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Abstract. Ecologically relevant streamflow characteristics
(SFCs) of ungauged catchments are often estimated from
simulated runoff of hydrologic models that were originally
calibrated on gauged catchments. However, SFC estimates
of the gauged donor catchments and subsequently the un-
gauged catchments can be substantially uncertain when mod-
els are calibrated using traditional approaches based on op-
timization of statistical performance metrics (e.g., Nash–
Sutcliffe model efficiency). An improved calibration strat-
egy for gauged catchments is therefore crucial to help re-
duce the uncertainties of estimated SFCs for ungauged catch-
ments. The aim of this study was to improve SFC estimates
from modeled runoff time series in gauged catchments by
explicitly including one or several SFCs in the calibration
process. Different types of objective functions were defined
consisting of the Nash–Sutcliffe model efficiency, single
SFCs, or combinations thereof. We calibrated a bucket-type
runoff model (HBV – Hydrologiska Byråns Vattenavdelning
– model) for 25 catchments in the Tennessee River basin and
evaluated the proposed calibration approach on 13 ecologi-
cally relevant SFCs representing major flow regime compo-
nents and different flow conditions. While the model gener-
ally tended to underestimate the tested SFCs related to mean
and high-flow conditions, SFCs related to low flow were gen-
erally overestimated. The highest estimation accuracies were
achieved by a SFC-specific model calibration. Estimates of
SFCs not included in the calibration process were of similar
quality when comparing a multi-SFC calibration approach to
a traditional model efficiency calibration. For practical ap-

plications, this implies that SFCs should preferably be esti-
mated from targeted runoff model calibration, and modeled
estimates need to be carefully interpreted.

1 Introduction

Reliable runoff information is fundamental for many wa-
ter resources-related tasks such as flood prevention, drought
mitigation, management of drinking water supply and hy-
dropower, or river restoration. Runoff modeling is a tool that
can be used to create runoff time series when observed time
series are not available. Runoff simulations usually focus on
either representing the general shape of the hydrograph or on
accurately simulating specific streamflow characteristics rel-
evant to a respective application. However, the extraction of
streamflow characteristics (SFCs) from a simulated time se-
ries may produce poor estimates when these characteristics
were not included in model calibration. Ecologically relevant
SFCs are properties of the annual streamflow hydrograph
defining the structure and functioning of aquatic and ripar-
ian biodiversity (Richter et al., 1996; Poff et al., 1997). The
accurate prediction of streamflow characteristics is a core de-
terminate to defining how streamflow and aquatic communi-
ties relate. A large number of SFCs have been suggested to
characterize ecologically relevant aspects of the flow regime
(Tharme, 2003) and have become the basis for decision-
support systems integrating resource management with eco-
logical response (Cartwright et al., 2017).
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Multivariate regression or runoff models are used to esti-
mate SFCs when observed streamflow time series data are
not available (Hailegeorgis and Alfredsen, 2016). The esti-
mation of SFCs with linear regression usually relates a single
SFC to catchment characteristics such as climate, land cover,
and geographic and geologic variables (e.g., Sanborn and
Bledsoe, 2006; Carlisle et al., 2010; Knight et al., 2012). This
approach is inflexible in a sense that the regression is SFC-
specific and does not allow for analysis of potential water-use
and land management (Murphy et al., 2013). These disad-
vantages can be partially overcome by applying runoff mod-
els. Simulated streamflow time series from runoff models can
be used to calculate any SFC and, by changing model input
and parameters, different scenarios such as climate change,
groundwater withdrawals, land use, and riverine change can
be simulated (Poff et al., 2010; Murphy et al., 2013; Olsen et
al., 2013; Shrestha et al., 2014). While statistical models such
as multiple linear regressions often provide greater accuracy
(Murphy et al., 2013), runoff models provide opportunities
for also evaluating climate or land-use change scenarios.

Runoff models are used in both ecohydrology and hy-
drological modeling as tools to simulate specific aspects of
the runoff regime. The terms, SFCs or ecological flow in-
dices, are often used to refer to such specific aspects of the
flow regime in ecohydrology studies, whereas the more re-
cently introduced term, hydrological signatures, has been
used in hydrological modeling (Jothityangkoon et al., 2001;
Wagener et al, 2007). Hydrological signatures can often sup-
port a physical interpretation of the way a catchment func-
tions and are seen as valuable metrics especially for model-
ing ungauged catchments (Jothityangkoon et al., 2001), for
selecting appropriate model structures (Euser et al., 2013) or
guiding model parameter selection in a meaningful way (Yil-
maz et al., 2008), and for classifying catchments (Wagener et
al., 2007; Sawicz et al., 2011). Regardless of the terminology
and the ultimate goal, the basic goal is the quantification of
certain aspects of a streamflow time series. In this paper, we
use the term SFC as equivalent to hydrological signature, but
generally prefer the term SFC to emphasize their ecological
relevance.

