Articles | Volume 21, issue 11
Hydrol. Earth Syst. Sci., 21, 5443–5457, 2017
https://doi.org/10.5194/hess-21-5443-2017
Hydrol. Earth Syst. Sci., 21, 5443–5457, 2017
https://doi.org/10.5194/hess-21-5443-2017
Research article
06 Nov 2017
Research article | 06 Nov 2017

Streamflow characteristics from modeled runoff time series – importance of calibration criteria selection

Sandra Pool et al.

Related authors

Shallow groundwater level time series and a groundwater chemistry survey from a boreal headwater catchment
Jana Erdbrügger, Ilja van Meerveld, Jan Seibert, and Kevin Bishop
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-114,https://doi.org/10.5194/essd-2022-114, 2022
Preprint under review for ESSD
Short summary
Comprehensive space-time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-99,https://doi.org/10.5194/nhess-2022-99, 2022
Revised manuscript accepted for NHESS
Short summary
A retrospective on hydrological catchment modelling based on half a century with the HBV model
Jan Seibert and Sten Bergström
Hydrol. Earth Syst. Sci., 26, 1371–1388, https://doi.org/10.5194/hess-26-1371-2022,https://doi.org/10.5194/hess-26-1371-2022, 2022
Short summary
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Rosanna Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-321,https://doi.org/10.5194/hess-2021-321, 2021
Preprint under review for HESS
Short summary
Hydrological response to warm and dry weather: do glaciers compensate?
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021,https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
High-resolution satellite products improve hydrological modeling in northern Italy
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022,https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Analysis of high streamflow extremes in climate change studies: how do we calibrate hydrological models?
Bruno Majone, Diego Avesani, Patrick Zulian, Aldo Fiori, and Alberto Bellin
Hydrol. Earth Syst. Sci., 26, 3863–3883, https://doi.org/10.5194/hess-26-3863-2022,https://doi.org/10.5194/hess-26-3863-2022, 2022
Short summary
A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022,https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL)
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022,https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Spatial extrapolation of stream thermal peaks using heterogeneous time series at a national scale
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022,https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary

Cited articles

Abell, R. A., Olson, D. M., Dinerstein, E., Hurley, P. T., Diggs, J. T., Eichbaum, W., Walters, S., Wettengel, W., Allnutt, T., Loucks, C. J., and Hedao, P. (Eds.): Freshwater ecoregions of North America: A conservation assessment, Island Press, Washington, DC, USA, 2000.
Arthington, A. H., Bunn, S. E., Poff, N. L., and Naiman, R. J.: The challenge of providing environmental flow rules to sustain river ecosystems, Ecol. Appl., 16, 1311–1318, https://doi.org/10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2, 2006.
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, SMHI, Norrköping, Sweden, No. RHO 7, 134 pp., 1976.
Beven, K.: Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication, Hydrolog. Sci. J., 61, 1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2016.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol. 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Download
Short summary
This modeling study explores the effect of different model calibration criteria on the accuracy of simulated streamflow characteristics (SFCs). The results imply that one has to consider significant uncertainties when simulated time series are used to derive SFCs that were not included in the calibration. Thus, we strongly recommend calibrating the runoff model explicitly for the SFCs of interest. Our study helps improve the estimation of SFCs for ungauged catchments based on runoff models.