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Abstract. Rainfall forecasts are an integral part of hy-
drological forecasting systems at sub-seasonal to seasonal
timescales. In seasonal forecasting, global climate mod-
els (GCMs) are now the go-to source for rainfall forecasts.
For hydrological applications however, GCM forecasts are
often biased and unreliable in uncertainty spread, and cali-
bration is therefore required before use. There are sophisti-
cated statistical techniques for calibrating monthly and sea-
sonal aggregations of the forecasts. However, calibration
of seasonal forecasts at the daily time step typically uses
very simple statistical methods or climate analogue methods.
These methods generally lack the sophistication to achieve
unbiased, reliable and coherent forecasts of daily amounts
and seasonal accumulated totals. In this study, we propose
and evaluate a Rainfall Post-Processing method for Seasonal
forecasts (RPP-S), which is based on the Bayesian joint prob-
ability modelling approach for calibrating daily forecasts
and the Schaake Shuffle for connecting the daily ensem-
ble members of different lead times. We apply the method
to post-process ACCESS-S forecasts for 12 perennial and
ephemeral catchments across Australia and for 12 initiali-
sation dates. RPP-S significantly reduces bias in raw fore-
casts and improves both skill and reliability. RPP-S fore-
casts are also more skilful and reliable than forecasts derived
from ACCESS-S forecasts that have been post-processed us-
ing quantile mapping, especially for monthly and seasonal
accumulations. Several opportunities to improve the robust-
ness and skill of RPP-S are identified. The new RPP-S post-
processed forecasts will be used in ensemble sub-seasonal to
seasonal streamflow applications.

1 Introduction

Rainfall forecasts are an integral part of hydrological fore-
casting systems at sub-seasonal to seasonal timescales (Ben-
nett et al., 2016; Crochemore et al., 2017; Wang et al., 2011).
Inclusion of climate information in seasonal streamflow fore-
casts enhances streamflow predictability (Wood et al., 2016).
One strategy for integrating climate information into hydro-
logical models is to conditionally resample historical rainfall
(e.g. Beckers et al., 2016; Wang et al., 2011). An alternative
approach is to use rainfall forecasts from dynamical climate
models.

On one hand, ensemble rainfall forecasts from GCMs
(global climate models) are attractive for hydrological pre-
diction in that they forecast multiple seasons ahead and have
a well-established spatial and temporal forecast structure. On
the other hand, a major issue with GCM forecasts at sub-
seasonal to seasonal timescales is that the forecasts are often
biased and lacking in predictability of local climate (e.g. Kim
et al., 2012; Tian et al., 2017). It is therefore necessary to
post-process GCM rainfall forecasts using statistical or dy-
namical methods before they can be used in hydrological
models (Yuan et al., 2015).

Several conceptually simple statistical correction meth-
ods are used for directly post-processing daily GCM rain-
fall forecasts including: additive bias correction, multiplica-
tive bias correction and quantile mapping (Ines and Hansen,
2006). Crochemore et al. (2016), for example, recently evalu-
ated linear scaling and quantile mapping for post-processing
ECMWF System 4 rainfall forecasts in France. Quantile
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mapping adjusts forecast means and ensemble spread, but it
is not a full calibration method because it does not account
for the correlation between forecasts and observations (Zhao
et al., 2017). It is useful for bias correction of climate change
projections where a full statistical calibration is inappropri-
ate (Teutschbein and Seibert, 2012). Since additive and mul-
tiplicative bias correction and quantile mapping methods do
not account for intrinsic GCM skill they are ineffective to use
as post-processing tools when GCM forecasts are unskilful.

Post-processing methods that take model skill into account
typically fall under the model output statistics (MOS; Glahn
and Lowry, 1972) banner. MOS type approaches are well es-
tablished in the weather forecasting community for short-
term forecasting and modern variants are normally proba-
bilistic. Wilks and Hamill (2007), for example, studied en-
semble MOS approaches for post-processing global forecast
system (GFS) forecasts of rainfall and temperature up to
14 days ahead.

MOS methods can also be thought of as full calibration
methods. In this regard, several Bayesian calibration ap-
proaches are known to be effective at post-processing GCM
rainfall totals aggregated to monthly and seasonal timescales
(Hawthorne et al., 2013; Luo et al., 2007; Schepen et al.,
2014). However, it is apparent that full calibration methods
are not normally applied to the post-processing of daily GCM
forecasts of rainfall in the sub-seasonal to seasonal period.

