Articles | Volume 21, issue 2
https://doi.org/10.5194/hess-21-963-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-963-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Characteristics of rainfall events in regional climate model simulations for the Czech Republic
Vojtěch Svoboda
CORRESPONDING AUTHOR
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 – Suchdol, 165 21, Czech Republic
Institute of Atmospheric Physics, Czech Academy of Sciences, Boční II 1401, Praha 4 – Spořilov, 141 31, Czech Republic
Martin Hanel
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 – Suchdol, 165 21, Czech Republic
T. G. Masaryk Water Research Institute, Podbabská 2582/30, Praha 6 – Dejvice, 160 00, Czech Republic
Petr Máca
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 – Suchdol, 165 21, Czech Republic
Jan Kyselý
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 – Suchdol, 165 21, Czech Republic
Institute of Atmospheric Physics, Czech Academy of Sciences, Boční II 1401, Praha 4 – Spořilov, 141 31, Czech Republic
Related authors
No articles found.
Vishal Thakur, Yannis Markonis, Rohini Kumar, Johanna Ruth Thomson, Mijael Rodrigo Vargas Godoy, Martin Hanel, and Oldrich Rakovec
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-341, https://doi.org/10.5194/hess-2024-341, 2024
Preprint under review for HESS
Short summary
Short summary
Understanding the changes in water movement in earth is crucial for everyone. To quantify this water movement there are several techniques. We examined how different methods of estimating evaporation impact predictions of various types of water movement across Europe. We found that, while these methods generally agree on whether changes are increasing or decreasing, they differ in magnitude. This means selecting the right evaporation method is crucial for accurate predictions of water movement.
Hossein Abbasizadeh, Petr Maca, Martin Hanel, Mads Troldborg, and Amir AghaKouchak
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-297, https://doi.org/10.5194/hess-2024-297, 2024
Preprint under review for HESS
Short summary
Short summary
Here, we represented catchments as networks of variables connected by cause-and-effect relationships. By comparing the performance of statistical and machine learning methods with and without incorporating causal information to predict runoff properties, we showed that causal information can enhance models' robustness by reducing accuracy drop between training and testing phases, improving the model's interpretability, and mitigating overfitting issues, especially with small training samples.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka
EGUsphere, https://doi.org/10.5194/egusphere-2024-1434, https://doi.org/10.5194/egusphere-2024-1434, 2024
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, which was clustered into 775/630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Mijael Rodrigo Vargas Godoy, Yannis Markonis, Oldrich Rakovec, Michal Jenicek, Riya Dutta, Rajani Kumar Pradhan, Zuzana Bešťáková, Jan Kyselý, Roman Juras, Simon Michael Papalexiou, and Martin Hanel
Hydrol. Earth Syst. Sci., 28, 1–19, https://doi.org/10.5194/hess-28-1-2024, https://doi.org/10.5194/hess-28-1-2024, 2024
Short summary
Short summary
The study introduces a novel benchmarking method based on the water cycle budget for hydroclimate data fusion. Using this method and multiple state-of-the-art datasets to assess the spatiotemporal patterns of water cycle changes in Czechia, we found that differences in water availability distribution are dominated by evapotranspiration. Furthermore, while the most significant temporal changes in Czechia occur during spring, the median spatial patterns stem from summer changes in the water cycle.
Petr Kavka, Jiří Cajthaml, Adam Tejkl, and Martin Hanel
Abstr. Int. Cartogr. Assoc., 6, 120, https://doi.org/10.5194/ica-abs-6-120-2023, https://doi.org/10.5194/ica-abs-6-120-2023, 2023
Markéta Součková, Roman Juras, Kryštof Dytrt, Vojtěch Moravec, Johanna Ruth Blöcher, and Martin Hanel
Nat. Hazards Earth Syst. Sci., 22, 3501–3525, https://doi.org/10.5194/nhess-22-3501-2022, https://doi.org/10.5194/nhess-22-3501-2022, 2022
Short summary
Short summary
Avalanches are natural hazards that threaten people and infrastructure. With climate change, avalanche activity is changing. We analysed the change in frequency and size of avalanches in the Krkonoše Mountains, Czechia, and detected important variables with machine learning tools from 1979–2020. Wet avalanches in February and March have increased, and slab avalanches have decreased and become smaller. The identified variables and their threshold levels may help in avalanche decision-making.
Sadaf Nasreen, Markéta Součková, Mijael Rodrigo Vargas Godoy, Ujjwal Singh, Yannis Markonis, Rohini Kumar, Oldrich Rakovec, and Martin Hanel
Earth Syst. Sci. Data, 14, 4035–4056, https://doi.org/10.5194/essd-14-4035-2022, https://doi.org/10.5194/essd-14-4035-2022, 2022
Short summary
Short summary
This article presents a 500-year reconstructed annual runoff dataset for several European catchments. Several data-driven and hydrological models were used to derive the runoff series using reconstructed precipitation and temperature and a set of proxy data. The simulated runoff was validated using independent observed runoff data and documentary evidence. The validation revealed a good fit between the observed and reconstructed series for 14 catchments, which are available for further analysis.
Jan Hnilica, Martin Hanel, and Vladimír Puš
Hydrol. Earth Syst. Sci., 23, 1741–1749, https://doi.org/10.5194/hess-23-1741-2019, https://doi.org/10.5194/hess-23-1741-2019, 2019
Short summary
Short summary
A statistical significance of changes in correlations of daily precipitation in six RCM simulations is assessed. The effect of outliers is explored and a concept of dependence outliers is presented. We show that correlation estimates can be strongly affected by a few outliers; therefore any statistical correction relying on sample correlation can provide misleading results. An exploratory procedure is proposed to detect and evaluate the dependence outliers in multivariate data.
Jan Hnilica, Martin Hanel, and Vladimír Puš
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-7, https://doi.org/10.5194/hess-2018-7, 2018
Manuscript not accepted for further review
Short summary
Short summary
The paper investigates primarily the changes of the cross- and auto-correlation structures of daily precipitation in an ensemble of climate models. The changes vary in a range from −0.08 to 0.08 and individual models differ considerably. The analysis of significance revealed the strong influence of outliers on correlation structures, which can bring severe artefacts into the climate impact studies. An exploratory procedure is proposed to detect the correlation outliers in multi-variate data.
Martin Hanel, Petr Máca, Petr Bašta, Radek Vlnas, and Pavel Pech
Hydrol. Earth Syst. Sci., 20, 4307–4322, https://doi.org/10.5194/hess-20-4307-2016, https://doi.org/10.5194/hess-20-4307-2016, 2016
Short summary
Short summary
The paper is focused on assessment of the contribution of various sources of uncertainty to the estimated rainfall erosivity factor. It is shown that the rainfall erosivity factor can be estimated with reasonable precision even from records shorter than recommended, provided good spatial coverage and reasonable explanatory variables are available. The research was done as an update of the R factor estimates for the Czech Republic, which were later used for climate change assessment.