Estimated streamflow characteristics are prone to signifi-
cant errors when calculated from simulated time series (Mur-
phy et al., 2013; Shrestha et al., 2014; Vis et al., 2015). This
is due in part to the objective functions used for evaluat-
ing the model error such as the commonly used model ef-
ficiency (Nash and Sutcliffe, 1970) or volume error, which
do not ensure that a model reproduces particular streamflow
characteristics. These objective functions subsequently guide
model parameter calibration, which strongly influences the
simulated hydrograph (for an overview, see Pfannerstill et
al., 2014) in terms of annual, seasonal, and monthly vol-
umes and magnitudes. For example, Vis et al. (2015) com-
pared model simulation from calibrations based on only the
model efficiency with calibrations based on the combination
of multiple objectives such as model efficiency, model ef-

ficiency of log-transformed flow, volume error, and Spear-
man rank correlation. All these calibration approaches tended
to overestimate low flows and underestimate medium and
high-flow-related SFCs. Estimation accuracy varied greatly
between SFCs, with absolute biases between 3 and 33 %.
Large differences in estimation accuracy are also reported
by Shrestha et al. (2014) and Ryo et al. (2015). Their multi-
objective calibration approach resulted in runoff simulations
favoring high flows at the expense of the estimation accu-
racy of low flows. The large variability in estimated SFC ac-
curacy as well as the bias in the estimates can generally be
observed independently of the model used to simulate the
runoff time series (Caldwell et al., 2015). A remedy to this
large variability and bias is to incorporate SFCs into model
calibration schemes. For example, Westerberg et al. (2011)
and Pfannerstill et al. (2014) focused on specific evaluation
points or segments of the flow-duration curve (FDC) during
model calibration. Both studies report better overall perfor-
mance for the simulated hydrograph with a FDC-based cali-
bration compared to a more traditional calibration approach
using, for example, the model efficiency (Nash and Sutcliffe,
1970). However, runoff models calibrated using FDC have
to be constrained by additional SFCs if one is interested in
the exact timing of events or when snow-related runoff pro-
cesses are of importance (Westerberg et al., 2011). Yilmaz et
al. (2008) combined information on different segments of the
FDC with the runoff ratio and the rainfall–runoff lag time to
guide model parameter selection in terms of primary catch-
ment functions. These hydrologically meaningful signatures
generally improved hydrograph simulation, but their value
was limited for the process of vertical redistribution of ex-
cess rainfall in the catchment. In a recent study, Kiesel et
al. (2017) compared estimates of ecologically relevant SFCs
simulated from model calibrations using different objective
functions including SFCs and the Kling–Gupta efficiency
(Gupta et al., 2009). They found that including all SFCs of
interest in the model calibration resulted in better SFC es-
timates than a calibration using the Kling–Gupta efficiency.
Instead of aiming at a well-simulated, general hydrograph,
Hingray et al. (2010) and Olsen et al. (2013) focused on cer-
tain aspects of the streamflow regime that were considered
most important. Their results, which are echoed by Murphy
et al. (2013), suggest that the runoff model performs reason-
ably well for the aspects on which it is calibrated, whereas it
only modestly represents other runoff characteristics. Hence,
developing an approach to increase the accuracy of estimated
SFCs from runoff model time series continues to be an open
challenge in hydrological modeling.

This study expands on the study of Vis et al. (2015) where
various combinations of traditionally used objective func-
tions were evaluated with respect to a suite of ecologically
relevant SFCs. Their model calibrations with the model ef-
ficiency (Reff) outperformed multi-objective model calibra-
tions (different combinations of Reff, log-transformed flow,
volume error, and Spearman rank correlation) for the investi-
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Figure 1. Location of the 25 study catchments in the Tennessee River basin (Table 1 in Vis et al., 2015, for more information).

gated SFCs. It was furthermore hypothesized that the explicit
consideration of SFCs in runoff model calibration could re-
duce bias in estimated SFCs. The main objective of this study
was therefore to assess the potential for a runoff model cali-
brated using specific aspects of the flow regime to more accu-
rately estimate a suite of SFCs as compared to using a model
efficiency-based calibration approach. The general approach
was based on the idea that most information essential for es-
timating SFCs is preserved in the simulated hydrograph by
including selected SFCs in model calibration. Our model-
ing approach relies on catchments with observed runoff time
series and therefore does not answer the question of how
to simulate SFCs in ungauged or altered catchments. How-
ever, the prediction of runoff for ungauged catchments ben-
efits from an improved and informed calibration strategy for
gauged catchments, which is used in the subsequent region-
alization. For regionalization approaches we refer to studies
such as Yadav et al. (2007), Viglione et al. (2013), or West-
erberg et al. (2016).

The following questions are addressed in this paper:

1. How well is a single SFC simulated when that SFC is
used as the model objective function? (Objective func-
tion is the SFC of interest.)

2. How well is a single SFC simulated when the model
objective function contains one or multiple other SFCs?
(Objective function can include the SFC of interest, but
generally contains one or multiple other SFCs.)

3. How does the accuracy of estimated SFCs vary between
traditional calibration approaches and those where the
SFCs of interest are included? (Objective functions are
different combinations of SFC(s) and the model effi-
ciency.)

Throughout this study, we refer to traditional and “SFC-
based” objective functions. Traditional objective functions
were defined as efficiency criteria based on statistical perfor-
mance metrics computed from (transformed) model residuals
(e.g., Reff or volume error). In contrast, “SFC-based” objec-
tive functions evaluate specific hydrograph aspects, such as
event frequencies, timing, or variability of runoff, that are of
ecological relevance in our study region.