That said, some studies have explored more sophisti-
cated methods for post-processing daily rainfall forecasts
from GCMs. An example of such a study is that under-
taken by Pineda and Willems (2016), which applied a non-
homogenous hidden Markov model (NHHMM) to fore-
casts in the northwestern region of South America. Their
method extracted information from GCM forecasts of rain-
fall fields and sea surface temperatures. The study also built
on the NHHMM method originally developed by Robertson
et al. (2004) for prediction of rainfall occurrence in Brazil.
In Australia, Shao and Li (2013) and Charles et al. (2013)
applied an analogue downscaling method (Timbal and McA-
vaney, 2001) to produce downscaled daily rainfall forecasts
from POAMA (the Predictive Ocean Atmosphere Model for
Australia). The NHHMM and analogue methods are not
straightforward to apply operationally, as they require the
identification of optimal climate predictors in different cli-
matic regions. The methods do not, by design, lead to fore-
casts that are always reliable in ensemble spread and at least
not worse than climatology forecasts.

Statistical post-processing of daily rainfall forecasts is a
formidable challenge, perhaps explaining the lack of so-
phisticated methods. Barriers include: short GCM hindcast
records, a high prevalence of zero rainfall amounts, seasonal
variations in rainfall patterns, and intrinsically low GCM
skill. Amplifying the challenge is that GCM skill decays
rapidly as the lead time increases. Lavers et al. (2009), for
example, examined temperature and rainfall forecasts using
DEMETER and CFS GCMs, and found that, in an idealised

scenario, skill in the first 30 days is primarily attributable
to skill in the first 15 days and much less to skill over the
next 15 days. Post-processing methods should therefore be
designed to capture as much skill as possible in the first fort-
night and take GCM skill into account when post-processing
forecasts further ahead.

In this study, we seek to develop a new, more direct daily
rainfall post-processing method that operates solely on rain-
fall output from GCMs and provides a full forecast calibra-
tion taking GCM skill into account. We build a new sub-
seasonal to seasonal rainfall post-processor, which has some
similarities to the rainfall forecast post-processor (RPP)
developed by Robertson et al. (2013b) and Shrestha et
al. (2015) for post-processing numerical weather prediction
(NWP) forecasts for short-term streamflow forecasting. The
new system is hereafter referred to as RPP-S, which stands
for rainfall forecast post-processor – seasonal.

The proposed RPP-S method applies the Bayesian joint
probability (BJP) modelling approach to post-process daily
GCM forecasts of rainfall. BJP has never been used in this
situation before and it is therefore important to fully evaluate
the merits of BJP as a component of a daily forecast post-
processing system. As GCMs can produce ensemble fore-
casts for over 100 days ahead, RPP-S is developed to gen-
erate daily rainfall amounts that aggregate to intra-seasonal
and seasonal totals. To this end, the Schaake Shuffle (Clark
et al., 2004) is also included as a component of RPP-S.

We apply RPP-S to post-process raw catchment rainfall
forecasts from ACCESS-S, Australia’s new seasonal fore-
casting GCM. We evaluate bias, reliability and skill for
12 ephemeral and perennial catchments across Australia.
RPP-S catchment rainfall forecasts are compared to catch-
ment rainfall forecasts derived from the Bureau of Meteorol-
ogy’s bias-corrected product for ACCESS-S. Opportunities
to develop the method further are discussed.

2 Data and catchments

2.1 ACCESS-S rainfall forecasts

Raw, gridded GCM rainfall forecasts are obtained from the
Bureau of Meteorology (BOM’s) new ACCESS-S forecast-
ing system. Raw catchment rainfall forecasts are derived
through a process of area-weighted averaging of the ensem-
ble mean.

ACCESS-S is a customised version of the UK Met Of-
fice’s seasonal forecasting system. It contains a fully cou-
pled model representing the interactions among the Earth’s
atmosphere, oceans and land surface, including sea ice. The
current horizontal spatial resolution of the ACCESS-S atmo-
spheric model is approximately 60 km in the mid-latitudes.
Full details of the current system are provided by Hudson et
al. (2017).
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Figure 1. Map of Australian climate zones overlaid by gauging locations plotted as red triangles and labelled with catchment ID. Details of
the catchments, including size, are presented in Table 1.

Available ACCESS-S hindcasts are initialised at midnight
UTC on days 1 and 25 of each month (additional start dates
will become available in the future). A burst ensemble com-
prising 11 ensemble members is generated. Hindcasts are
available for the period 1990–2012 (23 years). A longer hind-
cast set is not possible because of a lack of suitable initial
conditions. The next version of ACCESS-S will be delivered
with more sets of initial conditions and longer hindcasts.

2.2 Observed rainfall

Observed rainfall is derived from the Australian Bureau of
Meteorology’s 5km daily rainfall analysis (AWAP). We make
use of AWAP data from 1950 onwards. Catchment rainfall is
derived through a process of area-weighted averaging.

An important note on time zones: Australian rainfall is
recorded as 24 h totals to 09:00 LT (local time). Conse-
quently, AWAP data are not perfectly synchronised with the
ACCESS-S forecasts, which are initialised at midnight UTC.
The asynchronism is compounded by time zone differences
and daylight savings.

We align the GCM data and observed data as best we
can. For east coast locations, an ACCESS-S forecast over-
laps with the following day’s AWAP rainfall analysis with
a discrepancy of 1–2 h. The time discrepancy for west coast
locations is approximately 2 h more.

