Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2135-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-2135-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product
Charlotte Marie Emery
CORRESPONDING AUTHOR
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
now at: JPL, Pasadena, CA, USA
Adrien Paris
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
GET, Université de Toulouse, UPS, CNRS, IRD, Toulouse, France
LMI OCE IRD/UNB, Campus Darcy Ribeiro, Brasilia, Brazil
now at: CLS, Ramonville-Saint-Agne, France
Sylvain Biancamaria
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Aaron Boone
Meteo France CNRS, CNRM UMR 3589, Toulouse, France
Stéphane Calmant
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Pierre-André Garambois
ICUBE – UMR 7357, Fluid Mechanics Team, INSA, Strasbourg, France
Joecila Santos da Silva
CESTU, Universidade do Estado do Amazonas, Manaus, Brazil
Related authors
Charlotte Marie Emery, Sylvain Biancamaria, Aaron Boone, Sophie Ricci, Mélanie C. Rochoux, Vanessa Pedinotti, and Cédric H. David
Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020, https://doi.org/10.5194/hess-24-2207-2020, 2020
Short summary
Short summary
The flow of freshwater in rivers is commonly studied with computer programs known as hydrological models. An important component of those programs lies in the description of the river environment, such as the channel resistance to the flow, that is critical to accurately predict the river flow but is still not well known. Satellite data can be combined with models to enrich our knowledge of these features. Here, we show that the coming SWOT mission can help better know this channel resistance.
Malak Sadki, Gaëtan Noual, Simon Munier, Vanessa Pedinotti, Kaushlendra Verma, Clément Albergel, Sylvain Biancamaria, and Alice Andral
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-328, https://doi.org/10.5194/hess-2024-328, 2024
Preprint under review for HESS
Short summary
Short summary
This study explores how 20 years of remote-sensed discharge data from the ESA CCI improve large-scale hydrological models, CTRIP and MGB, through data assimilation. Using an EnKF framework across the Niger and Congo basins, it shows how assimilating denser temporal discharge data reduces biases and improves flow variability, enhancing accuracy. These findings underscore the role of long-term discharge data in refining models for climate assessments, water management, and forecasting.
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1079, https://doi.org/10.5194/egusphere-2024-1079, 2024
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale for deciduous broadleaf vegetation, making it applicable to monitoring clay shrinkage damage to buildings, agriculture or forestry. It is found that significant soil moisture drought events occurred in France in 2003, 2018, 2019, 2020 and 2022. Particularly high index values are observed throughout the country in 2022. It is also found that droughts will become more severe in the future.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Michel Le Page, Younes Fakir, Lionel Jarlan, Aaron Boone, Brahim Berjamy, Saïd Khabba, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 25, 637–651, https://doi.org/10.5194/hess-25-637-2021, https://doi.org/10.5194/hess-25-637-2021, 2021
Short summary
Short summary
In the context of major changes, the southern Mediterranean area faces serious challenges with low and continuously decreasing water resources mainly attributed to agricultural use. A method for projecting irrigation water demand under both anthropogenic and climatic changes is proposed. Time series of satellite imagery are used to determine a set of semiempirical equations that can be easily adapted to different future scenarios.
Adrien Napoly, Aaron Boone, and Théo Welfringer
Geosci. Model Dev., 13, 6523–6545, https://doi.org/10.5194/gmd-13-6523-2020, https://doi.org/10.5194/gmd-13-6523-2020, 2020
Short summary
Short summary
Accurate modeling of snow impact on surface energy and mass fluxes is required from land surface models. This new version of the SURFEX model improves the representation of the snowpack. In particular, it prevents its ablation from occurring too early in the season, which also leads to better soil temperatures and energy fluxes toward the atmosphere. This was made possible with a more explicit and distinct representation of each layer that constitutes the surface (soil, snow, and vegetation).
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Patrick Le Moigne, François Besson, Eric Martin, Julien Boé, Aaron Boone, Bertrand Decharme, Pierre Etchevers, Stéphanie Faroux, Florence Habets, Matthieu Lafaysse, Delphine Leroux, and Fabienne Rousset-Regimbeau
Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, https://doi.org/10.5194/gmd-13-3925-2020, 2020
Short summary
Short summary
The study describes how a hydrometeorological model, operational at Météo-France, has been improved. Particular emphasis is placed on the impact of climatic data, surface, and soil parametrizations on the model results. Model simulations and evaluations carried out on a variety of measurements of river flows and snow depths are presented. All improvements in climate, surface data, and model physics have a positive impact on system performance.