2 Materials and methods

2.1 Catchment locations and characteristics

The study catchments are all located in the 106 000 km2

Tennessee River basin in the southeastern United States
(Fig. 1), which is one of the most diverse temperate freshwa-
ter ecosystems in the world (Abell et al., 2000). A large num-
ber of endemic fish species and a unique assemblage of mus-
sels, crayfish, and salamanders make the Tennessee River
basin an excellent area for ecohydrological studies (Abell et
al., 2000). From a study published by Knight et al. (2008),
25 catchments in the Tennessee River basin with observed
streamflow time series (U.S. Geological Survey, 2016b), pre-
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cipitation (U.S. Department of Commerce, 2007a), tempera-
ture (U.S. Department of Commerce, 2007b), and potential
evaporation data (Rotstayn et al., 2006) were selected. The
catchment areas range between 100 and 4800 km2 with el-
evations ranging from 174 to 937 m (U.S. Geological Sur-
vey, 2016a). Land cover for the study catchments is predomi-
nantly hardwood forest and pasture. Air temperature and pre-
cipitation vary between catchments according to both catch-
ment elevation and longitude. Mean annual air temperature
in the 25 catchments varies between 9.3 and 14.7 ◦C, and
annual precipitation varies from 1500 to 2020 mm, with fall
being slightly drier and less than 8 % of annual precipitation
falling as snow. Runoff is highest in winter and lowest in
summer, ranging from 400 to 1300 mma−1 (millimeters per
year). Variability in soil thickness (Omernik, 1987), regolith
thickness, karst development, and topographic slope (Hoos,
1990; Wolfe et al., 1997; Law et al., 2009) are documented
as asserting the most influence on runoff.

2.2 Selection of SFCs

Thirteen SFCs assessed in this study were chosen for use
in model scenarios based on discernible functional connec-
tions with fish community diversity (Knight et al., 2008,
2014). This set of 13 SFCs represents each of the major
flow regime components commonly used in ecological stud-
ies (e.g., Olden and Poff, 2003; Arthington et al., 2006; Cald-
well et al., 2015): magnitude, ratio, frequency, variability,
and date (Table 1). For this study the SFCs were addition-
ally grouped according to flow conditions (mean, low, and
high flow), because different aspects of the hydrograph have
been shown to be sensitive to the objective function used
for model calibration (for an overview, see Pfannerstill et
al., 2014). The SFCs were calculated using the U.S. Geolog-
ical Survey (2014) EflowStats R package. Please note that
some of the tested SFCs (DH13, ML20, MA26, DH16, and
FL2) are defined as scaled with the median, mean, or total
runoff. The scaling leads to SFC values that are dependent on
flow magnitudes. The magnitude of the simulation error for
DH13, ML29, MA26, DH16, and FL2 is therefore dependent
on runoff magnitudes, whereas the sign of the simulation er-
ror is not affected by the normalization.

2.3 The runoff model

The HBV (Hydrologiska Byråns Vattenavdelning) model
(Bergström, 1976; Lindström et al., 1997) is a bucket-type
hydrologic model for simulating continuous runoff series.
Model inputs are daily rainfall and air temperature, as well as
daily potential evaporation values. Hydrologic processes are
represented by four different routines corresponding to snow,
soil water, groundwater, and runoff routing, with a combined
total of 16 parameters. In the snow routine, snow accumu-
lation and snowmelt are calculated by a degree-day method.
Snowmelt together with rainfall and potential evaporation are

input to the soil-water routine, where the actual evaporation
and the groundwater recharge are computed based on the
soil-moisture storage. The groundwater (or response) rou-
tine consists of a connected shallow and deep groundwater
reservoir and simulates peak flow, intermediate runoff, and
baseflow. These three runoff components are taken together
and transformed by a triangular weighting function during
the routing process to calculate the runoff at the catchment
outlet. Runoff can be modeled in a semi-distributed way by
separating a catchment into elevation bands. Thereby, the
snow and soil-water routines are calculated for each eleva-
tion band, whereas the groundwater storage and the runoff
routing routines are treated as a lumped representation of the
entire catchment. HBV exists in different versions, whereby
the general structure of the model remains the same. The
version applied in this study is HBV-light (Seibert and Vis,
2012). Like for all bucket-type models, parameters in the
HBV model cannot be determined a priori: they are identi-
fied by model calibration instead. More detailed information
on the HBV model can be found in Bergström (1976), Lind-
ström et al. (1997), and Seibert and Vis (2012).

2.4 Modeling approach

2.4.1 Model setup

For each of the 25 catchments the number of elevation bands
was defined by splitting the catchment into elevation zones of
200 m. Elevation zones covering less than 5 % of the catch-
ment area were merged with the adjacent elevation zone.
For the resulting elevation bands, air temperature and rain-
fall were computed with a lapse rate of 0.6 ◦C per 100 m and
10 % per 100 m, respectively. Potential evaporation was as-
sumed to be uniform over the whole catchment.

Model simulations were run for two time periods, one last-
ing from the hydrological years (1 October until 30 Septem-
ber) 1984 to 1996 and the other lasting from 1997 to 2009.
The approximately 3 years preceding each simulation pe-
riod (January 1982 to September 1984 and January 1995 to
September 1997, respectively) served to establish state vari-
ables of the model. A warm-up period was needed to ensure
that the different state variables at the beginning of the sim-
ulation period were consistent with the preceding meteoro-
logical conditions and parameter values. The two simulation
periods were used for model calibration and validation. For
calibration, a genetic algorithm (Seibert, 2000) was used and
the range of possible parameter values was specified based
on previous studies (Lindström et al., 1997; Seibert, 1999;
Table 2 in Vis et al., 2015). The 100 independent calibration
trials allowed us to account for parameter uncertainty or equi-
finality (Beven and Freer, 2001) and resulted in a set of 100
calibrated parameter sets for each objective function (Fig. 2).
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Table 1. Description of streamflow characteristics used to calibrate the runoff model (adapted from Knight et al., 2014; U.S. Geological
Survey, 2014) (mmd−1: millimeters per day; –: no units; a−1: per annum; %: percent).