2.3 Catchments

Twelve perennial and ephemeral catchments spread over
Australia are selected for application and evaluation. Catch-

ment information including name, gauge ID, regional loca-
tion and size are shown in Table 1. Catchment locations and
climate zones are mapped in Fig. 1. The catchments reside in
highly distinct climate zones and vary markedly in size from
100 to 119 034 km2. Evaluation across climate zones and for
varying catchment sizes helps to comprehensively evaluate
the effectiveness of the post-processing methods.

3 Methods

3.1 Bayesian joint probability models

Our post-processing method embeds the BJP modelling ap-
proach, which was originally designed for forecasting sea-
sonal streamflow totals (Robertson et al., 2013a; Wang and
Robertson, 2011; Wang et al., 2009). BJP has since been ap-
plied to calibrate hourly rainfall forecasts (Robertson et al.,
2013b; Shrestha et al., 2015) and seasonal rainfall forecasts
(Hawthorne et al., 2013; Khan et al., 2015; Peng et al., 2014;
Schepen and Wang, 2014; Schepen et al., 2014). BJP was
most recently adapted for sub-seasonal to seasonal stream-
flow forecasting (Schepen et al., 2016; Zhao et al., 2016).

BJP formulates a joint probability distribution to char-
acterise the relationship between forecast ensemble means
(predictors) and corresponding observations (predictands).
The joint distribution is modelled as a bivariate normal dis-
tribution after transformation of the marginal distributions.
Data transformation is handled using the flexible log−sinh
transformation (Wang et al., 2012). The log−sinh transfor-
mation transforms y by
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Table 1. Catchment ID, catchment name (river and gauging location), gauge ID, region and catchment size.

ID Catchment name Gauge ID Region Area
(km2)

BRP Barron River above Picnic Crossing 110003A Queensland 228
BRS Burdekin River above Sellheim 120002 Queensland 36 260
DIB Diamantina River at Birdsville A0020101 Queensland 119 034
NMN Namoi River above North Cuerindi 419005 New South Wales 2532
WLC Wollomombi River above Coninside 206014 New South Wales 377
CTG Cotter River above Gingera 410730 Murray-Darling Basin 148
MRB Murray River above Biggara 401012 Murray-Darling Basin 1165
DVC Davey River D/S Crossing River 473 Tasmania 698
HLG Hellyer River above Guildford Junction 61 Tasmania 100
DRT Deep River above Teds Pool 606001 Western Australia 474
HRD Harvey River above Dingo Road 613002 Western Australia 148
ORO Ord River at Old Ord Homestead 809316 Northern Australia 19 513

f (y)= β−1 ln(sinh(α+βy), (1)

where α and β are transformation parameters. A predictor x
is transformed to g. Likewise, a predictand y is transformed
to h. The relationship between g and h is formulated by a
bivariate normal distribution:[
g

h

]
∼N(µ,6), (2)

where

µ=

[
µg
µh

]
(3)

is the vector of means and

6 =

[
σ 2
g ρghσhσg

ρghσhσg σ 2
h

]
(4)

is the covariance matrix.
In forecasting mode, a BJP model is conditioned on new

predictor values. For a particular parameter set, θ , and new
transformed predictor value gnew,

hnew|gnew,θ ∼N

(
µh+ ρgh

σh

σg

(
gnew−µg

)
,σ 2
h

(
1− ρ2

gh

))
. (5)

3.2 Daily rainfall post-processing

We note some specifics of the BJP implementation used in
this study. To allow the use of the continuous bivariate nor-
mal distribution, values of zero rainfall are treated as cen-
sored, meaning the true value is assumed to be less than or
equal to zero. To simplify the inference of model parameters,
data rescaling is used within the modelling process. To pre-
vent undesirable extrapolation effects in forecasting mode,
predictor values are limited to twice the maximum predictor
value used to fit the model (future research will address this
limitation).

Model parameters may be poorly estimated when there
are insufficient non-zero data values used in data inference.
We find that in very dry catchments, certain days of the year
may have forecasts or observations with no non-zero values
at all. In such cases, inference is not possible. To overcome
this problem, predictor and predictand data sets are created
by pooling data for nearby days and for multiple GCM ini-
tialisation dates. We choose to pool data within an 11-day
sliding window to be consistent with the Bureau of Meteo-
rology’s bias correction scheme (see Sect. 3.4); for the first
5 days the window is fixed to the first 11 days. However,
the RPP-S method places no restriction on the configuration,
and alternative configurations are discussed in Sect. 5. We
choose to pool data for ACCESS-S hindcasts initialised on
day 1 of the month and day 25 of the month prior. Predictor
and predictand data are subsequently paired according to the
number of days since forecast initialisation. Consider, for ex-
ample, post-processing of forecasts initialised on 1 February.
Days 5–15 from the 1 February run and days 5–15 from the
25 January run are used to fit a model that is used to post-
process forecasts for 10 February.

