrolog. Sci. J., 52, 878–895, 2007.
Compo, G., Whitaker, J., Sardeshmukh, P., Matsui, N., Allan, R., Yin Jr., X., B. G., Vose, R., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R., Grant, A., Groisman, P., Jones, P., Kruk, M., Kruger, A., Marshall, G., Maugeri, M., Mok, H., Nordli, O., Ross, T., Trigo, R., Wang, X., Woodruff, S., and Worley, S.: The Twentieth Century Reanalysis Project, Q. J. Roy. Meteorol. Soc., 137, 1–28, 2011.
Cretaux, J.-F., Calmant, S., Romanoski, V., Shabunin, A., Lyard, F., Berge-Nguyen, M., Cazenave, A., Hernandez, F., and Perosanz, F.: An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia, J. Geodesy, 83, 723–735, 2009.
David, C. H., Maidment, D. R., Niu, G.-Y., Yang, Z.-L., Habets, F., and Eijkhout, V.: River Network Routing on the NHDPlus Dataset, J. Hydrometeorol., 12, 913–934, https://doi.org/10.1175/2011JHM1345.1, 2011.
Decharme, B. and Douville, H.: Introduction of a subgrid hydrology in the ISBA land surface model, Clim. Dynam., 26, 65–78, 2006.
Decharme, B., Douville, H., Prigent, C., Papa, F., and Aires, F.: A new river flooding scheme for global climate applications: Off-line evaluation over South America, J. Geophys. Res., 113, D11110, https://doi.org/10.1029/2007JD009376, 2008.
Decharme, B., Alkama, R., Douville, H., Becker, M., and Cazenave, A.: Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage, J. Hydrometeorol., 11, 601–617, 2010.
Decharme, B., Alkama, R., Papa, F., Faroux, S., Douville, H., and Prigent, C.: Global off-line evaluation of the ISBA-TRIP flood model, Clim. Dynam., 38, 1389, https://doi.org/10.1007/s00382-011-1054-9, 2012.
Delijani, E. B., Pishvaie, M. R., and Boozarjomehry, R. B.: Subsurface characterization with localized ensemble Kalman filter employing adaptative thresholding, Adv. Water Resour., 69, 181–196, 2014.
Devegowda, D., Arroyo-Negrete, E., and Datta-Gupta, A.: Flow relevant covariance localization during dynamic data assimilation using EnKF, Adv. Water Resour., 33, 129–145, 2010.
Ducharne, A., Golaz, C., Leblois, E., Laval, K., Polcher, J., Ledoux, E., and de Marsily, G.: Development of a high resolution runoff routing model, calibration and application to assess runoff from the LMD GCM, J. Hydrol., 280, 207–228, 2003.
Durand, M., Andreadis, K., Alsdorf, D., Lettenmaier, D., Moller, D., and Wilson, M.: Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model, Geophys. Res. Lett., 35, L20401, https://doi.org/10.1029/2008GL034150, 2008.
Emery, C. M., Biancamaria, S., Boone, A., Garambois, P.-A., Ricci, S., Rochoux, M. C., and Decharme, B.: Temporal variance-based sensitivity analysis of the river routing component of the large scale hydrological model ISBA-TRIP: Application on the Amazon Basin, J. Hydrometeorol., 17, 3007–3027, 2016.
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostropic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143–10162, 1994.
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003.
Evensen, G.: Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynam., 54, 539–560, 2004.
Evensen, G. and Leeuwen, P. J. V.: Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasi-geostrophic model, Mon. Weather Rev., 124, 85–96, 1996.
Evensen, G. and Leeuwen, P. J. V.: An Ensemble Kalman Smoother for Nonlinear Dynamics, Mon. Weather Rev., 128, 1852–1867, 2000.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Werner, J. U. M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Getirana, A. C. V. and Peters-Lidard, C.: Estimating water discharge from large radar altimetry datasets, Hydrol. Earth Syst. Sci., 17, 923–933, https://doi.org/10.5194/hess-17-923-2013, 2013.
Greybush, S. J., Kalnay, E., Miyoshi, T., Ide, K., and Hunt, B. R.: Balance and Ensemble Kalman Filter Localization Techniques, Mon. Weather Rev., 139, 511–522, 2011.