M. A. Sunyer, Y. Hundecha, D. Lawrence, H. Madsen, P. Willems, M. Martinkova, K. Vormoor, G. Bürger, M. Hanel, J. Kriaučiūnienė, A. Loukas, M. Osuch, and I. Yücel
Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, https://doi.org/10.5194/hess-19-1827-2015, 2015
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Historical rainfall data in northern Italy predict larger meteorological drought hazard than climate projections
Daytime-only mean data enhance understanding of land–atmosphere coupling
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems
Performance of the Global Forecast System's medium-range precipitation forecasts in the Niger river basin using multiple satellite-based products
Uncertainties and their interaction in flood hazard assessment with climate change
Bias-correcting input variables enhances forecasting of reference crop evapotranspiration
Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies
At which timescale does the complementary principle perform best in evaporation estimation?
Uncertainty in nonstationary frequency analysis of South Korea's daily rainfall peak over threshold excesses associated with covariates
Assessment of extreme flows and uncertainty under climate change: disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability
The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden
A new uncertainty estimation approach with multiple datasets and implementation for various precipitation products
A crash-testing framework for predictive uncertainty assessment when forecasting high flows in an extrapolation context
Required sampling density of ground-based soil moisture and brightness temperature observations for calibration and validation of L-band satellite observations based on a virtual reality
Response of global evaporation to major climate modes in historical and future Coupled Model Intercomparison Project Phase 5 simulations
Cross-validating precipitation datasets in the Indus River basin
Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics
Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network
Influence of three phases of El Niño–Southern Oscillation on daily precipitation regimes in China
Dual-polarized quantitative precipitation estimation as a function of range
Reconstruction of droughts in India using multiple land-surface models (1951–2015)
Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble prediction system
Exploratory studies into seasonal flow forecasting potential for large lakes
Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China
Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate
Providing a non-deterministic representation of spatial variability of precipitation in the Everest region
Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada
Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones
The rainfall erosivity factor in the Czech Republic and its uncertainty
Hierarchy of climate and hydrological uncertainties in transient low-flow projections
Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game
Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India
Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian Highlands
Uncertainties in calculating precipitation climatology in East Asia
Measurement and interpolation uncertainties in rainfall maps from cellular communication networks
Characterization of precipitation product errors across the United States using multiplicative triple collocation
Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework
Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties
Multi-objective parameter optimization of common land model using adaptive surrogate modeling
Testing gridded land precipitation data and precipitation and runoff reanalyses (1982–2010) between 45° S and 45° N with normalised difference vegetation index data
Evaluation of high-resolution precipitation analyses using a dense station network
Prediction of extreme floods based on CMIP5 climate models: a case study in the Beijiang River basin, South China
Estimating the water needed to end the drought or reduce the drought severity in the Carpathian region
Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: a comparison
Comparison of drought indicators derived from multiple data sets over Africa
The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Rui Guo and Alberto Montanari
Hydrol. Earth Syst. Sci., 27, 2847–2863, https://doi.org/10.5194/hess-27-2847-2023, https://doi.org/10.5194/hess-27-2847-2023, 2023
Short summary
Short summary
The present study refers to the region of Bologna, where the availability of a 209-year-long daily rainfall series allows us to make a unique assessment of global climate models' reliability and their predicted changes in rainfall and multiyear droughts. Our results suggest carefully considering the impact of uncertainty when designing climate change adaptation policies for droughts. Rigorous use and comprehensive interpretation of the available information are needed to avoid mismanagement.
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023, https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Short summary
Land–atmosphere (L–A) interactions typically focus on daytime processes connecting the land state with the overlying atmospheric boundary layer. However, much prior L–A work used monthly or daily means due to the lack of daytime-only data products. Here we show that monthly smoothing can significantly obscure the L–A coupling signal, and including nighttime information can mute or mask the daytime processes of interest. We propose diagnosing L–A coupling within models or archiving subdaily data.
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022, https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Short summary
Precipitation forecasting has potential uncertainty due to data and model uncertainties. Here, an integrated predictive uncertainty modeling framework is proposed by jointly considering data and model uncertainties through an uncertainty propagation theorem. The results indicate an effective predictive uncertainty estimation for precipitation forecasting, indicating the great potential for uncertainty quantification of numerous predictive applications.
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Short summary
Increasing temperature will impact evaporation and water resource management. Hydrological models are fed with an estimation of the evaporative demand of the atmosphere, called potential evapotranspiration (PE). The objectives of this study were (1) to compute the future PE anomaly over France and (2) to determine the impact of the choice of the method to estimate PE. Our results show that all methods present similar future trends. No method really stands out from the others.
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022, https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Short summary
The performance of the non-dominated sorting genetic algorithm II (NSGA-II) is compared with a conventional post-processing method of affine kernel dressing. NSGA-II showed its superiority in improving the forecast skill and communicating trade-offs with end-users. It allows the enhancement of the forecast quality since it allows for setting multiple specific objectives from scratch. This flexibility should be considered as a reason to implement hydrologic ensemble prediction systems (H-EPSs).
Emixi Sthefany Valdez, François Anctil, and Maria-Helena Ramos
Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022, https://doi.org/10.5194/hess-26-197-2022, 2022
Short summary
Short summary
We investigated how a precipitation post-processor interacts with other tools for uncertainty quantification in a hydrometeorological forecasting chain. Four systems were implemented to generate 7 d ensemble streamflow forecasts, which vary from partial to total uncertainty estimation. Overall analysis showed that post-processing and initial condition estimation ensure the most skill improvements, in some cases even better than a system that considers all sources of uncertainty.
Haowen Yue, Mekonnen Gebremichael, and Vahid Nourani
Hydrol. Earth Syst. Sci., 26, 167–181, https://doi.org/10.5194/hess-26-167-2022, https://doi.org/10.5194/hess-26-167-2022, 2022
Short summary
Short summary
The development of high-resolution global precipitation forecasts and the lack of reliable precipitation forecasts over Africa motivates this work to evaluate the precipitation forecasts from the Global Forecast System (GFS) over the Niger river basin in Africa. The GFS forecasts, at a 15 d accumulation timescale, have an acceptable performance; however, the forecasts are highly biased. It is recommended to apply bias correction to GFS forecasts before their application.
Hadush Meresa, Conor Murphy, Rowan Fealy, and Saeed Golian
Hydrol. Earth Syst. Sci., 25, 5237–5257, https://doi.org/10.5194/hess-25-5237-2021, https://doi.org/10.5194/hess-25-5237-2021, 2021
Short summary
Short summary
The assessment of future impacts of climate change is associated with a cascade of uncertainty linked to the modelling chain employed in assessing local-scale changes. Understanding and quantifying this cascade is essential for developing effective adaptation actions. We find that not only do the contributions of different sources of uncertainty vary by catchment, but that the dominant sources of uncertainty can be very different on a catchment-by-catchment basis.
