Research article
09 Mar 2018
Research article | 09 Mar 2018
Characterizing drought in terms of changes in the precipitation–runoff relationship: a case study of the Loess Plateau, China
Yuan Zhang et al.
Related authors
A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China
Jianjun Zhang, Guangyao Gao, Bojie Fu, Cong Wang, Hoshin V. Gupta, Xiaoping Zhang, and Rui Li
Hydrol. Earth Syst. Sci., 24, 809–826, https://doi.org/10.5194/hess-24-809-2020,https://doi.org/10.5194/hess-24-809-2020, 2020
Short summary
Temporally dependent effects of rainfall characteristics on inter- and intra-event branch-scale stemflow variability in two xerophytic shrubs
Chuan Yuan, Guangyao Gao, Bojie Fu, Daming He, Xingwu Duan, and Xiaohua Wei
Hydrol. Earth Syst. Sci., 23, 4077–4095, https://doi.org/10.5194/hess-23-4077-2019,https://doi.org/10.5194/hess-23-4077-2019, 2019
Short summary
Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China
Guangyao Gao, Jianjun Zhang, Yu Liu, Zheng Ning, Bojie Fu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 21, 4363–4378, https://doi.org/10.5194/hess-21-4363-2017,https://doi.org/10.5194/hess-21-4363-2017, 2017
Short summary
Soil organic carbon dynamics of black locust plantations in the middle Loess Plateau area of China
N. Lu, J. Liski, R. Y. Chang, A. Akujärvi, X. Wu, T. T. Jin, Y. F. Wang, and B. J. Fu
Biogeosciences, 10, 7053–7063, https://doi.org/10.5194/bg-10-7053-2013,https://doi.org/10.5194/bg-10-7053-2013, 2013
Related subject area
Flexible vector-based spatial configurations in land models
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020,https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020,https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Frequency and magnitude variability of Yalu River flooding: numerical analyses for the last 1000 years
Hui Sheng, Xiaomei Xu, Jian Hua Gao, Albert J. Kettner, Yong Shi, Chengfeng Xue, Ya Ping Wang, and Shu Gao
Hydrol. Earth Syst. Sci., 24, 4743–4761, https://doi.org/10.5194/hess-24-4743-2020,https://doi.org/10.5194/hess-24-4743-2020, 2020
Short summary
Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020,https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts
Francesco Avanzi, Joseph Rungee, Tessa Maurer, Roger Bales, Qin Ma, Steven Glaser, and Martha Conklin
Hydrol. Earth Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020,https://doi.org/10.5194/hess-24-4317-2020, 2020
Short summary
A history of TOPMODEL
Keith J. Beven, Rob Lamb, Mike J. Kirkby, and Jim E. Freer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-409,https://doi.org/10.5194/hess-2020-409, 2020
Revised manuscript accepted for HESS
Short summary
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020,https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020,https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
The era of Infiltration
Keith Beven
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-308,https://doi.org/10.5194/hess-2020-308, 2020
Revised manuscript accepted for HESS
Short summary
Crossing hydrological and geochemical modeling to understand the spatiotemporal variability of water chemistry in a headwater catchment (Strengbach, France)
Julien Ackerer, Benjamin Jeannot, Frederick Delay, Sylvain Weill, Yann Lucas, Bertrand Fritz, Daniel Viville, and François Chabaux
Hydrol. Earth Syst. Sci., 24, 3111–3133, https://doi.org/10.5194/hess-24-3111-2020,https://doi.org/10.5194/hess-24-3111-2020, 2020
On the shape of forward transit time distributions in low-order catchments
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020,https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees
Shengli Liao, Zhanwei Liu, Benxi Liu, Chuntian Cheng, Xinfeng Jin, and Zhipeng Zhao
Hydrol. Earth Syst. Sci., 24, 2343–2363, https://doi.org/10.5194/hess-24-2343-2020,https://doi.org/10.5194/hess-24-2343-2020, 2020
Short summary
Behind the scenes of streamflow model performance
Laurène J. E. Bouaziz, Guillaume Thirel, Tanja de Boer-Euser, Lieke A. Melsen, Joost Buitink, Claudia C. Brauer, Jan De Niel, Sotirios Moustakas, Patrick Willems, Benjamin Grelier, Gilles Drogue, Fabrizio Fenicia, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Benjamin J. Dewals, Albrecht H. Weerts, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-176,https://doi.org/10.5194/hess-2020-176, 2020
Revised manuscript accepted for HESS
Short summary
Dynamics of hydrological-model parameters: mechanisms, problems and solutions
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020,https://doi.org/10.5194/hess-24-1347-2020, 2020
On the configuration and initialization of a large-scale hydrological land surface model to represent permafrost
Mohamed E. Elshamy, Daniel Princz, Gonzalo Sapriza-Azuri, Mohamed S. Abdelhamed, Al Pietroniro, Howard S. Wheater, and Saman Razavi
Hydrol. Earth Syst. Sci., 24, 349–379, https://doi.org/10.5194/hess-24-349-2020,https://doi.org/10.5194/hess-24-349-2020, 2020
Short summary
Cited articles
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N.,
Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., and Hogg, E.