Streamflow characteristic Abbreviation Further explanation Flow Unit
condition

Magnitude

Mean annual runoff MA41 Mean annual daily runoff Mean flow (mmd−1)

Maximum October runoff MH10 Mean of October runoff maxima for each year High flow (mmd−1)

Lowest 15 % of daily runoff E85 Daily mean runoff that is exceeded 85 % Low flow (mmd−1)
of the time for the period of record

Rate of runoff recession RA7 Median change in log of runoff for days in which Mean flow (mmd−1)
the change is negative across the period of record

Ratio

Average 30-day maximum runoff DH13 Mean annual maximum of a 30-day moving High flow (–)
average runoff divided by the median
for the entire record

Baseflow ML20 Ratio of total baseflow to total flow. Baseflow is Low flow (–)
the minimum flow magnitude in a 5-day window if
90 % of that minimum flow magnitude is less
than the minimum flow magnitude of the 5 day window
before and after the considered window

Stability of runoff TA1 Measure of the constancy of a flow regime by dividing Mean flow (–)
daily flows into predetermined flow classes.
The 11 flow classes capture flow ranging from
flow less than 0.1 times the logarithmic mean
flow to flow more than 2.25 times
the logarithmic mean flow.

Frequency

Frequency of moderate floods FH6 Average number of high-flow events per year that are High flow (a−1)
equal to or greater than 3 times the median
annual flow for the period of record

Frequency of larger floods FH7 Average number of high-flow events per year that High flow (a−1)
are equal to or greater than 7 times the median
annual flow for the period of record

Variability

Variability of March runoff MA26 Standard deviation for March runoff over the period Mean flow (%)
of record divided by the mean runoff for March over
the period of record

Variability in high-flow pulse duration DH16 Standard deviation for the yearly average high-flow pulse High flow (%)
duration (daily flow greater than the 75th percentile)
divided by the mean of the yearly average high-flow
pulse duration multiplied by 100

Variability of low-flow pulse count FL2 Standard deviation for the average number of yearly Low flow (%)
low-flow pulses (daily flow less than the 25th
percentile) divided by the mean
low-flow pulse counts multiplied by 100

Date

Timing of annual minimum runoff TL1 Julian date of annual minimum flow occurrence Low flow (Julian day)

2.4.2 Choice of objective functions for model
calibration

The complete model calibration process was conducted for
25 catchments and using data from all five different types

of objective functions (see Table 2 for the exact equations)
that focused on different aspects of the hydrograph. In the
first step, model parameters were constrained by maximizing
the model efficiency (Reff, Nash and Sutcliffe, 1970). The
model efficiency is the most widely used objective function
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Table 2. Objective functions used in model calibration. Objective functions were calculated with observed (obs) and simulated (sim) runoff
(Q) or SFCs (I ).

Objective function Abbreviation Definition Optimal value

Model efficiency Reff 1−
∑

(Qobs−Qsim)2∑ (
Qobs−Qobs

)2 1

Efficiency for each individual SFC1 ISingle 1− |Iobs−Isim|
Iobs

1

SFC and model efficiency ISingle_Reff 0.5
(
ISingle+Reff

)
1

Efficiency for the selected SFCs2 IMulti
1
n

(
ISingle1

+ . . . + ISingle_n

)
1

SFCs and model efficiency IMulti_Reff
n−1
n IMulti+

1
n Reff 1

1 For each of the 13 SFCs a specific ISingle exists.
2 IMulti consists of the n most robust and informative SFCs.

Model calibration

Simulation in validation

Evaluation of hydrographs from 
calibration and validation

Computation of median
performance

Computation of mean for both 
time periods

De�nition of objective function

Time period 2
100 parameter sets

Time period 1
100 hydrographs

Time period 1
100 parameter sets

Time period 2
100 hydrographs

Mean model performance

Ca
lib

ra
tio

n
Va

lid
at

io
n

Ev
al

ua
tio

n

100 normalized SFC 
errors (additionally 
Re� and MARE)

Simulation in calibration

Time period 2
100 hydrographs

Time period 1
100 hydrographs

100 normalized SFC 
errors (additionally 
Re� and MARE)

Median normalized 
SFC error (additional-
ly Re� and MARE)

Median normalized 
SFC error (additional-
ly Re� and MARE)

Figure 2. Flow chart of the modeling approach consisting of cali-
bration, validation, and evaluation in time period 1 (1984–1996) and
time period 2 (1997–2009) and completed for each of the five objec-
tive function types Reff, ISinlge, ISingle_Reff, IMulti, and IMulti_Reff.

in hydrological modeling, and it served as a benchmark for
the objective functions that included SFCs. Model calibra-
tion with Reff tends to reduce simulation errors in magnitude
and timing of high-flow conditions at the expense of errors
in low-flow conditions (Legates and McCabe, 1999; Krause
et al., 2005).

Next, a new efficiency measure that consisted of one sin-
gle SFC (ISingle) was defined to explicitly incorporate indi-
vidual SFCs into model calibration (Table 2). Each of the 13
selected SFCs was used separately for model calibration, re-
sulting in 13 versions of ISingle. Additionally, each SFC effi-
ciency measure was combined with Reff, whereby both met-
rics were equally weighted (ISingle_Reff). The use of a single
SFC as the objective function allowed calibration to focus on
a specific aspect of the hydrograph, while adding Reff helped
to improve the overall shape of the hydrograph, including the
magnitude and timing of events.