Qichun Yang, Quan J. Wang, Kirsti Hakala, and Yating Tang
Hydrol. Earth Syst. Sci., 25, 4773–4788, https://doi.org/10.5194/hess-25-4773-2021, https://doi.org/10.5194/hess-25-4773-2021, 2021
Short summary
Short summary
Forecasts of water losses from land surface to the air are highly valuable for water resource management and planning. In this study, we aim to fill a critical knowledge gap in the forecasting of evaporative water loss. Model experiments across Australia clearly suggest the necessity of correcting errors in input variables for more reliable water loss forecasting. We anticipate that the strategy developed in our work will benefit future water loss forecasting and lead to more skillful forecasts.
Mostafa Tarek, François Brissette, and Richard Arsenault
Hydrol. Earth Syst. Sci., 25, 3331–3350, https://doi.org/10.5194/hess-25-3331-2021, https://doi.org/10.5194/hess-25-3331-2021, 2021
Short summary
Short summary
It is not known how much uncertainty the choice of a reference data set may bring to impact studies. This study compares precipitation and temperature data sets to evaluate the uncertainty contribution to the results of climate change studies. Results show that all data sets provide good streamflow simulations over the reference period. The reference data sets also provided uncertainty that was equal to or larger than that related to general circulation models over most of the catchments.
Liming Wang, Songjun Han, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 25, 375–386, https://doi.org/10.5194/hess-25-375-2021, https://doi.org/10.5194/hess-25-375-2021, 2021
Short summary
Short summary
It remains unclear at which timescale the complementary principle performs best in estimating evaporation. In this study, evaporation estimation was assessed over 88 eddy covariance monitoring sites at multiple timescales. The results indicate that the generalized complementary functions perform best in estimating evaporation at the monthly scale. This study provides a reference for choosing a suitable time step for evaporation estimations in relevant studies.
Okjeong Lee, Jeonghyeon Choi, Jeongeun Won, and Sangdan Kim
Hydrol. Earth Syst. Sci., 24, 5077–5093, https://doi.org/10.5194/hess-24-5077-2020, https://doi.org/10.5194/hess-24-5077-2020, 2020
Short summary
Short summary
The uncertainty of the model interpreting rainfall extremes with temperature is analyzed. The performance of the model focuses on the reliability of the output. It has been found that the selection of temperatures suitable for extreme levels plays an important role in improving model reliability. Based on this, a methodology is proposed to quantify the degree of uncertainty inherent in the change in rainfall extremes due to global warming.
Chao Gao, Martijn J. Booij, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 24, 3251–3269, https://doi.org/10.5194/hess-24-3251-2020, https://doi.org/10.5194/hess-24-3251-2020, 2020
Short summary
Short summary
This paper studies the impact of climate change on high and low flows and quantifies the contribution of uncertainty sources from representative concentration pathways (RCPs), global climate models (GCMs) and internal climate variability in extreme flows. Internal climate variability was reflected in a stochastic rainfall model. The results show the importance of internal climate variability and GCM uncertainty in high flows and GCM and RCP uncertainty in low flows especially for the far future.
Marc Schleiss, Jonas Olsson, Peter Berg, Tero Niemi, Teemu Kokkonen, Søren Thorndahl, Rasmus Nielsen, Jesper Ellerbæk Nielsen, Denica Bozhinova, and Seppo Pulkkinen
Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, https://doi.org/10.5194/hess-24-3157-2020, 2020
Short summary
Short summary
A multinational assessment of radar's ability to capture heavy rain events is conducted. In total, six different radar products in Denmark, the Netherlands, Finland and Sweden were considered. Results show a fair agreement, with radar underestimating by 17 %-44 % on average compared with gauges. Despite being adjusted for bias, five of six radar products still exhibited strong conditional biases with intensities of 1–2% per mm/h. Median peak intensity bias was significantly higher, reaching 44 %–67%.
Xudong Zhou, Jan Polcher, Tao Yang, and Ching-Sheng Huang
Hydrol. Earth Syst. Sci., 24, 2061–2081, https://doi.org/10.5194/hess-24-2061-2020, https://doi.org/10.5194/hess-24-2061-2020, 2020
Short summary
Short summary
This article proposes a new estimation approach for assessing the uncertainty with multiple datasets by fully considering all variations in temporal and spatial dimensions. Comparisons demonstrate that classical metrics may underestimate the uncertainties among datasets due to an averaging process in their algorithms. This new approach is particularly suitable for overall assessment of multiple climatic products, but can be easily applied to other spatiotemporal products in related fields.
Lionel Berthet, François Bourgin, Charles Perrin, Julie Viatgé, Renaud Marty, and Olivier Piotte
Hydrol. Earth Syst. Sci., 24, 2017–2041, https://doi.org/10.5194/hess-24-2017-2020, https://doi.org/10.5194/hess-24-2017-2020, 2020
Short summary
Short summary
An increasing number of flood forecasting services assess and communicate the uncertainty associated with their forecasts. We present a crash-testing framework that evaluates the quality of hydrological forecasts in an extrapolation context. Overall, the results highlight the challenge of uncertainty quantification when forecasting high flows. They show a significant drop in reliability when forecasting high flows and considerable variability among catchments and across lead times.
Shaoning Lv, Bernd Schalge, Pablo Saavedra Garfias, and Clemens Simmer
Hydrol. Earth Syst. Sci., 24, 1957–1973, https://doi.org/10.5194/hess-24-1957-2020, https://doi.org/10.5194/hess-24-1957-2020, 2020
Short summary
Short summary
Passive remote sensing of soil moisture has good potential to improve weather forecasting via data assimilation in theory. We use the virtual reality data set (VR01) to infer the impact of sampling density on soil moisture ground cal/val activity. It shows how the sampling error is growing with an increasing sampling distance for a SMOS–SMAP scale footprint in about 40 km, 9 km, and 3 km. The conclusion will help in understanding the passive remote sensing soil moisture products.
Thanh Le and Deg-Hyo Bae
Hydrol. Earth Syst. Sci., 24, 1131–1143, https://doi.org/10.5194/hess-24-1131-2020, https://doi.org/10.5194/hess-24-1131-2020, 2020
Short summary
Short summary
Here we investigate the response of global evaporation to main climate modes, including the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). Our results indicate that ENSO is an important driver of evaporation for many regions, while the impacts of NAO and IOD are substantial. This study allows us to obtain insight about the predictability of evaporation and, hence, may help to improve the early-warning systems of climate extremes.
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Hydrol. Earth Syst. Sci., 24, 427–450, https://doi.org/10.5194/hess-24-427-2020, https://doi.org/10.5194/hess-24-427-2020, 2020
Short summary
Short summary
The amount of precipitation falling in the Indus River basin remains uncertain while its variability impacts 100 million inhabitants. A comparison of datasets from diverse sources (ground remote observations, model outputs) reduces this uncertainty significantly. Grounded observations offer the most reliable long-term variability but with important underestimation in winter over the mountains. By contrast, recent model outputs offer better estimations of total amount and short-term variability.
