Articles | Volume 22, issue 2
https://doi.org/10.5194/hess-22-1615-2018
https://doi.org/10.5194/hess-22-1615-2018
Research article
 | 
01 Mar 2018
Research article |  | 01 Mar 2018

A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

Andrew Schepen, Tongtiegang Zhao, Quan J. Wang, and David E. Robertson

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (05 Oct 2017) by Andy Wood
AR by Andrew Schepen on behalf of the Authors (26 Oct 2017)
ED: Publish as is (21 Dec 2017) by Andy Wood
AR by Andrew Schepen on behalf of the Authors (15 Jan 2018)
Download
Short summary
Rainfall forecasts from dynamical global climate models (GCMs) require post-processing before use in hydrological models. Existing methods generally lack the sophistication to achieve calibrated forecasts of both daily amounts and seasonal accumulated totals. We develop a new statistical method to post-process Australian GCM rainfall forecasts for 12 perennial and ephemeral catchments. Our method produces reliable forecasts and outperforms the most commonly used statistical method.