Articles | Volume 22, issue 4
Research article
06 Apr 2018
Research article |  | 06 Apr 2018

Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product

Charlotte Marie Emery, Adrien Paris, Sylvain Biancamaria, Aaron Boone, Stéphane Calmant, Pierre-André Garambois, and Joecila Santos da Silva

Related authors

Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters
Charlotte Marie Emery, Sylvain Biancamaria, Aaron Boone, Sophie Ricci, Mélanie C. Rochoux, Vanessa Pedinotti, and Cédric H. David
Hydrol. Earth Syst. Sci., 24, 2207–2233,,, 2020
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Stochastic approaches
Warming of the Willamette River, 1850–present: the effects of climate change and river system alterations
Stefan A. Talke, David A. Jay, and Heida L. Diefenderfer
Hydrol. Earth Syst. Sci., 27, 2807–2826,,, 2023
Short summary
Assimilation of transformed water surface elevation to improve river discharge estimation in a continental-scale river
Menaka Revel, Xudong Zhou, Dai Yamazaki, and Shinjiro Kanae
Hydrol. Earth Syst. Sci., 27, 647–671,,, 2023
Short summary
Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning
Remy Vandaele, Sarah L. Dance, and Varun Ojha
Hydrol. Earth Syst. Sci., 25, 4435–4453,,, 2021
Short summary
Do small and large floods have the same drivers of change? A regional attribution analysis in Europe
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364,,, 2021
Short summary
Flood trends in Europe: are changes in small and big floods different?
Miriam Bertola, Alberto Viglione, David Lun, Julia Hall, and Günter Blöschl
Hydrol. Earth Syst. Sci., 24, 1805–1822,,, 2020
Short summary

Cited articles

Alkama, R., Decharme, B., Douville, H., Becker, M., Cazenave, A., Sheffield, J., Voldoire, A., Tyteca, S., and Moigne, P. L.: Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges, J. Hydrometeorol., 11, 583–600, 2010.
Anderson, J. L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D, 230, 99–111, 2007.
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, 2006.
Arora, V., Chiew, F., and Grayson, R.: A river flow routing scheme for general circulation models, J. Geophys. Res., 104, 14347–14357, 1999.
Biancamaria, S., Durant, M., Andreadis, K. M., Bates, P. D., Boone, A., Mognard, N. M., Rodriguez, E., Alsdorf, D. E., Lettenmaier, D. P., and Clark, E. A.: Assimilation of virtual wide swath altimetry to improve Arctic river modeling, Remote Sens. Environ., 115, 373–381, 2011.
Short summary
This study uses remotely sensed river discharge data to correct river storage and discharge in a large-scale hydrological model. The method is based on an ensemble Kalman filter and also introduces an additional technique that allows for better constraint of the correction (called localization). The approach is applied over the entire Amazon basin. Results show that the method is able to improve river discharge and localization to produce better results along main tributaries.