Kamal Ahmed, Dhanapala A. Sachindra, Shamsuddin Shahid, Mehmet C. Demirel, and Eun-Sung Chung
Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019, https://doi.org/10.5194/hess-23-4803-2019, 2019
Short summary
Short summary
This study evaluated the performance of 36 CMIP5 GCMs in simulating seasonal precipitation and maximum and minimum temperature over Pakistan using spatial metrics (SPAtial EFficiency, fractions skill score, Goodman–Kruskal's lambda, Cramer's V, Mapcurves, and Kling–Gupta efficiency) for the period 1961–2005. NorESM1-M, MIROC5, BCC-CSM1-1, and ACCESS1-3 were identified as the most suitable GCMs for simulating all three climate variables over Pakistan.
Sungmin O and Ulrich Foelsche
Hydrol. Earth Syst. Sci., 23, 2863–2875, https://doi.org/10.5194/hess-23-2863-2019, https://doi.org/10.5194/hess-23-2863-2019, 2019
Short summary
Short summary
We analyze heavy local rainfall to address questions regarding the spatial uncertainty due to the approximation of areal rainfall using point measurements. Ten years of rainfall data from a dense network of 150 rain gauges in southeastern Austria are employed, which permits robust examination of small-scale rainfall at various horizontal resolutions. Quantitative uncertainty information from the study can guide both data users and producers to estimate uncertainty in their own rainfall dataset.
Aifeng Lv, Bo Qu, Shaofeng Jia, and Wenbin Zhu
Hydrol. Earth Syst. Sci., 23, 883–896, https://doi.org/10.5194/hess-23-883-2019, https://doi.org/10.5194/hess-23-883-2019, 2019
Short summary
Short summary
ENSO-related changes in daily precipitation regimes are currently ignored by the scientific community. We analyzed the anomalies of daily precipitation and hydrological extremes caused by different phases of ENSO events, as well as the possible driving mechanisms, to reveal the influence of ENSO on China's daily precipitation regimes. Our results provide a valuable tool for daily precipitation prediction and enable the prioritization of adaptation efforts ahead of extreme events in China.
Micheal J. Simpson and Neil I. Fox
Hydrol. Earth Syst. Sci., 22, 3375–3389, https://doi.org/10.5194/hess-22-3375-2018, https://doi.org/10.5194/hess-22-3375-2018, 2018
Short summary
Short summary
Many researchers have expressed that one of the main difficulties in modeling watershed hydrology is that of obtaining continuous, widespread weather input data, especially precipitation. The overarching objective of this study was to provide a comprehensive study of three weather radars as a function of range. We found that radar-estimated precipitation was best at ranges between 100 and 150 km from the radar, with different radar parameters being superior at varying distances from the radar.
Vimal Mishra, Reepal Shah, Syed Azhar, Harsh Shah, Parth Modi, and Rohini Kumar
Hydrol. Earth Syst. Sci., 22, 2269–2284, https://doi.org/10.5194/hess-22-2269-2018, https://doi.org/10.5194/hess-22-2269-2018, 2018
Sanjib Sharma, Ridwan Siddique, Seann Reed, Peter Ahnert, Pablo Mendoza, and Alfonso Mejia
Hydrol. Earth Syst. Sci., 22, 1831–1849, https://doi.org/10.5194/hess-22-1831-2018, https://doi.org/10.5194/hess-22-1831-2018, 2018
Short summary
Short summary
We investigate the relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1–7). For this purpose, we develop and implement a regional hydrologic ensemble prediction system (RHEPS). Overall analysis shows that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone can often be a competitive alternative.
Kevin Sene, Wlodek Tych, and Keith Beven
Hydrol. Earth Syst. Sci., 22, 127–141, https://doi.org/10.5194/hess-22-127-2018, https://doi.org/10.5194/hess-22-127-2018, 2018
Short summary
Short summary
The theme of the paper is exploration of the potential for seasonal flow forecasting for large lakes using a range of stochastic transfer function techniques with additional insights gained from simple analytical approximations. The methods were evaluated using records for two of the largest lakes in the world. The paper concludes with a discussion of the relevance of the results to operational flow forecasting systems for other large lakes.
Fan Yang, Hui Lu, Kun Yang, Jie He, Wei Wang, Jonathon S. Wright, Chengwei Li, Menglei Han, and Yishan Li
Hydrol. Earth Syst. Sci., 21, 5805–5821, https://doi.org/10.5194/hess-21-5805-2017, https://doi.org/10.5194/hess-21-5805-2017, 2017
Short summary
Short summary
In this paper, we show that CLDAS has the highest spatial and temporal resolution, and it performs best in terms of precipitation, while it overestimates the shortwave radiation. CMFD also has high resolution and its shortwave radiation data match well with the station data; its annual-mean precipitation is reliable but its monthly precipitation needs improvements. Both GLDAS and CN05.1 over mainland China need to be improved. The results can benefit researchers for forcing data selection.
Rachel Bazile, Marie-Amélie Boucher, Luc Perreault, and Robert Leconte
Hydrol. Earth Syst. Sci., 21, 5747–5762, https://doi.org/10.5194/hess-21-5747-2017, https://doi.org/10.5194/hess-21-5747-2017, 2017
Short summary
Short summary
Meteorological forecasting agencies constantly work on pushing the limit of predictability farther in time. However, some end users need proof that climate model outputs are ready to be implemented operationally. We show that bias correction is crucial for the use of ECMWF System4 forecasts for the studied area and there is a potential for the use of 1-month-ahead forecasts. Beyond this, forecast performance is equivalent to using past climatology series as inputs to the hydrological model.
Judith Eeckman, Pierre Chevallier, Aaron Boone, Luc Neppel, Anneke De Rouw, Francois Delclaux, and Devesh Koirala
Hydrol. Earth Syst. Sci., 21, 4879–4893, https://doi.org/10.5194/hess-21-4879-2017, https://doi.org/10.5194/hess-21-4879-2017, 2017
Short summary
Short summary
The central part of the Himalayan Range presents tremendous heterogeneity in terms of topography and climatology, but the representation of hydro-climatic processes for Himalayan catchments is limited due to a lack of knowledge in such poorly instrumented environments. The proposed approach is to characterize the effect of altitude on precipitation by considering ensembles of acceptable altitudinal factors. Ensembles of acceptable values for the components of the water cycle are then provided.
Jefferson S. Wong, Saman Razavi, Barrie R. Bonsal, Howard S. Wheater, and Zilefac E. Asong
Hydrol. Earth Syst. Sci., 21, 2163–2185, https://doi.org/10.5194/hess-21-2163-2017, https://doi.org/10.5194/hess-21-2163-2017, 2017
Short summary
Short summary
This study was conducted to quantify the spatial and temporal variability of the errors associated with various gridded precipitation products in Canada. Overall, WFDEI [GPCC] and CaPA performed best with respect to different performance measures, followed by ANUSPLIN and WEDEI [CRU]. Princeton and NARR demonstrated the lowest quality. Comparing the climate model-simulated products, PCIC ensembles generally performed better than NA-CORDEX ensembles in terms of reliability in four seasons.