Ghizlane Aouade, Lionel Jarlan, Jamal Ezzahar, Salah Er-Raki, Adrien Napoly, Abdelfattah Benkaddour, Said Khabba, Gilles Boulet, Sébastien Garrigues, Abdelghani Chehbouni, and Aaron Boone
Hydrol. Earth Syst. Sci., 24, 3789–3814, https://doi.org/10.5194/hess-24-3789-2020, https://doi.org/10.5194/hess-24-3789-2020, 2020
Short summary
Short summary
Our objective is to question the representation of the energy budget in surface–vegetation–atmosphere transfer models for the prediction of the convective fluxes in crops with complex structures (row) and under transient hydric regimes due to irrigation. The main result is that a coupled multiple energy balance approach is necessary to properly predict surface exchanges for these complex crops. It also points out the need for other similar studies on various crops with different sparsity levels.
Alexandra Giese, Aaron Boone, Patrick Wagnon, and Robert Hawley
The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020, https://doi.org/10.5194/tc-14-1555-2020, 2020
Short summary
Short summary
Rocky debris on glacier surfaces is known to affect the melt of mountain glaciers. Debris can be dry or filled to varying extents with liquid water and ice; whether debris is dry, wet, and/or icy affects how efficiently heat is conducted through debris from its surface to the ice interface. Our paper presents a new energy balance model that simulates moisture phase, evolution, and location in debris. ISBA-DEB is applied to West Changri Nup glacier in Nepal to reveal important physical processes.
Charlotte Marie Emery, Sylvain Biancamaria, Aaron Boone, Sophie Ricci, Mélanie C. Rochoux, Vanessa Pedinotti, and Cédric H. David
Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020, https://doi.org/10.5194/hess-24-2207-2020, 2020
Short summary
Short summary
The flow of freshwater in rivers is commonly studied with computer programs known as hydrological models. An important component of those programs lies in the description of the river environment, such as the channel resistance to the flow, that is critical to accurately predict the river flow but is still not well known. Satellite data can be combined with models to enrich our knowledge of these features. Here, we show that the coming SWOT mission can help better know this channel resistance.
Wafa Chebbi, Vincent Rivalland, Pascal Fanise, Aaron Boone, Lionel Jarlan, Hechmi Chehab, Zohra Lili Chabaane, Valérie Le Dantec, and Gilles Boulet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-104, https://doi.org/10.5194/hess-2020-104, 2020
Publication in HESS not foreseen
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Audrey Douinot, Hélène Roux, Pierre-André Garambois, and Denis Dartus
Hydrol. Earth Syst. Sci., 22, 5317–5340, https://doi.org/10.5194/hess-22-5317-2018, https://doi.org/10.5194/hess-22-5317-2018, 2018
Short summary
Short summary
The distributed, process-oriented model, MARINE, was used to test several hypotheses of flow dynamics in soils during flash flood events in the Mediterranean area. Results show that the most realistic hypothesis for each catchment is consistent with existing in situ observations and measurements. The study also highlights the potential of distributed modelling and spatial observations in hydrology, especially in dealing with equifinality issues.
Vinícius A. Siqueira, Rodrigo C. D. Paiva, Ayan S. Fleischmann, Fernando M. Fan, Anderson L. Ruhoff, Paulo R. M. Pontes, Adrien Paris, Stéphane Calmant, and Walter Collischonn
Hydrol. Earth Syst. Sci., 22, 4815–4842, https://doi.org/10.5194/hess-22-4815-2018, https://doi.org/10.5194/hess-22-4815-2018, 2018
Short summary
Short summary
Providing reliable estimates of water fluxes at the continental scale is challenging. We extended a regional hydrological model to the entirety of South America and assessed its performance using multiple observations. After a comparison with global models, we show the extent to which estimates of daily river discharge can be improved, even by using global forcing data. Issues of global-/continental-scale modeling and future directions for simulating discharge in this continent are discussed.
Judith Eeckman, Pierre Chevallier, Aaron Boone, Luc Neppel, Anneke De Rouw, Francois Delclaux, and Devesh Koirala
Hydrol. Earth Syst. Sci., 21, 4879–4893, https://doi.org/10.5194/hess-21-4879-2017, https://doi.org/10.5194/hess-21-4879-2017, 2017
Short summary
Short summary
The central part of the Himalayan Range presents tremendous heterogeneity in terms of topography and climatology, but the representation of hydro-climatic processes for Himalayan catchments is limited due to a lack of knowledge in such poorly instrumented environments. The proposed approach is to characterize the effect of altitude on precipitation by considering ensembles of acceptable altitudinal factors. Ensembles of acceptable values for the components of the water cycle are then provided.