T.: A global overview of drought and heat-induced tree mortality reveals
emerging climate change risks for forests, Forest Ecol. Manag.,
259, 660–684, 2010.
Belal, A.-A., El-Ramady, H. R., Mohamed, E. S., and Saleh, A. M.: Drought
risk assessment using remote sensing and GIS techniques, Arab. J. Geosci., 7, 35–53, 2014.
Berg, D.: Copula goodness-of-fit testing: an overview and power comparison,
Eur. J. Financ., 15, 675–701, 2009.
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the
Climate Benefits of Forests, Science, 320, 1444–1449, 2008.
Bouwer, L. M., Aerts, J. C. J. H., Droogers, P., and Dolman, A. J.: Detecting
the long-term impacts from climate variability and increasing water
consumption on runoff in the Krishna river basin (India), Hydrol. Earth Syst.
Sci., 10, 703–713, https://doi.org/10.5194/hess-10-703-2006, 2006.
Boyer, J. S.: Plant productivity and environment, Science, 218, 443–448,
1982.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R.
A.: A review of paired catchment studies for determining changes in water
yield resulting from alterations in vegetation, J. Hydrol., 310,
28–61, 2005.
Burkhard, B., Kandziora, M., Hou, Y., and Müller, F.: Ecosystem service
potentials, flows and demands-concepts for spatial localisation, indication
and quantification, Landscape Online, 34, 1–32, 2014.
Chang, J., Wang, Y., Istanbulluoglu, E., Bai, T., Huang, Q., Yang, D., and
Huang, S.: Impact of climate change and human activities on runoff in the
Weihe River Basin, China, Quatern. Int., 380, 169–179, 2015.
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.,
Aubinet, M., Buchmann, N., Bernhofer, C., and Carrara, A.: Europe-wide
reduction in primary productivity caused by the heat and drought in 2003,
Nature, 437, 529–533, 2005.
Dai, A.: Drought under global warming: a review, Wiley Interdisciplinary
Reviews, Climate Change, 2, 45–65, 2011.
Derbyshire, E., Meng, X., and Kemp, R. A.: Provenance, transport and
characteristics of modern aeolian dust in western Gansu Province, China, and
interpretation of the Quaternary loess record, J. Arid Environ.,
39, 497–516, 1998.
Duff, G. A., Myers, B. A., Williams, R. J., Eamus, D., O'Grady, A., and
Fordyce, I. R.: Seasonal Patterns in Soil Moisture, Vapour Pressure Deficit,
Tree Canopy Cover and Pre-dawn Water Potential in a Northern Australian
Savanna, Aust. J. Bot., 45, 211–224, 1997.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng,
Y., Li, Y., and Jiang, X.: Revegetation in China [rsquor] s Loess Plateau is
approaching sustainable water resource limits, Nat. Clim. Change, 6,
1019–1022, 2016a.