Based on the results from the individual SFCs, an ob-
jective function consisting of equally weighted normalized
SFCs was defined (IMulti, Table 2). This “SFC-based” effi-
ciency measure was again combined with Reff (IMulti_Reff).
For the resulting combined objective function, the same
weights were assigned to each metric to make sure the in-
dividual SFCs had sufficient influence on the model calibra-
tion and were not dominated by Reff. The number of SFCs
constituting IMulti was not previously fixed. Instead, a mini-
mum number of SFCs was selected so that the resulting ob-
jective function was both robust and informative. These two
requirements for the objective function could be achieved
by only including SFCs that are robust and informative. A
SFC was considered robust when the SFC calculated from a
model simulation with ISingle had relatively small errors over
the full range of catchments in both validation time periods
compared to other SFCs. A SFC was regarded as being in-
formative when it also yielded relatively good simulations
for other SFCs. The robustness and information value of a
SFC were therefore assessed relative to other SFCs, enabling
acceptable trade-off solutions for all SFCs, with a minimum
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Table 3. Performance measures used in model evaluation. Performance measures were calculated with observed (obs) and simulated (sim)
runoff (Q) or SFCs (I ).

Performance measure Abbreviation Definition Optimal value

Model efficiency Reff 1−
∑

(Qobs−Qsim)2∑(
Qobs−Qobs

)2 1

Mean absolute relative error1 MARE 1− 1
n

∑ |Qobs−Qsim|
Qobs

1

Normalized SFC error2 nSFC Iobs−Isim
Robs

0

1 n is the number of days.
2 R is the range of possible values of a SFC for the respective catchment.

number of SFCs being potentially representative for (most
of) the 13 SFCs.

2.4.3 Evaluation of model performance

Model performance in calibration and validation was eval-
uated by means of normalized SFC error, Reff, and mean
absolute relative error (MARE) (see Table 3 for the exact
equations). These evaluation criteria were calculated for all
100 runoff simulations based on the five different types of
objective functions in both validation time periods and for
all 25 catchments. For the interpretation of the results, the
median model efficiency of each objective function, valida-
tion period, and catchment was selected as the representative
value for the model efficiency distribution. Simulation uncer-
tainty stemming from the 100 parameter sets was assessed
by a two-sided binomial test with the null hypothesis that the
probability for overestimation and underestimation of a SFC
is equal to 50 %.

As there are significant differences in the SFC ranges, a
normalization was needed that allowed comparison of the
different SFCs. Instead of normalizing in terms of relative
error, an approach was applied that normalizes the SFC esti-
mation error. The normalization of a SFC was computed as
the absolute simulation error divided by the range of possi-
ble values for that SFC in the respective catchment (Table 3).
To calculate these SFC ranges, 10 000 Monte Carlo simula-
tions were run for each respective catchment using randomly
chosen parameter values from the previously identified pa-
rameter space (Lindström et al., 1997; Seibert, 1999; Table 2
in Vis et al., 2015). The Monte Carlo simulations represented
the potential variation in a certain SFC if no information was
available to constrain the runoff model. The range was then
calculated as the difference between the 10th and 90th per-
centiles of the simulated SFC values.

3 Results

The HBV model was capable of reproducing the observed
runoff for the study catchments reasonably well. Model cali-
bration on Reff resulted in Reff values between 0.68 and 0.89

with a median of 0.79. The corresponding Reff values in val-
idation ranged from 0.62 to 0.86 with a median of 0.77.

3.1 The use of single SFCs as objective functions in
model calibration

3.1.1 Estimation accuracy using SFC-specific model
calibrations

Model calibration results for the 13 SFCs confirmed that
HBV-light is capable of estimating different SFCs with a
high level of precision if the respective SFC was used as an
objective function (ISingle) for model calibration (the 13 ab-
solute nSFCs varied between 0.000 and 0.005 for calibrations
with ISingle). Both ISingle and the combined objective func-
tion ISingle_Reff clearly outperformed model calibrations
based on Reff with regard to the estimation of SFCs (Fig. 3a).
However, calibration with ISingle yielded poor model perfor-
mances when evaluated in terms of Reff, whereas Reff effi-
ciencies of calibrations with either ISingle_Reff or Reff were
comparable (Fig. 3a).

Validation results (Fig. 3b) exhibited a similar pattern
in model performance to the calibration results. The me-
dian absolute normalized error of the 13 SFCs was rela-
tively low for model runs based on the objective functions
ISingle and ISingle_Reff compared to model calibration with
Reff. The comparable SFC estimation accuracy of ISingle and
ISingle_Reff that often outperformed model simulations with
Reff confirms the value of SFCs for model calibration aiming
at a respective SFC. An exceptional behavior can be observed
for MH10, where the estimation accuracy was negatively af-
fected by a calibration based on the SFC itself (Fig. 5a–c).

3.1.2 How informative is a SFC for estimating any
SFC?

The calibrations for all 13 versions of ISingle and ISingle_Reff
resulted in a total in 26 different runoff simulations that were
evaluated by calculating the normalized SFC error for the
calibration and validation periods. The SFC TA1 (stability of
runoff; Fig. 4a and b) was selected as a representative ex-
ample to illustrate that the use of SFCs as a single objective

www.hydrol-earth-syst-sci.net/21/5443/2017/ Hydrol. Earth Syst. Sci., 21, 5443–5457, 2017
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Figure 3. Model performance in (a) calibration and (b) validation in terms of absolute normalized SFC errors (nSFC), Reff, and MARE
depending on the objective function used in calibration. Model performance is shown as the difference between a model calibration with Reff
and model calibrations with ISingle, ISingle_Reff, IMulti, or IMulti_Reff (positive values indicate that model calibration with ISingle, ISingle_Reff,
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values correspond to the median of the 25 catchments and the mean of both modeling time periods.
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function (ISingle) generally resulted in poor SFC estimates
for those SFCs not included in ISingle in both model cali-
bration and validation when compared to model calibrations
with ISingle_Reff or Reff. Estimation accuracies from calibra-
tions with ISingle_Reff and Reff were often of comparable mag-
nitude. Error magnitudes from the three described objective
function types (ISingle, ISingle_Reff, and Reff) could vary con-
siderably between time periods (illustrated by triangles and
circles, respectively, in Fig. 4a and b).