Judith Eeckman, Santosh Nepal, Pierre Chevallier, Gauthier Camensuli, Francois Delclaux, Aaron Boone, and Anneke De Rouw
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-401, https://doi.org/10.5194/hess-2017-401, 2017
Preprint retracted
Short summary
Short summary
This paper compares the simulation of water cycle obtained using two different hydrological models
in two small mountainous Himalayan catchments. The reliability of the simulations for evapotranspiration, discharge can therefore be considered as satisfactory. The differences in the structure and results of the two models mainly concern the water storages and flows in the soil, in particular in high-mountain environment.
Adrien Napoly, Aaron Boone, Patrick Samuelsson, Stefan Gollvik, Eric Martin, Roland Seferian, Dominique Carrer, Bertrand Decharme, and Lionel Jarlan
Geosci. Model Dev., 10, 1621–1644, https://doi.org/10.5194/gmd-10-1621-2017, https://doi.org/10.5194/gmd-10-1621-2017, 2017
Short summary
Short summary
This paper is the second part of a new parameterization for canopy representation that has been developed in the Interactions between the Surface Biosphere Atmosphere model (ISBA). A module for the explicit representation of the litter bellow forest canopies has been added. Then, the first evaluation of these new developments is performed at local scale among three well-instrumented sites and then at the global scale using the FLUXNET network.
Aaron Boone, Patrick Samuelsson, Stefan Gollvik, Adrien Napoly, Lionel Jarlan, Eric Brun, and Bertrand Decharme
Geosci. Model Dev., 10, 843–872, https://doi.org/10.5194/gmd-10-843-2017, https://doi.org/10.5194/gmd-10-843-2017, 2017
Short summary
Short summary
Land surface models describe the different exchanges of mass, heat, and momentum with the atmosphere. They are pushing towards improved realism owing to an increasing number of in situ observations, improving satellite data-sets and increasing computing resources. As a part of the trend, a new parameterization has been developed called the Interactions between the Surface Biosphere Atmosphere-Multi-Energy Budget model. This technical paper describes model equations and theoretical background.
Bertrand Decharme, Eric Brun, Aaron Boone, Christine Delire, Patrick Le Moigne, and Samuel Morin
The Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, https://doi.org/10.5194/tc-10-853-2016, 2016
Short summary
Short summary
We analyze how snowpack processes and soil properties impact the soil temperature profiles over northern Eurasian regions using a land surface model. A correct representation of snow compaction is critical in winter while snow albedo is dominant in spring. In summer, soil temperature is more affected by soil organic carbon content, which strongly influences the maximum thaw depth in permafrost regions. This work was done to improve the representation of boreal region processes in climate models.
V. Pedinotti, A. Boone, S. Ricci, S. Biancamaria, and N. Mognard
Hydrol. Earth Syst. Sci., 18, 4485–4507, https://doi.org/10.5194/hess-18-4485-2014, https://doi.org/10.5194/hess-18-4485-2014, 2014
N. Flipo, A. Mouhri, B. Labarthe, S. Biancamaria, A. Rivière, and P. Weill
Hydrol. Earth Syst. Sci., 18, 3121–3149, https://doi.org/10.5194/hess-18-3121-2014, https://doi.org/10.5194/hess-18-3121-2014, 2014
V. Masson, P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J.-C. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A.-L. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, E. Kourzeneva, M. Lafaysse, S. Lafont, C. Lebeaupin Brossier, A. Lemonsu, J.-F. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet, and A. Voldoire
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, https://doi.org/10.5194/gmd-6-929-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Stochastic approaches
Warming of the Willamette River, 1850–present: the effects of climate change and river system alterations
Assimilation of transformed water surface elevation to improve river discharge estimation in a continental-scale river
Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning
Do small and large floods have the same drivers of change? A regional attribution analysis in Europe
Flood trends in Europe: are changes in small and big floods different?