We note that pooled data are not completely independent,
meaning there is potential to underestimate parameter uncer-
tainty using BJP. Nevertheless, we expect the effect to be lim-
ited by the weak predictor–predictand relationships and weak
persistence in daily rainfall.

We now describe the model fitting and forecasting steps.
After pooling the data, model fitting proceeds as follows:

1. Rescale predictor and predictand data so that each series
ranges within [0, 5].

2. Estimate the log−sinh transformation parameters for
the predictors using the maximum a posteriori (MAP)
estimation.

3. Estimate the log−sinh transformation parameters for
the predictands in the same way.
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Figure 2. Example RPP-S rainfall forecast for the Burdekin River at Sellheim, initialised on the 1 October 2001 and forecasting 100 days
ahead. Forecasts of daily amounts are shown in (a) and forecasts of accumulated totals are shown in (b). Dark blue is the forecast [0.25, 0.75]
quantile range; medium blue is the forecast [0.10, 0.90] quantile range; and light blue is the forecast [0.05, 0.95] quantile range. Grey lines
are the climatological reference forecast [0.05, 0.95] quantile range. The black line is the climatological reference forecast median. The red
line is the observation.

4. Apply the transformations to normalise the predictor
and predictand data.

5. Apply the transformations to transform the predictor
and predictand censoring thresholds.

6. Sample parameter sets representing the posterior distri-
bution of the bivariate normal distribution parameters
using Markov chain Monte Carlo sampling, the trans-
formed data and transformed censoring thresholds.

Forecasting proceeds as follows:

1. Transform the predictor value using the log−sinh trans-
formation for predictors.

2. Sample one hnew for each parameter set.

3. Back-transform the ensemble members using the trans-
formation for predictands.

4. Rescale the ensemble members to the original space
(opposite of step 1 in model fitting).

5. Set negative values to zero.

3.3 Forming ensemble time-series forecasts

BJP forecast ensemble members are initially random and are
not linked across days. To deal with this problem, we apply
the Schaake Shuffle (Clark et al., 2004), which uses historical
data to link ensemble members and create sequences with re-
alistic temporal patterns. The Schaake Shuffle works by im-
posing the rank correlation of observations on the forecast
ensembles, using the trajectories of historical observations
as a dependence template. Several variations on the Schaake

Shuffle exist and choices can be made about how to construct
a temporal dependence template. Schefzik (2016), for exam-
ple, propose selecting historical observations using a simi-
larity criterion. The steps of the Schaake Shuffle as imple-
mented in this study are as follows:

1. Select a large number of years from the past with the
same month and day as the forecast initialisation date
(excluding the date of the current forecast).

2. Construct a two-dimensional dependence template by
incrementing the dates by one day for each day ahead
to be forecast.

3. Extract the observed data for each date in the depen-
dence template.

4. For each day, reorder ensemble members according to
the rank of the historical data for that day (e.g. if the sec-
ond year selected has the smallest observed value, place
the smallest ensemble member in second position).

5. Repeat steps (2)–(4) for blocks of ensemble members
until the full ensemble has been shuffled.

After applying the Schaake Shuffle to all ensemble members
across all lead times, the forecasts can be considered ensem-
ble time-series forecasts.

An example RPP-S forecast for the BRS catchment is
shown in Fig. 2. The top panel is the forecast of daily
amounts and bottom panel is the forecast of accumulated to-
tals. Hereafter, a daily amount is taken to mean a 24 h rain-
fall total on any given day. An accumulated total is the sum
of daily rainfall amounts over a number of days. In this ex-
ample, the forecast correctly predicts a dry beginning to the
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forecast period. The quantile ranges of the daily forecasts are
reasonably consistent with the observed values. The accu-
mulated forecast is somewhat narrower than the climatology
reference forecast at monthly and seasonal timescales and the
forecast is predicting a seasonal rainfall total less than the cli-
matological median.

3.4 Verification

We use RPP-S to post-process all available ACCESS-S
forecasts initialised on day 1 of each month for 100 days
ahead (the sub-seasonal to seasonal forecast period). For wa-
ter resources management, whilst it is important that daily
amounts are realistic, it is vital that the accumulated totals
are as reliable and as skilful as possible. Forecasts are veri-
fied against both daily amounts and accumulated totals.

RPP-S forecasts are generated using leave-one-year-out
cross-validation. RPP-S forecasts are compared with the
BOM’s QM forecasts (see Sect. 3.5), which are also gener-
ated using leave-one-year-out cross-validation.

Bias is recognised as the correspondence between the
mean of forecasts and the mean of observations. Bias is vi-
sually assessed by plotting the bias for a set of events against
the average forecast for the same set of events. We calculate
bias as the mean error

BIAS :=
1
T

T∑
t=1

(
yfcst,t − yobs,t

)
, (6)

where yfcst,t is the forecast ensemble mean for event t and
yobs,t is the corresponding observation. Bias is calculated
separately for each catchment, initialisation date and day.
The bias is calculated across 23 events. For a given lead time,
we also calculate the average absolute bias (AB) across all
12 catchments and 12 initialisation dates. Notwithstanding
that the bias is scale dependent, the average absolute bias is
used to compare the magnitude of biases for different model
forecasts and for different lead times.