Danlu Guo, Seth Westra, and Holger R. Maier
Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017, https://doi.org/10.5194/hess-21-2107-2017, 2017
Short summary
Short summary
This study assessed the impact of baseline climate conditions on the sensitivity of potential evapotranspiration (PET) to a large range of plausible changes in temperature, relative humidity, solar radiation and wind speed at 30 Australian locations. Around 2-fold greater PET changes were observed at cool and humid locations compared to others, indicating potential for elevated water loss in the future. These impacts can be useful to inform the selection of PET models under a changing climate.
Martin Hanel, Petr Máca, Petr Bašta, Radek Vlnas, and Pavel Pech
Hydrol. Earth Syst. Sci., 20, 4307–4322, https://doi.org/10.5194/hess-20-4307-2016, https://doi.org/10.5194/hess-20-4307-2016, 2016
Short summary
Short summary
The paper is focused on assessment of the contribution of various sources of uncertainty to the estimated rainfall erosivity factor. It is shown that the rainfall erosivity factor can be estimated with reasonable precision even from records shorter than recommended, provided good spatial coverage and reasonable explanatory variables are available. The research was done as an update of the R factor estimates for the Czech Republic, which were later used for climate change assessment.
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Louise Arnal, Maria-Helena Ramos, Erin Coughlan de Perez, Hannah Louise Cloke, Elisabeth Stephens, Fredrik Wetterhall, Schalk Jan van Andel, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, https://doi.org/10.5194/hess-20-3109-2016, 2016
Short summary
Short summary
Forecasts are produced as probabilities of occurrence of specific events, which is both an added value and a challenge for users. This paper presents a game on flood protection, "How much are you prepared to pay for a forecast?", which investigated how users perceive the value of forecasts and are willing to pay for them when making decisions. It shows that users are mainly influenced by the perceived quality of the forecasts, their need for the information and their degree of risk tolerance.
K. Sunilkumar, T. Narayana Rao, and S. Satheeshkumar
Hydrol. Earth Syst. Sci., 20, 1719–1735, https://doi.org/10.5194/hess-20-1719-2016, https://doi.org/10.5194/hess-20-1719-2016, 2016
Vincent Roth and Tatenda Lemann
Hydrol. Earth Syst. Sci., 20, 921–934, https://doi.org/10.5194/hess-20-921-2016, https://doi.org/10.5194/hess-20-921-2016, 2016
Short summary
Short summary
The Soil and Water Assessment Tool (SWAT) suggests using the CFSR global rainfall data for modelling discharge and soil erosion in data-scarce parts of the world. These data are freely available and ready to use for SWAT modelling. However, simulations with the CFSR data in the Ethiopian Highlands were unable to represent the specific regional climates and showed high discrepancies. This article compares SWAT simulations with conventional rainfall data and with CFSR rainfall data.
J. Kim and S. K. Park
Hydrol. Earth Syst. Sci., 20, 651–658, https://doi.org/10.5194/hess-20-651-2016, https://doi.org/10.5194/hess-20-651-2016, 2016
Short summary
Short summary
This study examined the uncertainty in climatological precipitation in East Asia, calculated from five gridded analysis data sets based on in situ rain gauge observations from 1980 to 2007. It is found that the regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or very high elevations. Thus, care must be taken in using long-term trends calculated from gridded precipitation analysis data for climate studies over such regions in East Asia.
M. F. Rios Gaona, A. Overeem, H. Leijnse, and R. Uijlenhoet
Hydrol. Earth Syst. Sci., 19, 3571–3584, https://doi.org/10.5194/hess-19-3571-2015, https://doi.org/10.5194/hess-19-3571-2015, 2015
Short summary
Short summary
Commercial cellular networks are built for telecommunication purposes. These kinds of networks have lately been used to obtain rainfall maps at country-wide scales. From previous studies, we now quantify the uncertainties associated with such maps. To do so, we divided the sources or error into two categories: from microwave link measurements and from mapping. It was found that the former is the source that contributes the most to the overall error in rainfall maps from microwave link network.
S. H. Alemohammad, K. A. McColl, A. G. Konings, D. Entekhabi, and A. Stoffelen
Hydrol. Earth Syst. Sci., 19, 3489–3503, https://doi.org/10.5194/hess-19-3489-2015, https://doi.org/10.5194/hess-19-3489-2015, 2015
Short summary
Short summary
This paper introduces a new variant of the triple collocation technique with multiplicative error model. The method is applied, for the first time, to precipitation products across the central part of continental USA. Results show distinctive patterns of error variance in each product that are estimated without a priori assumption of any of the error distributions. The correlation coefficients between each product and the truth are also estimated, which provides another performance perspective.
M. S. Raleigh, J. D. Lundquist, and M. P. Clark
Hydrol. Earth Syst. Sci., 19, 3153–3179, https://doi.org/10.5194/hess-19-3153-2015, https://doi.org/10.5194/hess-19-3153-2015, 2015
Short summary
Short summary
A sensitivity analysis is used to examine how error characteristics (type, distributions, and magnitudes) in meteorological forcing data impact outputs from a physics-based snow model in four climates. Bias and error magnitudes were key factors in model sensitivity and precipitation bias often dominated. However, the relative importance of forcings depended somewhat on the selected model output. Forcing uncertainty was comparable to model structural uncertainty as found in other studies.
S. Garrigues, A. Olioso, J. C. Calvet, E. Martin, S. Lafont, S. Moulin, A. Chanzy, O. Marloie, S. Buis, V. Desfonds, N. Bertrand, and D. Renard
Hydrol. Earth Syst. Sci., 19, 3109–3131, https://doi.org/10.5194/hess-19-3109-2015, https://doi.org/10.5194/hess-19-3109-2015, 2015
Short summary
Short summary
Land surface model simulations of evapotranspiration are assessed over a 12-year Mediterranean crop succession. Evapotranspiration mainly results from soil evaporation when it is simulated over a Mediterranean crop succession. This leads to a high sensitivity to the soil parameters. Errors on soil hydraulic properties can lead to a large bias in cumulative evapotranspiration over a long period of time. Accounting for uncertainties in soil properties is essential for land surface modelling.
W. Gong, Q. Duan, J. Li, C. Wang, Z. Di, Y. Dai, A. Ye, and C. Miao
Hydrol. Earth Syst. Sci., 19, 2409–2425, https://doi.org/10.5194/hess-19-2409-2015, https://doi.org/10.5194/hess-19-2409-2015, 2015
S. O. Los
Hydrol. Earth Syst. Sci., 19, 1713–1725, https://doi.org/10.5194/hess-19-1713-2015, https://doi.org/10.5194/hess-19-1713-2015, 2015
Short summary
Short summary
The study evaluates annual precipitation (largely rainfall) amounts for the tropics and subtropics; precipitation was obtained from ground observations, satellite observations and numerical weather forecasting models.