A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers
Discharge hydrograph estimation at upstream-ungauged sections by coupling a Bayesian methodology and a 2-D GPU shallow water model
Influence of solar forcing, climate variability and modes of low-frequency atmospheric variability on summer floods in Switzerland
Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system
Stochastic modeling of Lake Van water level time series with jumps and multiple trends
Predictability of Western Himalayan river flow: melt seasonal inflow into Bhakra Reservoir in northern India
The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
Stefan A. Talke, David A. Jay, and Heida L. Diefenderfer
Hydrol. Earth Syst. Sci., 27, 2807–2826, https://doi.org/10.5194/hess-27-2807-2023, https://doi.org/10.5194/hess-27-2807-2023, 2023
Short summary
Short summary
Archival measurements and a statistical model show that average water temperature in a major US West Coast river has increased by 1.8 °C since 1850, at a rate of 1.1 °C per century. The largest factor driving modeled changes are warming air temperatures (nearly 75 %). The remainder is primarily caused by depth increases and other modifications to the river system. Near-freezing conditions, common historically, no longer occur, and the number of warm water days has significantly increased.
Menaka Revel, Xudong Zhou, Dai Yamazaki, and Shinjiro Kanae
Hydrol. Earth Syst. Sci., 27, 647–671, https://doi.org/10.5194/hess-27-647-2023, https://doi.org/10.5194/hess-27-647-2023, 2023
Short summary
Short summary
The capacity to discern surface water improved as satellites became more available. Because remote sensing data is discontinuous, integrating models with satellite observations will improve knowledge of water resources. However, given the current limitations (e.g., parameter errors) of water resource modeling, merging satellite data with simulations is problematic. Integrating observations and models with the unique approaches given here can lead to a better estimation of surface water dynamics.
Remy Vandaele, Sarah L. Dance, and Varun Ojha
Hydrol. Earth Syst. Sci., 25, 4435–4453, https://doi.org/10.5194/hess-25-4435-2021, https://doi.org/10.5194/hess-25-4435-2021, 2021
Short summary
Short summary
The acquisition of river-level data is a critical task for the understanding of flood events but is often complicated by the difficulty to install and maintain gauges able to provide such information. This study proposes applying deep learning techniques on river-camera images in order to automatically extract the corresponding water levels. This approach could allow for a new flexible way to observe flood events, especially at ungauged locations.
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021, https://doi.org/10.5194/hess-25-1347-2021, 2021
Short summary
Short summary
We estimate the contribution of extreme precipitation, antecedent soil moisture and snowmelt to changes in small and large floods across Europe.
In northwestern and eastern Europe, changes in small and large floods are driven mainly by one single driver (i.e. extreme precipitation and snowmelt, respectively). In southern Europe both antecedent soil moisture and extreme precipitation significantly contribute to flood changes, and their relative importance depends on flood magnitude.
Miriam Bertola, Alberto Viglione, David Lun, Julia Hall, and Günter Blöschl
Hydrol. Earth Syst. Sci., 24, 1805–1822, https://doi.org/10.5194/hess-24-1805-2020, https://doi.org/10.5194/hess-24-1805-2020, 2020
Short summary
Short summary
We investigate changes that occurred in small vs. big flood events and in small vs. large catchments across Europe over 5 decades. Annual maximum discharge series between 1960 and 2010 from 2370 gauges in Europe are analysed. Distinctive patterns of flood regime change are identified for large regions across Europe, which depend on flood magnitude and catchment size.
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019, https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary
Short summary
We investigate the seasonal memory properties of a large sample of European rivers in terms of high and low flows. We compute seasonal correlations between peak and low flows and average flows in the previous seasons and explore the links with various physiographic and hydro-climatic catchment descriptors. Our findings suggest that there is a traceable physical basis for river memory which in turn can be employed to reduce uncertainty and improve probabilistic predictions of floods and droughts.
Alessia Ferrari, Marco D'Oria, Renato Vacondio, Alessandro Dal Palù, Paolo Mignosa, and Maria Giovanna Tanda
Hydrol. Earth Syst. Sci., 22, 5299–5316, https://doi.org/10.5194/hess-22-5299-2018, https://doi.org/10.5194/hess-22-5299-2018, 2018
Short summary
Short summary
The knowledge of discharge hydrographs is useful for flood modelling purposes, water resource management, and the design of hydraulic structures. This paper presents a novel methodology to estimate the unknown discharge hydrograph in an ungauged river section using only water level information recorded downstream. A Bayesian procedure is coupled with a 2-D hydraulic model parallelized for GPUs. Finally, the proposed procedure has been applied to estimate inflow hydrographs in real river reaches.