Reliability is the statistical consistency of forecasts and
observations – a reliable forecasting system will accurately
estimate the likelihood of an event. Reliability is checked by
analysing the forecast probability integral transforms (PITs)
of rainfall observations. The PIT for a forecast-observation
pair is defined by π =F(yobs), where F is the forecast cumu-
lative distribution function (CDF). In the case that yobs= 0,
a pseudo-PIT value is sampled from a uniform distribution
with a range [0, π ] (Wang and Robertson, 2011). If a fore-
casting system is reliable, π follows a standard uniform dis-
tribution. Reliability can be visually examined by plotting the
set of πt (t = 1, 2, . . . , T ) with the corresponding theoretical
quantile of the uniform distribution using the PIT uniform
probability plot (or simply PIT plot). A perfectly reliable
forecast follows the 1 : 1 line. In this study, we do not plot
individual PIT diagrams. Instead, reliability is summarised
using the α-index (Renard et al., 2010)

α = 1.0−
2
n

n∑
t=1

∣∣∣∣π∗t − t

n+ 1

∣∣∣∣ , (7)

where π∗t is the sorted πt in increasing order. The α-index
represents the total deviation of π∗t from the corresponding
uniform quantile (i.e. the tendency to deviate from the 1 : 1
line in PIT diagrams). The α-index ranges from 0 (worst re-
liability) to 1 (perfect reliability).

Forecast skill is evaluated using the continuous ranked
probability score (CRPS; Matheson and Winkler, 1976). The
CRPS for a given forecast and observation is defined as:

CRPS=
∫ [

F(y)−H (y− yobs)
]2dy, (8)

where y is the forecast variable; yobs is the observed value;
F is the forecast CDF; and H is the Heaviside step function,
which equals 0 if y <yobs and equals 1 otherwise. Model
forecasts are compared to reference forecasts by calculating
skill scores:

CRPS skill score=
CRPSref−CRPS

CRPSref
× 100(%), (9)

where the overbar indicates averaging across a set of events.
Reference forecasts for each day are produced using a BJP
model fitted to observed data within an 11-day window. The
Schaake Shuffle is also applied to instil correct temporal
characteristics into the reference forecasts. The CRPS skill
score is positively oriented (whereas CRPS is negatively ori-
ented). As a percentage, a maximum score of 100 is indica-
tive of perfectly sharp and accurate forecasts. A score of 0
indicates no overall improvement compared to the reference
forecast. A negative score indicates poor quality forecasts in
the sense that the naïve reference forecast is more skilful.

3.5 Comparison with forecasts post-processed using
quantile mapping

We compare RPP-S forecasts with forecasts that have been
post-processed at the ACCESS-S grid scale using quantile
mapping (QM). The gridded QM forecasts are supplied by
the Bureau of Meteorology and we derive the catchment fore-
casts through area-weighting. QM matches the statistical dis-
tribution of past forecasts to the distribution of observations
to reduce errors in the forecast mean and improve forecast
spread (Crochemore et al., 2016; Zhao et al., 2017). A post-
processed forecast value is obtained by first working out the
quantile fraction (cumulative probability) of the new forecast
using the CDF of past forecasts, then inverting the quantile
fraction using the CDF of observations. The Bureau of Me-
teorology applied a separate quantile mapping model to each
day. The CDF of the past forecasts is formed using 11 en-
semble members in an 11-day sliding window and 22 years
of data in leave-one-year-out cross-validation. The statistical
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Figure 3. Bias in daily rainfall forecasts for raw, QM and RPP forecasts (rows) and selected days ahead/lead times (columns). The scatterplots
are of forecast mean over all events (x axis) versus bias (y axis). There is one blue circle for each catchment and forecast initialisation time.
The average absolute bias (AB) is printed in the top left corner.

distribution of the observations is formed using the obser-
vations in an 11-day sliding window and 22 years of data.
For the first 5 days the window is fixed to the first 11 days.
If the raw forecast ensemble member is above the previously
known maximum forecast value, then the forecast value is in-
stead linearly rescaled by omax/fmax where omax is the maxi-
mum observed value and fmax is the maximum past forecast
value.

4 Results

4.1 Bias in forecasts of daily amounts

Biases in forecasts of daily amounts are analysed for selected
days using Fig. 3. Each circle represents the bias for a catch-
ment and initialisation date. The bias is plotted against the
average forecast (averaged over all events). As expected, raw
forecasts are more biased than post-processed forecasts. The
AB for raw forecasts ranges, for the examples given, from ap-
proximately 1.3 to 1.5 mm. The bias for raw forecasts tends
to be negative, indicating that ACCESS-S has a propensity to
underestimate daily rainfall amounts.

