Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Download
Short summary
This modeling study explores the effect of different model calibration criteria on the accuracy of simulated streamflow characteristics (SFCs). The results imply that one has to consider significant uncertainties when simulated time series are used to derive SFCs that were not included in the calibration. Thus, we strongly recommend calibrating the runoff model explicitly for the SFCs of interest. Our study helps improve the estimation of SFCs for ungauged catchments based on runoff models.
Articles | Volume 21, issue 11
Hydrol. Earth Syst. Sci., 21, 5443–5457, 2017
https://doi.org/10.5194/hess-21-5443-2017
Hydrol. Earth Syst. Sci., 21, 5443–5457, 2017
https://doi.org/10.5194/hess-21-5443-2017

Research article 06 Nov 2017

Research article | 06 Nov 2017

Streamflow characteristics from modeled runoff time series – importance of calibration criteria selection

Sandra Pool et al.

Related authors

Downsizing parameter ensembles for simulations of rare floods
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020,https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
The CH-IRP data set: a decade of fortnightly data on δ2H and δ18O in streamflow and precipitation in Switzerland
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020,https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe
Marc Girons Lopez, Marc J. P. Vis, Michal Jenicek, Nena Griessinger, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 4441–4461, https://doi.org/10.5194/hess-24-4441-2020,https://doi.org/10.5194/hess-24-4441-2020, 2020
Short summary
Risks and opportunities for a Swiss hydroelectricity company in a changing climate
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020,https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020,https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
The role and value of distributed precipitation data in hydrological models
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021,https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021,https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Flexible vector-based spatial configurations in land models
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020,https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Two-stage variational mode decomposition and support vector regression for streamflow forecasting
Ganggang Zuo, Jungang Luo, Ni Wang, Yani Lian, and Xinxin He
Hydrol. Earth Syst. Sci., 24, 5491–5518, https://doi.org/10.5194/hess-24-5491-2020,https://doi.org/10.5194/hess-24-5491-2020, 2020
Short summary
Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020,https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary

Cited articles

Abell, R. A., Olson, D. M., Dinerstein, E., Hurley, P. T., Diggs, J. T., Eichbaum, W., Walters, S., Wettengel, W., Allnutt, T., Loucks, C. J., and Hedao, P. (Eds.): Freshwater ecoregions of North America: A conservation assessment, Island Press, Washington, DC, USA, 2000.
Arthington, A. H., Bunn, S. E., Poff, N. L., and Naiman, R. J.: The challenge of providing environmental flow rules to sustain river ecosystems, Ecol. Appl., 16, 1311–1318, https://doi.org/10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2, 2006.
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, SMHI, Norrköping, Sweden, No. RHO 7, 134 pp., 1976.
Beven, K.: Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication, Hydrolog. Sci. J., 61, 1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2016.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol. 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Publications Copernicus
Download
Short summary
This modeling study explores the effect of different model calibration criteria on the accuracy of simulated streamflow characteristics (SFCs). The results imply that one has to consider significant uncertainties when simulated time series are used to derive SFCs that were not included in the calibration. Thus, we strongly recommend calibrating the runoff model explicitly for the SFCs of interest. Our study helps improve the estimation of SFCs for ungauged catchments based on runoff models.
Citation