J. C. Peña, L. Schulte, A. Badoux, M. Barriendos, and A. Barrera-Escoda
Hydrol. Earth Syst. Sci., 19, 3807–3827, https://doi.org/10.5194/hess-19-3807-2015, https://doi.org/10.5194/hess-19-3807-2015, 2015
Short summary
Short summary
The paper presents an index of summer flood damage in Switzerland from 1800 to 2009 and explores the influence of solar forcing, climate variability and low-frequency atmospheric circulation on flood frequencies. The flood damage index provides evidence that the 1817-1851, 1881-1927, 1977-1990 and 2005-present flood clusters are mostly in phase with palaeoclimate proxies and solar activity minima. Floods are influenced by atmospheric instability related to the principal summer mode.
T. A. Cochrane, M. E. Arias, and T. Piman
Hydrol. Earth Syst. Sci., 18, 4529–4541, https://doi.org/10.5194/hess-18-4529-2014, https://doi.org/10.5194/hess-18-4529-2014, 2014
Short summary
Short summary
Natural patterns of water levels in the Mekong are changing as a result of hydropower and irrigation development. Since 1991, significant changes in water level fluctuations and rising and falling rates have occurred along the lower Mekong. The changes were linked to temporal and spatial trends in water infrastructure development and can lead to impacts on ecosystem productivity. Climatic change is also important, but it has not been the main cause of the key water level alternations.
H. Aksoy, N. E. Unal, E. Eris, and M. I. Yuce
Hydrol. Earth Syst. Sci., 17, 2297–2303, https://doi.org/10.5194/hess-17-2297-2013, https://doi.org/10.5194/hess-17-2297-2013, 2013
I. Pal, U. Lall, A. W. Robertson, M. A. Cane, and R. Bansal
Hydrol. Earth Syst. Sci., 17, 2131–2146, https://doi.org/10.5194/hess-17-2131-2013, https://doi.org/10.5194/hess-17-2131-2013, 2013
D. A. Plaza, R. De Keyser, G. J. M. De Lannoy, L. Giustarini, P. Matgen, and V. R. N. Pauwels
Hydrol. Earth Syst. Sci., 16, 375–390, https://doi.org/10.5194/hess-16-375-2012, https://doi.org/10.5194/hess-16-375-2012, 2012
Cited articles
Alkama, R., Decharme, B., Douville, H., Becker, M., Cazenave, A., Sheffield, J., Voldoire, A., Tyteca, S., and Moigne, P. L.: Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges, J. Hydrometeorol., 11, 583–600, 2010.
Anderson, J. L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D, 230, 99–111, 2007.
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, 2006.
Arora, V., Chiew, F., and Grayson, R.: A river flow routing scheme for general circulation models, J. Geophys. Res., 104, 14347–14357, 1999.
Biancamaria, S., Durant, M., Andreadis, K. M., Bates, P. D., Boone, A., Mognard, N. M., Rodriguez, E., Alsdorf, D. E., Lettenmaier, D. P., and Clark, E. A.: Assimilation of virtual wide swath altimetry to improve Arctic river modeling, Remote Sens. Environ., 115, 373–381, 2011.
Birkett, C. M.: The contribution of TOPEX/Poseidon to the global monitoring of climatically sensitive lakes, J. Geophys. Res., 100, 25179–25204, 1995.
Birkett, C. M.: Contribution of the TOPEX NASA altimeter to the global monitoring of large rivers and wetlands, Water Resour. Res., 34, 1223–1239, 1998.
Birkett, C. M., Mertes, L. A. K., Dunne, T., Costa, M. H., and Jasinski, M. J.: Surface water dynamics in the Amazon basin: Application of satellite radar altimetry, J. Geophys. Res., 107, 8059, https://doi.org/10.1029/2001JD000609, 2002.
Blackadar, A.-F.: Modeling the nocturnal boundary layer, in: Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality, American Meteorological Society, Boston, 46–49, 1976.
Boone, A., Calvet, J.-C., and Noilhan, J.: Inclusion of a Third Soil Layer in a Land Surface Scheme Using the Force-Restore Method, J. Hydrometeorol., 38, 1611–1630, 1999.
Burgers, G., Leeuwen, P. J. V., and Evensen, G.: Analysis Scheme in the Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–1724, 1998.
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, 2008.