QM and RPP-S are similarly effective at reducing biases
in daily amounts and both substantially reduce bias. After
post-processing, some residual bias remains for any single
day since the bias is corrected using pooled observations. The
AB for QM forecasts ranges from roughly 0.8 to 1.1 mm. The
AB for RPP-S forecasts ranges from about 0.7 to 1.1 mm.
The differences in bias between QM and RPP-S for daily
amounts are evidently insignificant. Visual examination of
the QM and RPP-S scatter plots shows no wholesale differ-
ence in bias between the QM and RPP-S forecasts of daily
amounts.

4.2 Bias in forecasts of accumulated totals

Biases in forecasts of accumulated totals are analysed using
Fig. 4 after rescaling to mm day−1. As with the results for
daily amounts, the raw forecasts are more biased than post-
processed forecasts and the bias tends to be negative. Visual
examination of the scatterplots for the raw forecasts reveals,
particularly for days 30, 60 and 90, that for some catchments
and initialisation times, the raw forecasts are unbiased for
sub-seasonal to seasonal rainfall totals. This suggests that
the GCM performs well in some regions. Nevertheless, it
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Figure 4. As for Fig. 3, except for accumulated totals.

Figure 5. α-index of reliability for forecast daily rainfall amounts (a) and forecast accumulated rainfall totals (b). Results for four types of
forecasts are presented: raw, QM, RPP-S before Schaake Shuffle (pre SS) and RPP-S forecasts after the Schaake Shuffle. Higher α-index
indicates better reliability. The box plots display the median as a black line. The box spans the interquartile range and the whiskers span the
[0.1, 0.9] quantile range.

is evident that post-processing is necessary before using the
ACCESS-S forecasts in hydrological forecasting.

In contrast to the results for daily amounts, QM and RPP-
S have differing efficacy for reducing biases in accumulated
totals, although both still reduce bias substantially. Visual ex-
amination of the QM and RPP-S scatter plots shows that the
RPP-S points fit more tightly around the zero line than the
QM points. The better ability of the RPP-S forecasts to re-
duce biases is reflected in the AB; for example, for day 90
the AB for QM forecasts is 0.28 mm day−1 and for RPP-S

forecasts the AB is 0.13 mm day−1 (cf. the AB for raw fore-
casts of 0.93 mm day−1).

4.3 Reliability

Reliability is analysed using Fig. 5, which presents box plots
of α-index for forecasts of daily rainfall amounts (left panel)
and accumulated totals (right panel). The box plots describe
the distribution of α-index values for the same cases as we
evaluated bias in Sect. 4.2 except that we omit the day 1 re-
sult from the accumulated totals analysis. Results are pre-
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Figure 6. Scatterplots of CRPS skill scores for daily amounts (a) and accumulated totals (b). Results for QM are on the horizontal axis and
results for RPP-S are on the vertical axis. Higher CRPS skills scores reflect better forecast performance. Red text preceded by a “+” symbol
indicates the number of points plotted outside the axis limits in the quadrant nearest the text.

sented for RPP-S before and after the Schaake Shuffle has
been applied.

Raw forecasts have the poorest reliability for both daily
amounts and accumulated totals. RPP-S has better relia-
bility overall than QM for daily amounts. It is noted that
the Schaake Shuffle has no effect on forecast reliability for
daily amounts since it is plainly a reordering of already ran-
domised ensemble members.

RPP-S forecasts are more reliable than raw forecasts
and QM forecasts for accumulated totals. The RPP-S fore-
casts become significantly more reliable after applying the
Schaake Shuffle and linking the ensemble members so that
they have realistic temporal patterns (discussed further in
Sect. 5).

4.4 Skill scores – overall performance

Skill scores for QM forecasts are plotted against skill scores
for RPP-S forecasts in a scatterplot (Fig. 6). Skill scores for
daily amounts are plotted in the left panel; skill scores for ac-
cumulated totals are plotted in the right panel. Accumulated
totals are for two days or more. RPP-S forecasts and QM
forecasts tend to be positively skilful for the same cases, al-
though there is considerable variation in the magnitude of the
skill scores. A striking feature of the scatterplots is that when
QM forecasts are negatively skilful, the RPP-S forecasts tend
to be neutrally skilful, particularly for the accumulated to-
tals. It is evident that skill for daily amounts can be sharply
negative. The skill for daily amounts can be difficult to es-
timate because of the small sample size and the inability to
accurately forecast daily amounts beyond about 10 days. In
contrast, the skill for accumulated totals is easier to estimate
as it benefits from temporal averaging and the accumulation
of skill from earlier periods.

4.5 Skill scores – detailed evaluation

Skill scores are partitioned according to catchment, lead time
and initialisation date in Figs. 7–9, respectively. Since fore-
casts of accumulated totals are more informative for water
resources management and forecast skill is generally known
to be limited beyond the first week or two, we focus the re-
mainder of the results on accumulated totals.