Feng, X., Wei, C., Fu, B., and Lü, Y.: The role of climatic and
anthropogenic stresses on long-term runoff reduction from the Loess Plateau,
China, Sci. Total Environ., 571, 688–698, https://doi.org/10.1016/j.scitotenv.2016.07.038, 2016b.
Fu, C., Jiang, Z., Guan, Z., He, J., and Xu, Z.: Climate Extremes and
Related Disasters in China, Springer Berlin Heidelberg, 2008.
Gan, Y., Siddique, K. H., Turner, N. C., Li, X.-G., Niu, J.-Y., Yang, C.,
Liu, L., and Chai, Q.: Ridge-furrow mulching systems—an innovative
technique for boosting crop productivity in semiarid rain-fed environments,
Adv. Agron., 118, 429–476, 2013.
Ghulam, A., Qin, Q., Teyip, T., and Li, Z. L.: Modified perpendicular
drought index (MPDI): a real-time drought monitoring method, ISPRS J. Photogramm., 62, 150–164, 2007.
Goddard, S., Harms, S. K., Reichenbach, S. E., Tadesse, T., and Waltman, W.
J.: Geospatial Decision Support for Drought Risk Management, Commun. ACM, 46, 35–37, 2001.
Guo, A., Chang, J., Liu, D., Wang, Y., Huang, Q., and Li, Y.: Variations in
the precipitation–runoff relationship of the Weihe River Basin, Hydrol.
Res., 48, 295–310, 2016.
Hao, Z. and Singh, V. P.: Drought characterization from a multivariate
perspective: A review, J. Hydrol., 527, 668–678, 2015.
Hayes, M., Svoboda, M., Wardlow, B., Anderson, M., and Kogan, F.: Drought
monitoring: Historical and current perspectives, Remote sensing of drought,
94, 1–19, 2012.
Lü, Y., Zhang, L., Feng, X., Zeng, Y., Fu, B., Yao, X., Li, J., and Wu,
B.: Recent ecological transitions in China: greening, browning, and
influential factors, Sci. Rep.-UK, 5, 1–8, 2014.
Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, J. Am. Stat. Assoc., 46, 68–78, 1951.
Michele, C., Salvadori, G., Vezzoli, R., and Pecora, S.: Multivariate
assessment of droughts: Frequency analysis and dynamic return period, Water Resour. Res., 49, 6985–6994, 2013.
Moron, V.: Guinean and sahelian rainfall anomaly indices at annual and
monthly scales (1933–1990), Int. J. Climatol., 14,
325–341, 1994.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J., Glassy, J., Tian,
Y., Wang, Y., Song, X., Zhang, Y., and Smith, G.: Global products of
vegetation leaf area and fraction absorbed PAR from year one of MODIS data,
Remote Sens. Environ., 83, 214-231, 2002.
Naresh Kumar, M., Murthy, C. S., Sesha Sai, M. V. R., and Roy, P. S.: On the
use of Standardized Precipitation Index (SPI) for drought intensity
assessment, Meteorol. Appl., 16, 381–389, 2009.
Palmer, W.: Meteorological drought, U.s.department of Commerce Weather Bureau
Research Paper, Department of Commerce Weather Bureau Research Paper 45,
58 pp., 1965.
Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E. H., Poesen,
J., and Alewell, C.: Modelling the effect of support practices (P-factor) on
the reduction of soil erosion by water at European scale, Environ. Sci. Policy, 51, 23–34, 2015.
Petrone, K. C., Hughes, J. D., Van Niel, T. G., and Silberstein, R. P.:
Streamflow decline in southwestern Australia, 1950–2008, Geophys. Res.
Lett., 37, L11401, https://doi.org/10.1029/2010GL043102, 2010.
Raziei, T., Saghafian, B., Paulo, A. A., Pereira, L. S., and Bordi, I.:
Spatial patterns and temporal variability of drought in Western Iran, Water Resour. Manag., 23, 439–455, 2009.
Saft, M., Western, A. W., Zhang, L., Peel, M. C., and Potter, N. J.: The
influence of multiyear drought on the annual rainfall-runoff relationship:
An Australian perspective, Water Resour. Res., 51, 2444–2463, 2015.