Coe, M.: A linked global model of terrestrial hydrologic processes: Simulation of modern rivers, lakes, and wetlands, J. Geophys. Res., 103, 8885–8899, 1998.
Collischon, W., Allasia, D., da Silva, B. C., and Tucci, C. E. M.: The MGB-IPH model for large-scale rainfall-runoff modelling, Hydrolog. Sci. J., 52, 878–895, 2007.
Compo, G., Whitaker, J., Sardeshmukh, P., Matsui, N., Allan, R., Yin Jr., X., B. G., Vose, R., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R., Grant, A., Groisman, P., Jones, P., Kruk, M., Kruger, A., Marshall, G., Maugeri, M., Mok, H., Nordli, O., Ross, T., Trigo, R., Wang, X., Woodruff, S., and Worley, S.: The Twentieth Century Reanalysis Project, Q. J. Roy. Meteorol. Soc., 137, 1–28, 2011.
Cretaux, J.-F., Calmant, S., Romanoski, V., Shabunin, A., Lyard, F., Berge-Nguyen, M., Cazenave, A., Hernandez, F., and Perosanz, F.: An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia, J. Geodesy, 83, 723–735, 2009.
David, C. H., Maidment, D. R., Niu, G.-Y., Yang, Z.-L., Habets, F., and Eijkhout, V.: River Network Routing on the NHDPlus Dataset, J. Hydrometeorol., 12, 913–934, https://doi.org/10.1175/2011JHM1345.1, 2011.
Decharme, B. and Douville, H.: Introduction of a subgrid hydrology in the ISBA land surface model, Clim. Dynam., 26, 65–78, 2006.
Decharme, B., Douville, H., Prigent, C., Papa, F., and Aires, F.: A new river flooding scheme for global climate applications: Off-line evaluation over South America, J. Geophys. Res., 113, D11110, https://doi.org/10.1029/2007JD009376, 2008.
Decharme, B., Alkama, R., Douville, H., Becker, M., and Cazenave, A.: Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage, J. Hydrometeorol., 11, 601–617, 2010.
Decharme, B., Alkama, R., Papa, F., Faroux, S., Douville, H., and Prigent, C.: Global off-line evaluation of the ISBA-TRIP flood model, Clim. Dynam., 38, 1389, https://doi.org/10.1007/s00382-011-1054-9, 2012.
Delijani, E. B., Pishvaie, M. R., and Boozarjomehry, R. B.: Subsurface characterization with localized ensemble Kalman filter employing adaptative thresholding, Adv. Water Resour., 69, 181–196, 2014.
Devegowda, D., Arroyo-Negrete, E., and Datta-Gupta, A.: Flow relevant covariance localization during dynamic data assimilation using EnKF, Adv. Water Resour., 33, 129–145, 2010.
Ducharne, A., Golaz, C., Leblois, E., Laval, K., Polcher, J., Ledoux, E., and de Marsily, G.: Development of a high resolution runoff routing model, calibration and application to assess runoff from the LMD GCM, J. Hydrol., 280, 207–228, 2003.
Durand, M., Andreadis, K., Alsdorf, D., Lettenmaier, D., Moller, D., and Wilson, M.: Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model, Geophys. Res. Lett., 35, L20401, https://doi.org/10.1029/2008GL034150, 2008.
Emery, C. M., Biancamaria, S., Boone, A., Garambois, P.-A., Ricci, S., Rochoux, M. C., and Decharme, B.: Temporal variance-based sensitivity analysis of the river routing component of the large scale hydrological model ISBA-TRIP: Application on the Amazon Basin, J. Hydrometeorol., 17, 3007–3027, 2016.
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostropic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143–10162, 1994.
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003.
Evensen, G.: Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynam., 54, 539–560, 2004.
Evensen, G. and Leeuwen, P. J. V.: Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasi-geostrophic model, Mon. Weather Rev., 124, 85–96, 1996.
Evensen, G. and Leeuwen, P. J. V.: An Ensemble Kalman Smoother for Nonlinear Dynamics, Mon. Weather Rev., 128, 1852–1867, 2000.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Werner, J. U. M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Getirana, A. C. V. and Peters-Lidard, C.: Estimating water discharge from large radar altimetry datasets, Hydrol. Earth Syst. Sci., 17, 923–933, https://doi.org/10.5194/hess-17-923-2013, 2013.
Greybush, S. J., Kalnay, E., Miyoshi, T., Ide, K., and Hunt, B. R.: Balance and Ensemble Kalman Filter Localization Techniques, Mon. Weather Rev., 139, 511–522, 2011.