Gustafsson, N., Huang, X. Y., Yang, X. H., Mogensen, K., Lindskog, M., Vignes, O., Wilhelmsson, T., and Thorsteinsson, S.: Four-dimensional data assimilation for a limited area model, Tellus A, 64, 14985, https://doi.org/10.3402/tellusa.v64i0.14985, 2012.
Hagemann, S. and Dümenil, L.: A parameterization of the lateral waterflow for the global scale, Clim. Dynam., 14, 17–31, 1998.
Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter, Mon. Weather Rev., 129, 2776–2790, 2001.
Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 124–137, 2001.
Houtekamer, P. L. and Mitchell, H. L.: Ensemble Kalman filtering, Q. J. Roy. Meteorol. Soc., 131, 3269–3289, 2005.
Hwang, C., Peng, M.-F., Ning, J., Luo, J., and Sui, C.-H.: Lake level variations in China from TOPEX/Poseidon altimetry: Data quality assessment and links to precipitation and ENSO, Geophys. J. Int., 161, 1–11, 2005.
Kouraev, A. V., Zakharovab, E. A., Samainc, O., Mognard, N. M., and Cazenave, A.: Ob' River discharge from TOPEX/Poseidon satellite altimetry (1992–2002), Remote Sens. Environ., 93, 238–245, 2004.
López López, P., Wanders, N., Schellekens, J., Renzullo, L. J., Sutanudjaja, E. H., and Bierkens, M. F. P.: Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations, Hydrol. Earth Syst. Sci., 20, 3059–3076, https://doi.org/10.5194/hess-20-3059-2016, 2016.
Lucas-Picher, P., Arora, V., Caya, D., and Laprisse, R.: Implementation of a large-scale variable velocity river flow routing algorithm in the Canadian Regional Climate Model (CRCM), Atmos.-Ocean, 41, 139–153, 2010.
MacArthur, J. L.: Altimeter designs – Seasat-1 and future missions, Mar. Geodesy, 3, 39–61, 1980.
Manning, R.: On the flow of water in open channels and pipes, Inst. Civ. Eng. Ireland, 20, 161–207, 1891.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Meade, R., Rayol, J., Conceicão, S. D., and Natividade, J.: Backwater Effects in the Amazon River Basin of Brazil, Environ. Geol. Water Sci., 18, 105–114, 1991.
Michailovsky, C. I. and Bauer-Gottwein, P.: Operational reservoir inflow forecasting with radar altimetry: the Zambezi case study, Hydrol. Earth Syst. Sci., 18, 997–1007, https://doi.org/10.5194/hess-18-997-2014, 2014.
Michailovsky, C. I., Milzow, C., and Bauer-Gottwein, P.: Assimilation of radar altimetry to a routing model of the Brahmaputra river, Water Ressour. Res., 49, 4807–4816, 2013.
Molinier, M., Guyot, J.-L., Orstom, B., Guimarães, V., de Oliveira, E., and Dnaee, B.: Hydrologie du bassin de l'Amazone, in: Grands Bassins Fluviaux Périatlantiques, edited by: Boulègue, J. and Olivry, J.-C., 3PEGI-INSA-CNRS-ORSTOM, Paris, 335–345, 1993.
Moore, J. B.: Discrete-time fixed-lag smoothing algorithms, Automatica, 9, 163–173, 1973.
Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using particle filter, Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604, 2005.
Ngo-Duc, T., Oki, T., and Kanae, S.: A variable streamflow velocity method for global river routing model: model description and preliminary results, Hydrol. Earth Syst. Sci. Discuss., 4, 4389–4414, https://doi.org/10.5194/hessd-4-4389-2007, 2007.
Nijssen, B. and Lettenmaier, D. P.: Effect of precipitation sempling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites, J. Geophys. Res., 109, D02103, https://doi.org/10.1029/2003JD00349, 2004.
Noilhan, J. and Planton, S.: A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., 117, 536–549, 1989.
Oki, T. and Sud, Y. C.: Design of Total Integrating Pathways (TRIP) – A Global River Channel Network, Earth Interact., 2, 1–36, 1998.
Paiva, R. C. D., Collischonn, W., and Tucci, C. E. M.: Large scale hydrologic and hydrodynamique modelling using limited data and a GIS based approach, J. Hydrol., 406, 170–181, 2011.