CRPS skill scores are plotted for each catchment in Fig. 7.
Skill scores for RPP-S forecasts are vastly positive except
for, most noticeably, some cases in ORO, NMN and HLG.
Negative skill can be caused by insufficient information to
fit a stable RPP-S model and can also be an artefact of cross-
validation in the presence of extreme events. In several catch-
ments, such as WLC and DRT, RPP-S forecasts are seen
to significantly outperform QM forecasts by virtue of QM
forecasts frequently being significantly negatively skilful and
RPP-S forecasts rarely being negatively skilful. In several
catchments, including BRP and CTG, both QM and RPP-
S skill scores are predominantly positive, demonstrating that
simple bias correction techniques can appear sufficient in lo-
calised studies.

CRPS skill scores are plotted for groups of lead times in
Fig. 8. For days 2–10, the RPP-S and QM forecasts are sim-
ilarly skilful and vastly positively skilful. There are some in-
stances of negative skill, which are likely to be artefacts of
cross-validation. For days 11–19 and 20–28, the positive re-
lationship between QM and RPP-S forecasts gradually weak-
ens. From day 29 onwards, the QM forecasts become neg-
atively skilful in many instances whereas the RPP-S skill
scores tend to level out around zero and are rarely nega-
tive to the same degree. For very long lead times, QM skill
scores can be higher than RPP-S skill scores, although over-
all the skill scores for accumulated seasonal totals are quite
low (< 30 %). Both these factors signal further improvement
in the RPP-S forecasts is possible.
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Figure 7. Scatterplots of CRPS skill scores for accumulated totals for each catchment. The scatterplots plot QM skill scores (horizontal axis)
against RPP-S skill scores (vertical axis). Each scatterplot combines results for all initialisation dates and all lead times.

CRPS skill scores are plotted for each initialisation date in
Fig. 9. Forecasts initialised from 1 September to 1 Novem-
ber have the highest proportion of cases where both QM
and RPP-S forecasts are positively skilful, suggesting that
ACCESS-S produces its best sub-seasonal to seasonal fore-
casts during the Austral spring and summer.

5 Discussion

We demonstrate that RPP-S is able to improve daily GCM
rainfall forecasts by: reducing bias (Figs. 3–4); improving re-
liability (Fig. 5); and ensuring that forecasts are typically at
least as skilful as a climatological reference forecast (Figs. 6–
9). RPP-S forecasts are comprehensively compared with QM
forecasts. RPP-S forecasts outperform QM forecasts, primar-
ily because QM does not take into account the correlation
between forecasts and observations nor corrects for autocor-
relation problems. Since RPP-S is built upon the BJP mod-
elling approach, it explicitly models the correlation between
the forecasts and observations, and thus takes into account
model skill in the calibration. Our results add to the find-
ings of Zhao et al. (2017) who studied the post-processing of
monthly rainfall forecasts from POAMA (Australia’s GCM
preceding ACCESS-S). While Zhao et al. (2017) demon-

strated that QM is very effective for bias correction, they did
not consider accumulated totals. In our study, we find that the
RPP-S forecasts are less biased and more reliable than QM
forecasts for accumulated totals.

Figure 5 illustrates the importance of the Schaake Shuffle
for producing reliable forecasts using RPP-S. If the forecasts
are not shuffled, then the forecasts of accumulated totals will
tend to be too narrow in terms of ensemble spread, making
the forecasts over-confident and less reliable. Related to this,
RPP-S forecasts are more reliable for daily amounts than
QM forecasts, yet QM and RPP-S forecasts do not exhibit
any obvious differences in the magnitude of biases (Fig. 3)
– evidence that the RPP-S forecasts have a more appropri-
ate ensemble spread, since the α-index integrates information
about forecast bias and ensemble spread.

We applied a consistent methodology to perennial and
ephemeral catchments and established BJP models sepa-
rately for each day, catchment and initialisation date. Al-
ternative configurations are also possible, for example, we
trialled establishing only six models by pooling data within
week 1, week 2, weeks 3–4, and subsequent 4 week peri-
ods (not shown). The data in week 1 were used to fit model
BJP1, the data in week 2 were used to fit model BJP2, and
so on. Fewer days were pooled close to the initialisation date
in an attempt to extract skill from the initial conditions and
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Figure 8. Scatterplots of CRPS skill scores for groups of days (lead times). The scatterplots plot QM skill scores (horizontal axis) against
RPP-S skill scores (vertical axis). Each scatterplot combines results for all initialisation dates and all catchments.

more days were pooled for longer lead times to better ap-
proximate the climatological distribution. We found signifi-
cant efficiency gains with little loss in performance, except
for dry catchments, where a small increase in the frequency
of negative skill scores occurred. Therefore, performance and
efficiency need to be considered when establishing RPP-S
models in new catchments.