Gustafsson, N., Huang, X. Y., Yang, X. H., Mogensen, K., Lindskog, M., Vignes, O., Wilhelmsson, T., and Thorsteinsson, S.: Four-dimensional data assimilation for a limited area model, Tellus A, 64, 14985, https://doi.org/10.3402/tellusa.v64i0.14985, 2012.
Hagemann, S. and Dümenil, L.: A parameterization of the lateral waterflow for the global scale, Clim. Dynam., 14, 17–31, 1998.
Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter, Mon. Weather Rev., 129, 2776–2790, 2001.
Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 124–137, 2001.
Houtekamer, P. L. and Mitchell, H. L.: Ensemble Kalman filtering, Q. J. Roy. Meteorol. Soc., 131, 3269–3289, 2005.
Hwang, C., Peng, M.-F., Ning, J., Luo, J., and Sui, C.-H.: Lake level variations in China from TOPEX/Poseidon altimetry: Data quality assessment and links to precipitation and ENSO, Geophys. J. Int., 161, 1–11, 2005.
Kouraev, A. V., Zakharovab, E. A., Samainc, O., Mognard, N. M., and Cazenave, A.: Ob' River discharge from TOPEX/Poseidon satellite altimetry (1992–2002), Remote Sens. Environ., 93, 238–245, 2004.
López López, P., Wanders, N., Schellekens, J., Renzullo, L. J., Sutanudjaja, E. H., and Bierkens, M. F. P.: Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations, Hydrol. Earth Syst. Sci., 20, 3059–3076, https://doi.org/10.5194/hess-20-3059-2016, 2016.
Lucas-Picher, P., Arora, V., Caya, D., and Laprisse, R.: Implementation of a large-scale variable velocity river flow routing algorithm in the Canadian Regional Climate Model (CRCM), Atmos.-Ocean, 41, 139–153, 2010.
MacArthur, J. L.: Altimeter designs – Seasat-1 and future missions, Mar. Geodesy, 3, 39–61, 1980.
Manning, R.: On the flow of water in open channels and pipes, Inst. Civ. Eng. Ireland, 20, 161–207, 1891.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Meade, R., Rayol, J., Conceicão, S. D., and Natividade, J.: Backwater Effects in the Amazon River Basin of Brazil, Environ. Geol. Water Sci., 18, 105–114, 1991.
Michailovsky, C. I. and Bauer-Gottwein, P.: Operational reservoir inflow forecasting with radar altimetry: the Zambezi case study, Hydrol. Earth Syst. Sci., 18, 997–1007, https://doi.org/10.5194/hess-18-997-2014, 2014.
Michailovsky, C. I., Milzow, C., and Bauer-Gottwein, P.: Assimilation of radar altimetry to a routing model of the Brahmaputra river, Water Ressour. Res., 49, 4807–4816, 2013.
Molinier, M., Guyot, J.-L., Orstom, B., Guimarães, V., de Oliveira, E., and Dnaee, B.: Hydrologie du bassin de l'Amazone, in: Grands Bassins Fluviaux Périatlantiques, edited by: Boulègue, J. and Olivry, J.-C., 3PEGI-INSA-CNRS-ORSTOM, Paris, 335–345, 1993.
Moore, J. B.: Discrete-time fixed-lag smoothing algorithms, Automatica, 9, 163–173, 1973.
Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using particle filter, Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604, 2005.
Ngo-Duc, T., Oki, T., and Kanae, S.: A variable streamflow velocity method for global river routing model: model description and preliminary results, Hydrol. Earth Syst. Sci. Discuss., 4, 4389–4414, https://doi.org/10.5194/hessd-4-4389-2007, 2007.
Nijssen, B. and Lettenmaier, D. P.: Effect of precipitation sempling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites, J. Geophys. Res., 109, D02103, https://doi.org/10.1029/2003JD00349, 2004.
Noilhan, J. and Planton, S.: A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., 117, 536–549, 1989.
Oki, T. and Sud, Y. C.: Design of Total Integrating Pathways (TRIP) – A Global River Channel Network, Earth Interact., 2, 1–36, 1998.
Paiva, R. C. D., Collischonn, W., and Tucci, C. E. M.: Large scale hydrologic and hydrodynamique modelling using limited data and a GIS based approach, J. Hydrol., 406, 170–181, 2011.