3.2 The use of multiple SFCs for model calibration

Figure 6a shows simulation results for the objective function
ISingle for all 25 catchments and both modeling time periods.

The five SFCs with the highest robustness (less variability
in error; Fig. 6a) were RA7, ML20, FH6, E85, and MA41.
All five of these SFCs could be used for the objective func-
tion IMulti; however, E85 (lowest 15 % of daily runoff) was
discarded as potential SFC for IMulti because of its redundant
information with ML20 (baseflow). The information value of
the remaining 4 SFCs for each of the 13 SFCs is presented
in Fig. 6b. All 13 SFCs were relatively well simulated by
model calibrations with ISingle of either RA7, ML20, FH6, or
MA41 (colored circles in Fig. 6b) compared to calibrations
with other SFCs.

Median estimates of the 13 SFCs in the calibration pe-
riod were slightly lower when the model was calibrated with
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Figure 5. Comparison of absolute normalized SFC errors (nSFC) in validation calculated from model calibrations with the objective functions
Reff, ISingle, and ISingle_Reff. Absolute normalized SFC errors correspond to the median of the 25 catchments and the mean of both modeling
time periods.
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IMulti rather than IMulti_Reff. Both of these objective func-
tions led to better model performance for SFCs than cal-
ibrating with Reff alone (Fig. 3a). Model performance for
the validation period with IMulti_Reff had a lower median er-
ror for SFCs than the error associated with using IMulti as
an objective function (Fig. 3b). The comparison of IMulti
and IMulti_Reff for all SFCs separately (Fig. 7a) revealed that
for most SFCs both objective functions resulted in similar
estimates. ISingle_Reff was better for estimating SFCs than
IMulti_Reff, especially for SFCs not included in the IMulti_Reff
objective function (Fig. 7b). Comparing simulations from
IMulti_Reff and Reff revealed a smaller median error of the
SFCs when calibrating with IMulti_Reff (Figs. 3b and 7c). Yet,
for most SFCs not explicitly incorporated into the objec-
tive function IMulti_Reff, the objective function Reff performed
equally well or slightly better than IMulti_Reff (Fig. 7c).

3.3 Estimation accuracy for SFCs

Figure 8 provides an overview (median of all 25 catchments)
of how well SFCs were simulated by presenting the results
for both modeling time periods and all five objective func-
tion types. Error magnitudes ranged between −25 and 25 %
for the majority of SFCs. Considerably higher estimation ac-
curacy was achieved for ML20 (−5 to 2 %), whereas estima-
tion accuracies were lowest for MH10 and TL1, with error
magnitudes up to 40 and 77 %, respectively. For some SFCs
(e.g., MA26 and TL1) the error tended to be higher in one
of the two modeling time periods, whereas for other SFCs
(e.g., RA7 and MH10) the objective function had a distinct
influence on the error magnitude. There was no evidence that
the estimation accuracy depends on flow components (mag-
nitude, ratio, frequency, variability, and date) or flow condi-
tions (low, medium, and high flow).
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Figure 7. Comparison of absolute normalized SFC errors (nSFC) in validation calculated from model calibrations with the objective functions
Reff, ISingle_Reff, IMulti, and IMulti_Reff. Absolute normalized SFC errors correspond to the median of the 25 catchments and the mean of
both modeling time periods.
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Figure 8. Normalized SFC errors (nSFC) in validation depending
on the objective function used in calibration. Model performance
values correspond to the median of the 25 catchments and are shown
for both modeling time periods (period 1, 1984–1996, on the left
side and period 2, 1997–2009, on the right side).

The median error (illustrated by stars in Fig. 8) was used
for the evaluation of the underestimation or overestimation of
SFCs. Among the tested SFCs, an underestimation was ob-
served for all five SFCs representing high-flow conditions as
well as for three of four mean-flow-related SFCs. With one
exception, low-flow SFCs were overestimated. This overall
pattern was less evident when evaluating each objective func-
tion and time period separately (Figs. 8 and 9). The SFCs
DH16 and MH10 indicate two typically observed deviations
in the overall pattern. DH16 is an example of a SFC that
could be regarded as being clearly underestimated by the
model, because of its negative bias in 9 out of 10 cases (me-
dian values in Fig. 9a). However, for objective functions or
modeling time periods with a low magnitude in the median

bias, the underestimation of the SFC was not statistically sig-
nificant. Even in the case of a median pointing to statisti-
cally significant underestimation, there might be a substantial
number of catchments for which DH16 was overestimated.
A second commonly observed phenomenon is shown by the
SFC MH10 (Fig. 9b). While MH10 had mostly small but sta-
tistically significant median errors, there were many catch-
ments with considerably higher errors. Although MH10 was
the most extreme example, it illustrates that small median er-
rors do not guarantee good results for all catchments.