Paiva, R. C. D., Buarque, D. C., Collischonn, W., Bonnet, M.-P., Frappart, F., Calmant, S., and Mendes, C. A. B.: Large scale hydrological and hydrodynamic modeling of the Amazon River basin, Water Resour. Res., 49, 1226–1243, 2013a.
Paiva, R. C. D., Collischonn, W., and Buarque, D. C.: Validation of a full hydrodynamic model for large-scale hydrological modelling in the Amazon, Hydrol. Process., 27, 333–346, 2013b.
Palvis, N. K., Holmes, S. A., Kengon, S. C., and Factor, J. K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Paris, A., Paiva, R. C. D., Silva, J. S. D., Moreira, D., Calmant, S., Garambois, P.-A., Collischonn, W., Bonnet, M.-P., and Seyler, F.: Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin, Water Resour. Res., 52, 3787–3814, https://doi.org/10.1002/2014WR016618, 2016.
Rasmussen, J., Madsen, H., Jensen, K. H., and Refsgaard, J. C.: Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance, Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, 2015.
Reichle, R. H., DeLannoy, G. J. M., Draper, B. A. F. C. S., and Liu, Q.: Connecting Satellite Observations with Water Cycle Variables Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS, Surv. Geophys., 35, 577–606, https://doi.org/10.1007/s10712-013-9220-8, 2014.
Sakov, P. and Bertino, L.: Relation between two common localisation methods for the EnKF, Comput. Geosci., 15, 225–237, 2011.
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, 2017.
Schumann, G. J.-P. and Domeneghetti, A.: Exploiting the proliferation of current and future satellite observations of rivers, Hydrol. Process., 30, 2891–2896, 2016.
Silva, J. S. D., Calmant, S., Seyler, F., Filho, O. C. R., Cochonneau, G., and Mansur, W. J.: Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions, Remote Sens. Environ., 114, 2160–2181, 2010.
Silva, J. S. D., Calmant, S., Seyler, F., Lee, H., and Shum, C. K.: Mapping of extreme stage variations using ENVISAT altimetry in the Amazon basin rivers, Int. Water Technol. J., 2, 14–25, 2012.
Silva, J. S. D., Calmant, S., Seyler, F., Moreira, D. M., Oliveira, D., and Monteiro, A.: Radar altimetry aids managing gauge networks, Water Resour. Manage., 28, 587–603, 2014.
Sorooshian, S. and Dracup, J. A.: Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heteroscedastic error cases, Water Resour. Res., 16, 430–442, 1980.
Sun, A. Y., Morris, A. P., and Mohanty, S.: Sequential updating of multimodal hydrogeologic parameter fields using localisation and clustering techniques, Water Resour. Res., 45, W07424, https://doi.org/10.1029/2008WR007443, 2009.
Tanajura, C. A. S., Lima, L. N., and Belyav, K. P.: Assimilation of satellite surface-height anomalies data into a Hybrid Coordinate Ocean Model (HYCOM) over the Atlantic Ocean, Mar. Phys., 55, 667–678, https://doi.org/10.1134/S0001437015050161, 2015.
Tourian, M. J., Schwatke, C., and Sneeuw, N.: River discharge estimation at daily resolution from satellite altimetry over an entire river basin, J. Hydrol., 546, 230–247, 2017.
Trudel, M., Leconte, R., and Paniconi, C.: Analysis of the hydrological response of a distributed physically-based model using post-assimilation (EnKF) diagnostics of streamflow and in situ soil moisture observations, J. Hydrol., 514, 192–201, https://doi.org/10.1016/j.jhydrol.2014.03.072, 2014.
Vörösmarty, C., Moore, B., Grace, A., Gildea, M., Melillo, J., Peterson, B., Rastetter, E., and Steudler, P.: Continental scale models of water balance and fluvial transport: An application to South America, Global Biogeochem. Cy., 3, 241–265, 1989.
Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39, 1201, https://doi.org/10.1029/2002WR001642, 2003.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010.
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based descrpition of floodplain inundation dynamics in a global river routing model, Water Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726, 2011.
Short summary
This study uses remotely sensed river discharge data to correct river storage and discharge in a large-scale hydrological model. The method is based on an ensemble Kalman filter and also introduces an additional technique that allows for better constraint of the correction (called localization). The approach is applied over the entire Amazon basin. Results show that the method is able to improve river discharge and localization to produce better results along main tributaries.
This study uses remotely sensed river discharge data to correct river storage and discharge in a...