Savenije, H. H.: The runoff coefficient as the key to moisture recycling,
J. Hydrol., 176, 219–225, 1996.
Sheffield, J., Goteti, G., Wen, F., and Wood, E. F.: A simulated soil
moisture based drought analysis for the United States, J. Geophys.
Res.-Atmos., 109, D24108, https://doi.org/10.1029/2004JD005182, 2004.
Shi, C., Zhou, Y., Fan, X., and Shao, W.: A study on the annual runoff
change and its relationship with water and soil conservation practices and
climate change in the middle Yellow River basin, Catena, 100, 31–41, 2013.
Shiau, J. T.: Fitting Drought Duration and Severity with Two-Dimensional
Copulas, Water Resour. Manag., 20, 795–815, 2006.
Sun, S., Barraud, S., Branger, F., Braud, I., and Castebrunet, H.: Urban
hydrologic trend analysis based on rainfall and runoff data analysis and
conceptual model calibration, Hydrol. Process., 31, 1349–1359, 2016.
Tian, H., Melillo, J. M., Kicklighter, D. W., Mcguire, A. D., Helfrich, J.
V. K., Moore, B., and Vörösmarty, C. J.: Effect of interannual
climate variability on carbon storage in Amazonian ecosystems, Nature, 396,
664–667, 1998.
Wang, S., Fu, B., Piao, S., Lü, Y., Ciais, P., Feng, X., and Wang, Y.:
Reduced sediment transport in the Yellow River due to anthropogenic changes,
Nat. Geosci., 9, 38–41, 2015.
Wang, X.-J., Cai, H.-J., Zhang, X., Wang, J., and Zhai, J.: Analysis of
changing characteristics and tendency of runoff and sediment transport in
Huangfuchuan River watershed, Res. Soil Water Conserv., 16, 222–226, 2009.
Wang, Z.-J., Jiao, J.-Y., Su, Y., and Chen, Y.: The efficiency of
large-scale afforestation with fish-scale pits for revegetation and soil
erosion control in the steppe zone on the hill-gully Loess Plateau, Catena,
115, 159–167, 2014.
Wilhite, D. A.: Drought as a natural hazard: Concepts and definitions,
Drought A Global Assessment, 1, 3–18, 2000.
Xia, Y., Ek, M. B., Peters-Lidard, C. D., Mocko, D., Svoboda, M., Sheffield,
J., and Wood, E. F.: Application of USDM statistics in NLDAS-2: Optimal
blended NLDAS drought index over the continental United States, J.
Geophys. Res.-Atmos., 119, 2947–2965, 2014.
Yan, H., Wang, S. Q., Wang, J. B., Lu, H. Q., Guo, A. H., Zhu, Z. C., Myneni,
R. B., and Shugart, H. H.: Assessing spatiotemporal
variation of drought in
China and its impact on agriculture during 1982–2011 by using PDSI indices
and agriculture drought survey data, J. Geophys. Res.-Atmos., 121,
2283–2298, 2016.
Zhang, X., Zhang, L., Zhao, J., Rustomji, P., and Hairsine, P.: Responses of
streamflow to changes in climate and land use/cover in the Loess Plateau,
China, Water Resour. Res., 44, W00A07, https://doi.org/10.1029/2007WR006711, 2008.
Zheng, H., Li, Y., Robinson, B. E., Liu, G., Ma, D., Wang, F., Lu, F.,
Ouyang, Z., and Daily, G. C.: Using ecosystem service trade-offs to inform
water conservation policies and management practices, Front. Ecol.
Environ., 14, 527–532, 2016.
Zheng, H. X., Zhang, L., Zhu, R. R., Liu, C. M., Sato, Y., and Fukushima,
Y.: Responses of streamflow to climate and land surface change in the
headwaters of the Yellow River Basin, Water Resour. Res., 45, 641–648,
2009.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais,
P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E.,
Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S.,
Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang,
X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the
Earth and its drivers, Nature Climate Change, 6, 791–795, https://doi.org/10.1038/nclimate3004, 2016.