- Annual precipitation amounts from ground and satellite observations were the most realistic.
- Newer weather forecasting models better predicted annual precipitation than older models.
- Weather forecasting models predicted inaccurate precipitation amounts for Africa.
A. Kann, I. Meirold-Mautner, F. Schmid, G. Kirchengast, J. Fuchsberger, V. Meyer, L. Tüchler, and B. Bica
Hydrol. Earth Syst. Sci., 19, 1547–1559, https://doi.org/10.5194/hess-19-1547-2015, https://doi.org/10.5194/hess-19-1547-2015, 2015
Short summary
Short summary
The paper introduces a high resolution precipitation analysis system which operates on 1 km x 1 km resolution with high frequency updates of 5 minutes. The ability of such a system to adequately assess the convective precipitation distribution is evaluated by means of an independant, high resolution station network. This dense station network allows for a thorough evaluation of the analyses under different convective situations and of the representativeness error of raingaue measurements.
C. H. Wu, G. R. Huang, and H. J. Yu
Hydrol. Earth Syst. Sci., 19, 1385–1399, https://doi.org/10.5194/hess-19-1385-2015, https://doi.org/10.5194/hess-19-1385-2015, 2015
T. Antofie, G. Naumann, J. Spinoni, and J. Vogt
Hydrol. Earth Syst. Sci., 19, 177–193, https://doi.org/10.5194/hess-19-177-2015, https://doi.org/10.5194/hess-19-177-2015, 2015
P. López López, J. S. Verkade, A. H. Weerts, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 18, 3411–3428, https://doi.org/10.5194/hess-18-3411-2014, https://doi.org/10.5194/hess-18-3411-2014, 2014
G. Naumann, E. Dutra, P. Barbosa, F. Pappenberger, F. Wetterhall, and J. V. Vogt
Hydrol. Earth Syst. Sci., 18, 1625–1640, https://doi.org/10.5194/hess-18-1625-2014, https://doi.org/10.5194/hess-18-1625-2014, 2014
K. Liechti, L. Panziera, U. Germann, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 3853–3869, https://doi.org/10.5194/hess-17-3853-2013, https://doi.org/10.5194/hess-17-3853-2013, 2013
Cited articles
Agnese, C., Bagarello, V., Corrao, C., D'Agostino, L., and D'Asaro, F.: Influence of the rainfall measurement interval on the erosivity determinations in the Mediterranean area, J. Hydrol., 329, 39–48, https://doi.org/10.1016/j.jhydrol.2006.02.002, 2006.
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L.: Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res.-Atmos., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006.
Allen, R. J. and DeGaetano, A. T.: Areal reduction factors for two eastern United States regions with high rain-gauge density, J. Hydrol. Eng., 10, 327–335, https://doi.org/10.1061/(ASCE)1084-0699(2005)10:4(327), 2005.
Asquith, W. and Famiglietti, J.: Precipitation areal-reduction factor estimation using an annual-maxima centered approach, J. Hydrol., 230, 55–69, https://doi.org/10.1016/S0022-1694(00)00170-0, 2000.
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations, J. Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014.
Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?, Geophys. Res. Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015.
Barbosa, A., Fernandes, J., and David, L.: Key issues for sustainable urban stormwater management, special issue on Stormwater in urban areas, Water Res., 46, 6787–6798, https://doi.org/10.1016/j.watres.2012.05.029, 2012.
Bartholy, J., Pongrácz, R., and Kis, A.: Projected changes of extreme precipitation using multi-model approach, Idojaras, 119, 129–142, 2015.
Berg, P. and Haerter, J.: Unexpected increase in precipitation intensity with temperature – a result of mixing of precipitation types?, Atmos. Res., 119, 56–61, https://doi.org/10.1016/j.atmosres.2011.05.012, 2013.
Boberg, F., Berg, P., Thejll, P., Gutowski, W., and Christensen, J.: Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble, Clim. Dynam., 32, 1097–1106, https://doi.org/10.1007/s00382-008-0446-y, 2009.
Böhm, U., Kücken, M., Ahrens, W., Block, A., Hauffe, D., Keuler, K., Rockel, B., and Will, A.: CLM – the climate version of LM: brief description and long-term applications, COSMO Newsletter, 6, 225–235, 2006.
Brockhaus, P., Lüthi, D., and Schär, C.: Aspects of the diurnal cycle in a regional climate model, Meteorol. Z., 17, 433–443, https://doi.org/10.1127/0941-2948/2008/0316, 2008.
Brown, L. C. and Foster, G. R.: Storm erosivity using idealized intensity distributions, T. ASAE, 30, 379–386, 1987.
Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S., Roberts, N. M., and Ferro, C. A. T.: The value of high-resolution Met Office regional climate models in the simulation of multihourly precipitation extremes, J. Climate, 27, 6155–6174, https://doi.org/10.1175/JCLI-D-13-00723.1, 2014.
Christensen, O. B., Drews, M., Christensen, J. H., Dethloff, K., Ketelsen, K., Hebestadt, I., and Rinke, A.: The HIRHAM regional climate model version 5 (beta), Technical Report, no. 06-17, Danish Climate Centre, Danish Meteorological Institute, Copenhagen, Denmark, 2007.
Collins, M., Booth, B., Harris, G., Murphy, J., Sexton, D., and Webb, M.: Towards quantifying uncertainty in transient climate change, Clim. Dynam., 27, 127–147, https://doi.org/10.1007/s00382-006-0121-0, 2006.
Collins, M., Booth, B., Bhaskaran, B., Harris, G., Murphy, J., Sexton, D., and Webb, M.: Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles, Clim. Dynam., 36, 1737–1766, https://doi.org/10.1007/s00382-010-0808-0, 2011.
Danandeh Mehr, A. and Kahya, E.: Grid-based performance evaluation of GCM-RCM combinations for rainfall reproduction, Theor. Appl. Climatol., https://doi.org/10.1007/s00704-016-1758-1, online first, 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dunkerley, D.: Intra-storm evaporation as a component of canopy interception loss in dryland shrubs: observations from Fowlers Gap, Australia, Hydrol. Process., 22, 1985–1995, https://doi.org/10.1002/hyp.6783, 2008a.
Dunkerley, D.: Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site, Hydrol. Process., 22, 5024–5036, https://doi.org/10.1002/hyp.7122, 2008b.
Dunkerley, D.: Intra-event intermittency of rainfall: an analysis of the metrics of rain and no-rain periods, Hydrol. Process., 29, 3294–3305, https://doi.org/10.1002/hyp.10454, 2015.
Eggert, B., Berg, P., Haerter, J. O., Jacob, D., and Moseley, C.: Temporal and spatial scaling impacts on extreme precipitation, Atmos. Chem. Phys., 15, 5957–5971, https://doi.org/10.5194/acp-15-5957-2015, 2015.