4 Discussion

4.1 On the importance of the choice of the objective
function

The results demonstrated that the objective function used for
model calibration strongly influences the estimation accuracy
of SFCs. This finding confirms the findings of previous stud-
ies (e.g., Hingray et al., 2010; Westerberg et al., 2011; Mur-
phy et al., 2013; Olsen et al., 2013; Pfannerstill et al., 2014;
Shrestha et al., 2014; Caldwell et al., 2015; Vis et al., 2015)
and points out the importance of making a careful choice of
the objective function for model calibration. The benefit of
optimizing one specific SFC lies in the relatively accurate es-
timation of the respective SFC compared to a calibration with
Reff or a multi-SFC objective function. Model calibration on
one single SFC clearly emphasizes the hydrograph aspects of
the selected SFC possibly neglecting an adequate represen-
tation of other hydrograph characteristics. This implies that
calibrations with ISingle can lead to poor model performance
for SFCs not included in the objective function. The fact that
a calibration with Reff and a calibration with multiple SFCs
lead to comparable estimates for most SFCs indicates that
the main hydrological processes of the catchments are sim-
ilarly well represented with the two approaches. Consider-
ing that SFCs not incorporated into the objective function

Hydrol. Earth Syst. Sci., 21, 5443–5457, 2017 www.hydrol-earth-syst-sci.net/21/5443/2017/
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Figure 9. (a) Normalized DH16 errors (nSFC) and (b) normalized MH10 errors (nSFC) in validation depending on the objective function
used in calibration. Normalized SFC errors are shown for all 25 catchments and for both modeling time periods (period 1, 1984–1996, on
the left side and period 2, 1997–2009, on the right side). Colors indicate the significance of the results assessed by a two-sided binomial test
at a confidence level of 0.95. Note the difference in the y axis.

IMulti showed little change compared to calibrations with Reff
brings into question the benefit of including SFCs in model
calibration instead of applying a traditional calibration ap-
proach when aiming at estimating a suite of SFCs. This is
surprising because the SFCs selected for IMulti or IMulti_Reff
provide information on high flows, recession rate, percent-
age of baseflow, and annual runoff volume, and therefore
should help in constraining the model with respect to dif-
ferent important runoff processes. These results are differ-
ent from those of Yilmaz et al. (2008) and Pfannerstill et
al. (2014), whose multi-metric runoff model calibration re-
sulted in an improved general shape of the hydrograph. Al-
though their calibration approach was mainly based on var-
ious segments of the flow duration curve, it is unclear why
the conclusions differ that much. From the above discussion
it becomes evident that calibrating a runoff model for esti-
mating many different SFCs from one single hydrograph is a
trade-off between finding a parameterization that is general
enough to represent different aspects of the hydrograph and
that simultaneously emphasizes specific SFCs. These trade-
off situations are common as perfect model parameteriza-
tions are usually not possible due to a variety of uncertainty
sources, such as model structural uncertainty and input and
runoff data uncertainty (Beven, 2016).

A noticeable result from the current study is the distinct
difference in model performance in calibration and valida-
tion when using the objective function ISingle. While almost
perfect fits are achieved in calibration for all catchments and
SFCs, model errors tend to be much higher in validation, with
a considerable spread between catchments as well as a clear
difference depending on the SFC. This observation confirms

that the model is able to simulate the SFCs well, but also
outlines that a good model calibration does not imply robust
simulations in validation. In general, it seems that SFCs that
are strongly related to physical catchment properties (e.g.,
rate of streamflow recession) are the most robust, followed by
SFCs representing an average flow condition with a moderate
robustness. SFCs that are a measure of more extreme high-
flow conditions are the least robust, possibly because these
conditions are subject to inter-annual weather changes and
are more difficult to model due to their dynamic behavior. A
low robustness could also indicate that the model structure
might be suboptimal for some catchments.

The two least robust SFCs are MH10 and TL1. MH10
simulations with ISingle yield by far the poorest results of
all objective function types, with very large normalized er-
ror in both positive and negative directions. In comparison,
the high estimation errors for TL1 depend on the modeling
time period. The high estimation errors for TL1 in period 2
stem from years where the minimum runoff was simulated
in late winter while the observed minimum was in late fall.
By visually analyzing the temperature and runoff time series,
it can be hypothesized that such model simulations mainly
happened in years with successive weeks of continuously lit-
tle precipitation during late winter. Such prolonged drier pe-
riods occurred more often in one of the two modeling time
periods and thus evoked the distinct bias in model accuracy
depending on the simulation period. Both TL1 and MH10 are
calculated from a single value per year, as opposed to, e.g.,
RA7, which is based on all recessions. In model calibration,
many parameter sets are derived that perfectly simulate this
single value. However, a good simulation of either TL1 or
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MH10 is not so much dependent on an accurate representa-
tion of dominant runoff processes. Thus, model results for
the validation period using input data of identical quality can
fail to accurately simulate either SFC because of parameter
sets “tuned” to the data as opposed to being based on model-
ing the process.

4.2 Model performance regarding SFCs

The runoff model tends to underestimate SFCs related to
mean and high-flow conditions, while SFCs representing
low-flow conditions are generally overestimated. These re-
sults are consistent with those of Olsen et al. (2013), Cald-
well et al. (2015), Vis et al. (2015), and Kiesel et al. (2017)
and can partly be explained by the model behavior charac-
terized by a less pronounced runoff response to precipita-
tion events but increased groundwater discharge to the stream
during drier periods compared to the observed data (Vis et
al., 2015). The observations that average flow conditions are
better simulated than extremes (Caldwell et al., 2015; Vis
et al., 2015) or that high-flow-related SFCs are more accu-
rately estimated than those related to low flow (Shrestha et
al., 2014; Ryo et al., 2015) cannot be confirmed with our re-
sults. None of these earlier studies explicitly included SFCs
in model calibration and the deviating results could be at-
tributed to the differing approaches to defining the objective
function(s). This presumption is supported by the previously
described differences in results of Vis et al. (2015), although
they applied the same runoff model, catchments, and SFCs.