The RPP-S method is sophisticated in that it is a full cal-
ibration approach, however, there are opportunities to im-
prove the methodology. By pooling the data for many days
in model parameter inference for example, it is assumed that
rainfall from one day to the next is independent, which is
an oversimplification. New inference methods that treat the
rainfall data as conditionally independent therefore ought to
be investigated. Future studies will seek to address the mat-
ters of independence and overlapping data in more sophisti-
cated ways.

We make use of ACCESS-S runs initialised on day 1 of the
month and day 25 of the previous month. These initialisation
dates are only 4–7 days apart and therefore the climatology
of daily rainfall is unlikely to change significantly over this
period of time. It is technically possible to establish an RPP-
S model using initialisation dates spanning several months. If

temporally distant initialisation dates are included in model
parameter inference, new strategies may be needed to ensure
that the effects of seasonality are minimised. One possible
approach is to standardise forecasts and observations prior
to fitting the BJP model. In this way, the model transforma-
tion and climatological parameters will be allowed to vary by
day of year. Such strategies for building more robust RPP-S
models and coincidentally minimising the effect of seasonal-
ity will be investigated in follow up work.

RPP-S and QM CRPS scores are calculated using ensem-
bles of different sizes and we consider the effect of ensemble
size on our results. When a forecasting system is perfectly
reliable, a larger ensemble should yield a better CRPS score
(Ferro et al., 2008). However, CRPS has a weakness in that
it discourages forecasting extremes (Fricker et al., 2013); in-
deed it is our experience that ensembles that are unbiased
but too narrow (like the QM forecasts) can score overly well
in terms of CRPS. Our position is that because the RPP-S
and QM forecasts are not similarly reliable, we are unable to
make meaningful adjustments to CRPS scores to allow for
the effect of ensemble size. In any case, we understand that
QM forecasts can be significantly negatively skilful and un-
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Figure 9. Scatterplots of CRPS skill scores for accumulated totals for each initialisation date. The scatterplots plot QM skill scores (horizontal
axis) against RPP-S skill scores (vertical axis). Each scatterplot combines results for all catchments and all lead times.

reliable, and small adjustments to the CRPS of QM forecasts
will not affect those conclusions.

RPP-S is designed to post-process forecasts of daily
amounts. An alternative strategy is to post-process accumu-
lated totals and subsequently disaggregate to daily amounts.
BJP models may be applied to post-process monthly and sea-
sonal totals, which are then disaggregated to daily timescales.
Future work will investigate the relative merits of direct daily
post-processing versus a seasonal calibration and disaggrega-
tion approach. This follow-up work is of particular interest as
our study has shown daily post-processing skill is limited be-
yond 10-15 days. It is not clear how much of the seasonal
forecasting skill is attributable to skill in the initial period
and how much of the skill is attributable to seasonal climate
signals in the GCM.

While our study has focused on rainfall, other variables are
important in hydrology. Temperature forecasts, for example,
are required in areas of snowmelt. Therefore, future research
will investigate the extension of the RPP-S ideas to include
other meteorological variables.

An alternative to statistical post-processing of GCM out-
puts is to run a regional climate model (RCM) to provide
much more localised information than a global GCM. A re-

view study by Xue et al. (2014) found that RCMs have lim-
ited downscaling ability for sub-seasonal to seasonal fore-
casts. In that regard, RCM outputs may also be statistically
post-processed, which may lead to better forecasts in some
regions. RCMs are suited to specialised studies and less
suited to post-processing operational GCM forecasts in sup-
port of national scale hydrological forecasting services.

6 Conclusion

We have developed a novel method for post-processing daily
rainfall amounts from seasonal forecasting GCMs. RPP-S
is a full calibration approach that makes use of the BJP
modelling approach to account for predictor–predictand skill
relationships in post-processing. Reliable forecasts of sub-
seasonal and seasonal accumulated totals are produced by
linking ensemble members together using the Schaake Shuf-
fle.

We applied RPP-S to 12 catchments across Australia in
diverse climate zones. The method is robust in terms of being
capable of post-processing forecasts in all cases, even in very
dry catchments.
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Compared to raw forecasts and QM post-processing
(which does not account for predictor–predictand skill rela-
tionships), RPP-S performs significantly better in terms of
correcting bias, reliability and skill. The only exception to
this conclusion is that QM and RPP-S are similarly effective
for correcting biases in daily amounts. RPP-S is particularly
effective at delivering reliable, skilful, monthly and seasonal
rainfall forecasts. Thus RPP-S forecasts are highly suitable
for feeding into hydrological models for seasonal streamflow
forecasting and other water resources management applica-
tions. Pooling multiple GCM runs and data for adjacent days
in model parameter inference is a practical measure that can
enable statistical post-processing across a range of perennial
and ephemeral streams. There are many avenues of research
that could significantly improve the robustness and perfor-
mance of RPP-S forecasts. In the future, more effort could be
devoted to applying RPP-S more widely and relating forecast
performance to catchment characteristics, therefore yielding
a better understanding of forecast bias, reliability and skill.
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