Paiva, R. C. D., Buarque, D. C., Collischonn, W., Bonnet, M.-P., Frappart, F., Calmant, S., and Mendes, C. A. B.: Large scale hydrological and hydrodynamic modeling of the Amazon River basin, Water Resour. Res., 49, 1226–1243, 2013a.
Paiva, R. C. D., Collischonn, W., and Buarque, D. C.: Validation of a full hydrodynamic model for large-scale hydrological modelling in the Amazon, Hydrol. Process., 27, 333–346, 2013b.
Palvis, N. K., Holmes, S. A., Kengon, S. C., and Factor, J. K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Paris, A., Paiva, R. C. D., Silva, J. S. D., Moreira, D., Calmant, S., Garambois, P.-A., Collischonn, W., Bonnet, M.-P., and Seyler, F.: Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin, Water Resour. Res., 52, 3787–3814, https://doi.org/10.1002/2014WR016618, 2016.
Rasmussen, J., Madsen, H., Jensen, K. H., and Refsgaard, J. C.: Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance, Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, 2015.
Reichle, R. H., DeLannoy, G. J. M., Draper, B. A. F. C. S., and Liu, Q.: Connecting Satellite Observations with Water Cycle Variables Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS, Surv. Geophys., 35, 577–606, https://doi.org/10.1007/s10712-013-9220-8, 2014.
Sakov, P. and Bertino, L.: Relation between two common localisation methods for the EnKF, Comput. Geosci., 15, 225–237, 2011.
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, 2017.
Schumann, G. J.-P. and Domeneghetti, A.: Exploiting the proliferation of current and future satellite observations of rivers, Hydrol. Process., 30, 2891–2896, 2016.
Silva, J. S. D., Calmant, S., Seyler, F., Filho, O. C. R., Cochonneau, G., and Mansur, W. J.: Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions, Remote Sens. Environ., 114, 2160–2181, 2010.
Silva, J. S. D., Calmant, S., Seyler, F., Lee, H., and Shum, C. K.: Mapping of extreme stage variations using ENVISAT altimetry in the Amazon basin rivers, Int. Water Technol. J., 2, 14–25, 2012.
Silva, J. S. D., Calmant, S., Seyler, F., Moreira, D. M., Oliveira, D., and Monteiro, A.: Radar altimetry aids managing gauge networks, Water Resour. Manage., 28, 587–603, 2014.
Sorooshian, S. and Dracup, J. A.: Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heteroscedastic error cases, Water Resour. Res., 16, 430–442, 1980.
Sun, A. Y., Morris, A. P., and Mohanty, S.: Sequential updating of multimodal hydrogeologic parameter fields using localisation and clustering techniques, Water Resour. Res., 45, W07424, https://doi.org/10.1029/2008WR007443, 2009.
Tanajura, C. A. S., Lima, L. N., and Belyav, K. P.: Assimilation of satellite surface-height anomalies data into a Hybrid Coordinate Ocean Model (HYCOM) over the Atlantic Ocean, Mar. Phys., 55, 667–678, https://doi.org/10.1134/S0001437015050161, 2015.
Tourian, M. J., Schwatke, C., and Sneeuw, N.: River discharge estimation at daily resolution from satellite altimetry over an entire river basin, J. Hydrol., 546, 230–247, 2017.
Trudel, M., Leconte, R., and Paniconi, C.: Analysis of the hydrological response of a distributed physically-based model using post-assimilation (EnKF) diagnostics of streamflow and in situ soil moisture observations, J. Hydrol., 514, 192–201, https://doi.org/10.1016/j.jhydrol.2014.03.072, 2014.
Vörösmarty, C., Moore, B., Grace, A., Gildea, M., Melillo, J., Peterson, B., Rastetter, E., and Steudler, P.: Continental scale models of water balance and fluvial transport: An application to South America, Global Biogeochem. Cy., 3, 241–265, 1989.
Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39, 1201, https://doi.org/10.1029/2002WR001642, 2003.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010.
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based descrpition of floodplain inundation dynamics in a global river routing model, Water Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726, 2011.
Short summary
This study uses remotely sensed river discharge data to correct river storage and discharge in a large-scale hydrological model. The method is based on an ensemble Kalman filter and also introduces an additional technique that allows for better constraint of the correction (called localization). The approach is applied over the entire Amazon basin. Results show that the method is able to improve river discharge and localization to produce better results along main tributaries.
This study uses remotely sensed river discharge data to correct river storage and discharge in a...