4.3 How to select SFCs for a multi-index calibration
approach

The current study supports the assumption that including
SFCs in model calibration helps to preserve most hydrograph
aspects relevant to those SFCs. Thus, an objective function
based on several SFCs is expected to result in a hydrograph
from which a suite of SFCs can be calculated. Not knowing
which SFCs will be relevant for a given study, a guideline
as to which SFCs the model calibration could be based on
would be helpful. The first step towards a guideline consists
of selecting SFCs that are potentially valuable for model cal-
ibration. This selection was based on the concept of robust-
ness and information value of SFCs, which is comparable
to the approach used by Euser et al. (2013), who assessed
the realism of model structures. Like Euser et al. (2013), re-
sults from the current study indicated that high robustness
was not necessarily related to high information value, em-
phasizing the importance of selecting SFCs by jointly evalu-
ating robustness and information value. The concept of infor-
mation value and robustness favors simulations that preserve
important hydrograph characteristics, as can be seen from the
slightly improved median estimation accuracy of SFCs with
the objective functions IMulti or IMulti_Reff compared to esti-
mations with Reff only.

A model calibrated on certain flow conditions (low,
medium, and high flow) is beneficial for SFCs representing
these flow conditions (see, e.g., Murphy et al., 2013), so it
was hypothesized that the information value of the selected
SFCs is highest for SFCs belonging to the same group of
flow conditions. The confirmation of this hypothesis would
allow us to draw general conclusions about a minimum num-
ber of SFCs required for model calibration. Surprisingly the
results did not reveal any pattern related to flow conditions
and thus no recommendation for the final selection of SFCs
can be made. It seems that the selection of SFCs for an in-
formative and robust objective function depends on the type
and the combination of SFCs one is interested in. Since this
study was based on a limited number of SFCs it could be
interesting to test the hypothesis by analyzing a greater num-
ber of SFCs. Testing a larger number of SFCs might reveal
relations that are difficult to see with a small sample. Fur-
thermore, more knowledge about the effect of single SFCs
or the combination of SFCs used as objective functions on
runoff simulations could be gained by using synthetic data
and a modeling approach where an excellent hydrograph fit
is possible (e.g., “HBV-land” in Seibert and Vis, 2012).

4.4 Objective functions, their estimation accuracy, and
consequences for practical applications

The emphasis of SFC-related modeling studies changed from
estimating single SFCs to simulating a suite of SFCs (Olden
and Poff, 2003). The modeling design of this study com-
bined both approaches for the same SFCs and catchments
and thus enabled a direct comparison of the results. Ideally,
the runoff model could be calibrated to simulate a hydro-
graph for each catchment from which any SFC can be cal-
culated. Such an approach ensures a relatively small calibra-
tion effort, which is especially valuable if one is interested in
modeling many catchments and/or various scenarios. How-
ever, results indicate that SFCs related to a more generally
calibrated model (e.g., Reff, IMulti, or IMulti_Reff) are less ac-
curate than when they are estimated from hydrographs based
on targeted model calibrations (e.g., ISingle or ISingle_Reff).
This fact has substantial implications for the later application
of simulated SFCs in decision-support systems for integrated
resource management. As stated by Carlisle et al. (2010),
with high errors in SFC estimates, only considerable flow
departures from natural conditions can be detected. Also, in-
accurate SFC values can impede the generation of more ro-
bust flow alteration–ecosystem change relationships that are
ultimately needed for sustainable flow management guide-
lines (Arthington et al., 2006; Poff and Zimmermann, 2010;
Gillespie et al., 2015; Cartwright et al., 2017).

As with regional statistical approaches, incorporating
SFCs into model objective functions implies that a modeler
knows which SFCs are relevant and that the model must be
recalibrated if one is interested in additional SFCs. The ad-
vantage of runoff models over multivariate regressions and
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observed streamflow series includes their use for climate sce-
nario analysis or for simulating runoff in ungauged catch-
ments, with the latter being one of the ultimate aims in the
ELOHA framework (Poff et al., 2010). Modeling SFCs gets
even more challenging when moving from a gauged to an
ungauged catchment. An appropriate calibration strategy tar-
geted to the main simulation goal is crucial for any subse-
quent regionalization.

4.5 Choice of the runoff model for estimating SFCs

When comparing SFCs estimated from simulations of dif-
ferent runoff models, the question can be raised whether the
results depend on the selected model. This question is espe-
cially important for resource managers who need to make de-
cisions based on model results from different studies (Cald-
well et al., 2015). A comparison of runoff models with differ-
ent spatial scales that rely on different data inputs was con-
ducted by Caldwell et al. (2015). Their results do not indicate
that a certain runoff model is more suited for predicting SFCs
than others, but rather that the calibration process probably
has as much influence as the model structure. Thus, it can be
assumed that the conclusions of this study would be similar
if a different calibrated runoff model was applied.

5 Conclusions

In this study, we evaluated the value of using SFCs for the
calibration of a runoff model used to estimate SFCs. The re-
sults suggest that the choice of the objective function used
for model calibration strongly influences the estimation ac-
curacy of SFCs. While the model was capable of correctly
simulating any of the tested SFCs, a good reproduction of a
particular SFC was generally achieved when this SFC was in-
cluded in the objective function. SFC estimates from model
simulations with an objective function consisting of a rep-
resentative selection of SFCs resulted in comparable accu-
racies to the estimates from model runs based on the com-
monly used model efficiency when evaluated against SFCs
not included in the objective function. Estimates of SFCs that
are less dependent on the short-term weather input or SFCs
representing average flow conditions were more robust than
other SFCs. Since the results imply that one has to consider
significant uncertainties when simulated time series are used
to derive SFCs that were not included in the calibration, we
strongly recommend calibrating the runoff model explicitly
for the SFCs of interest.
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