Einfalt, T., Krejci, V., and Schilling, W.: Rainfall data in urban hydrology, in: Hydroinformatics tools for planning, design, operation and rehabilitation of sewer systems, edited by: Marsalek, J., Maksimovic, C., Zeman, E., and Price, R., vol. 44 of NATO ASI Ser., 129–168, Springer Netherlands, Dordrecht, the Netherlands, 1998.
Fiener, P., Neuhaus, P., and Botschek, J.: Long-term trends in rainfall erosivity – analysis of high resolution precipitation time series (1937–2007) from Western Germany, Agr. Forest Meteorol., 171–172, 115–123, https://doi.org/10.1016/j.agrformet.2012.11.011, 2013.
Fosser, G., Khodayar, S., and Berg, P.: Benefit of convection permitting climate model simulations in the representation of convective precipitation, Clim. Dynam., 44, 45–60, https://doi.org/10.1007/s00382-014-2242-1, 2015.
Fowler, H. J. and Ekström, M.: Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes, Int. J. Climatol., 29, 385–416, https://doi.org/10.1002/joc.1827, 2009.
Fowler, H. J., Ekström, M., Blenkinsop, S., and Smith, A. P.: Estimating change in extreme European precipitation using a multimodel ensemble, J. Geophys. Res.-Atmos., 112, D18104, https://doi.org/10.1029/2007JD008619, 2007.
Gaál, L., Molnar, P., and Szolgay, J.: Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland, Hydrol. Earth Syst. Sci., 18, 1561–1573, https://doi.org/10.5194/hess-18-1561-2014, 2014.
Giulianelli, M., Miserocchi, F., Napolitano, F., and Russo, F.: Influence of space-time rainfall variability on urban runoff, Proceedings of the 17th IASTED International Conference on Modelling and Simulation, 24–26 May 2006, Montreal, QC, Canada, 546–551, 2006.
Gregersen, I. B., Sørup, H. J. D., Madsen, H., Rosbjerg, D., Mikkelsen, P. S., and Arnbjerg-Nielsen, K.: Assessing future climatic changes of rainfall extremes at small spatio-temporal scales, Climatic Change, 118, 783–797, https://doi.org/10.1007/s10584-012-0669-0, 2013.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Hanel, M. and Buishand, T. A.: On the value of hourly precipitation extremes in regional climate model simulations, J. Hydrol., 393, 265–273, https://doi.org/10.1016/j.jhydrol.2010.08.024, 2010.
Hanel, M. and Buishand, T. A.: Analysis of precipitation extremes in an ensemble of transient regional climate model simulations for the Rhine basin, Clim. Dynam., 36, 1135–1153, https://doi.org/10.1007/s00382-010-0822-2, 2011.
Hanel, M. and Buishand, T. A.: Multi-model analysis of RCM simulated 1-day to 30-day seasonal precipitation extremes in the Czech Republic, J. Hydrol., 412–413, 141–150, https://doi.org/10.1016/j.jhydrol.2011.02.007, 2012.
Hanel, M. and Máca, P.: Spatial variability and interdependence of rain event characteristics in the Czech Republic, Hydrol. Process., 28, 2929–2944, https://doi.org/10.1002/hyp.9845, 2014.
Hanel, M., Pavlásková, A., and Kyselý, J.: Trends in characteristics of sub-daily heavy precipitation and rainfall erosivity in the Czech Republic, Int. J. Climatol., 36, 1833–1845, https://doi.org/10.1002/joc.4463, 2016.
Hanel, M., Kožín, R., Heřmanovský, M., and Roub, R.: An R package for assessment of statistical downscaling methods for hydrological climate change impact studies, Environ. Modell. Softw., in review, 2017.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
He, Z., Zhao, W., Liu, H., and Chang, X.: The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: a case study in northwestern China's Qilian Mountains, J. Hydrol., 420–421, 183–190, https://doi.org/10.1016/j.jhydrol.2011.11.056, 2012.
Herrera, S., Fita, L., Fernández, J., and Gutiérrez, J. M.: Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain, J. Geophys. Res.-Atmos., 115, D21117, https://doi.org/10.1029/2010JD013936, 2010.
Hohenegger, C., Brockhaus, P., and Schär, C.: Towards climate simulations at cloud-resolving scales, Meteorol. Z., 17, 383–394, https://doi.org/10.1127/0941-2948/2008/0303, 2008.
Ignaccolo, M. and Michele, C. D.: A point based Eulerian definition of rain event based on statistical properties of inter drop time intervals: an application to Chilbolton data, Adv. Water Resour., 33, 933–941, https://doi.org/10.1016/j.advwatres.2010.04.002, 2010.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O., Bouwer, L., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Kendon, E. J., Roberts, N. M., Senior, C. A., and Roberts, M. J.: Realism of rainfall in a very high-resolution regional climate model, J. Climate, 25, 5791–5806, https://doi.org/10.1175/JCLI-D-11-00562.1, 2012.
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., and Senior, C. A.: Heavier summer downpours with climate change revealed by weather forecast resolution model, Nat. Clim. Change, 4, 570–576, https://doi.org/10.1038/nclimate2258, 2014.
Kupiainen, M., Samuelsson, P., Jones, C., Jansson, C., Willén, U., Hansson, U., Ullerstig, A., Wang, S., and Döscher, R.: Rossby Centre regional atmospheric model, RCA4, Rossby Centre Newsletter, SMHI, Norrköping, Sweden, 2011.
Květoň, V., Zahradníček, J., and Žák, M.: Quality control and digitising of pluviographic measurements in the Czech Hydrometeorological Institute, Meteorologické zprávy, 57, 47–52, 2004.
Kyselý, J., Gaál, L., Beranová, R., and Plavcová, E.: Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models, Theor. Appl. Climatol., 104, 529–542, https://doi.org/10.1007/s00704-010-0362-z, 2011.
Kyselý, J., Rulfová, Z., Farda, A., and Hanel, M.: Convective and stratiform precipitation characteristics in an ensemble of regional climate model simulations, Clim. Dynam., 46, 227–243, https://doi.org/10.1007/s00382-015-2580-7, 2016.
Lautenschlager, M., Keuler, K., Wunram, C., Keup-Thiel, E., Schubert, M., Will, A., Rockel, B., and Boehm, U.: Climate simulation with CLM, climate of the 20th century run no. 2, data stream 3: European region MPI-M/MaD, World Data Center for Climate (WDCC), https://doi.org/10.1594/WDCC/CLM_C20_2_D3, 2009.
Lenderink, G. and van Meijgaard, E.: Increase in hourly precipitation extremes beyond expectations from temperature changes, Nat. Geosci., 1, 511–514, https://doi.org/10.1038/ngeo262, 2008.
Madsen, H., Lawrence, D., Lang, M., Martínková, M., and Kjeldsen, T.: Review of trend analysis and climate change projections of extreme precipitation and floods in Europe, J. Hydrol., 519, 3634–3650, https://doi.org/10.1016/j.jhydrol.2014.11.003, 2014.
Martínková, M. and Hanel, M.: Evaluation of relations between extreme precipitation and temperature in observational time series from the Czech Republic, Adv. Meteorol., 2016, 2975380, https://doi.org/10.1155/2016/2975380, 2016.
Mehrotra, R. and Sharma, A.: A multivariate quantile-matching bias correction approach with auto- and cross-dependence across multiple time scales: implications for downscaling, J. Climate, 29, 3519–3539, https://doi.org/10.1175/JCLI-D-15-0356.1, 2016.
Millán, M. M.: Extreme hydrometeorological events and climate change predictions in Europe, J. Hydrol, 518, Part B, 206–224, https://doi.org/10.1016/j.jhydrol.2013.12.041, 2014.
Murakami, S.: A proposal for a new forest canopy interception mechanism: splash droplet evaporation, J. Hydrol., 319, 72–82, https://doi.org/10.1016/j.jhydrol.2005.07.002, 2006.
Peters, O. and Christensen, K.: Rain viewed as relaxational events, J. Hydrol., 328, 46–55, https://doi.org/10.1016/j.jhydrol.2005.11.045, 2006.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Prein, A. F., Gobiet, A., Truhetz, H., Keuler, K., Goergen, K., Teichmann, C., Fox Maule, C., van Meijgaard, E., Déqué, M., Nikulin, G., Vautard, R., Colette, A., Kjellström, E., and Jacob, D.: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits?, Clim. Dynam., 46, 383–412, https://doi.org/10.1007/s00382-015-2589-y, 2016.
Rajczak, J., Pall, P., and Schär, C.: Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region, J. Geophys. Res.-Atmos., 118, 3610–3626, https://doi.org/10.1002/jgrd.50297, 2013.
Ran, Q., Su, D., Li, P., and He, Z.: Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion, J. Hydrol., 424–425, 99–111, https://doi.org/10.1016/j.jhydrol.2011.12.035, 2012.
Rauscher, S. A., Coppola, E., Piani, C., and Giorgi, F.: Resolution effects on regional climate model simulations of seasonal precipitation over Europe, Clim. Dynam., 35, 685–711, https://doi.org/10.1007/s00382-009-0607-7, 2010.
Restrepo-Posada, P. and Eagleson, P.: Identification of independent rainstorms, J. Hydrol., 55, 303–319, https://doi.org/10.1016/0022-1694(82)90136-6, 1982.
Samuelsson, P., Jones, C. G., Willén, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellström, E., Nikulin, G., and Wyser, K.: The Rossby Centre regional climate model RCA3: model description and performance, Tellus A, 63, 4–23, https://doi.org/10.1111/j.1600-0870.2010.00478.x, 2011.
Schilling, W.: Rainfall data for urban hydrology: what do we need?, Atmos. Res., 27, 5–21, https://doi.org/10.1016/0169-8095(91)90003-F, 1991.
Siler, N. and Roe, G.: How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective, Geophys. Res. Lett., 41, 2606–2613, https://doi.org/10.1002/2013GL059095, 2014.
Singh, V. P.: Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph, Hydrol. Process., 11, 1649–1669, 1997.
Skaugen, T.: Classification of rainfall into small and large-scale events by statistical pattern recognition, J. Hydrol., 200, 40–57, https://doi.org/10.1016/S0022-1694(97)00003-6, 1997.
Sørup, H. J. D., Georgiadis, S., Gregersen, I. B., and Arnbjerg-Nielsen, K.: Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes, Hydrol. Earth Syst. Sci., 21, 345–355, https://doi.org/10.5194/hess-21-345-2017, 2017.
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. (Eds.): Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013.
Strandberg, G., Bärring, L., Hansson, U., Jansson, C., Jones, C., Kjellström, E., Kolax, M., Kupiainen, M., Nikulin, G., Samuelsson, P., Ullerstig, A., and Wang, S.: CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4, Report Meteorology and Climatology no. 116, Swedish Meteorological and Hydrological Institute, SE 601 76 Norrköping, Sweden, 2014.
Sunyer, M. A., Luchner, J., Onof, C., Madsen, H., and Arnbjerg-Nielsen, K.: Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions, Int. J. Climatol., 37, 688–705, https://doi.org/10.1002/joc.4733, 2017.
Svensson, C. and Jones, D.: Review of methods for deriving areal reduction factors, J. Flood Risk Manage., 3, 232–245, https://doi.org/10.1111/j.1753-318X.2010.01075.x, 2010.
Teng, J., Potter, N. J., Chiew, F. H. S., Zhang, L., Wang, B., Vaze, J., and Evans, J. P.: How does bias correction of regional climate model precipitation affect modelled runoff?, Hydrol. Earth Syst. Sci., 19, 711–728, https://doi.org/10.5194/hess-19-711-2015, 2015.
Tolasz, R. (Ed.): Atlas podnebí Česka (Climate atlas of Czechia), Český hydrometeorologický ústav, 1. edn., Praha, Czech Republic, 2007.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
van der Linden, P. and Mitchell, J. F. B. (Eds.): ENSEMLES: climate change an its impacts: summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, Exeter, UK, 2009.
van Meijgaard, E., van Ulft, L. H., van de Berg, W. J., Bosveld, F. C., van den Hurk, B., Lenderink, G., and Siebesma, A. P.: The KNMI regional atmospheric climate model RACMO version 2.1, Technical Report, TR 302, KNMI, De Bilt, the Netherlands, 2008.
van Meijgaard, E., van Ulft, L., Lenderink, G., de Roode, S., Wipfler, E., Boers, R., and Timmermans, R.: Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe, KvR 054/12, Programme Office Climate changes Spatial Planning, KNMI, De Bilt, the Netherlands, 2012.
Wang, X.-P., Cui, Y., Pan, Y.-X., Li, X.-R., Yu, Z., and Young, M.: Effects of rainfall characteristics on infiltration and redistribution patterns in revegetation-stabilized desert ecosystems, J. Hydrol., 358, 134–143, https://doi.org/10.1016/j.jhydrol.2008.06.002, 2008.
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., and Roberts, N. M.: Future changes to the intensity and frequency of short-duration extreme rainfall, Rev. Geophys., 52, 522–555, https://doi.org/10.1002/2014RG000464, 2014.
Willems, P. and Vrac, M.: Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change, J. Hydrol., 402, 193–205, https://doi.org/10.1016/j.jhydrol.2011.02.030, 2011.
Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and Nguyen, V.: Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings, Atmos. Res., 103, 106–118, https://doi.org/10.1016/j.atmosres.2011.04.003, 2012.
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses: a guide to conservation planning, Agriculture handbook 537, Science and Education Administration, U.S. Department of Agriculture, Washington, D.C., USA, 1978.
Short summary
The study presents validation of precipitation events as simulated by an ensemble of regional climate models for the Czech Republic. While the number of events per season, seasonal total precipitation due to heavy events and the distribution of rainfall depths are simulated relatively well, event maximum precipitation and event intensity are strongly underestimated. This underestimation cannot be explained by scale mismatch between point observations and area average (climate model simulations).
The study presents validation of precipitation events as simulated by an ensemble of regional...