Articles | Volume 21, issue 9
https://doi.org/10.5194/hess-21-4283-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-4283-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages
Martin E. Nowak
CORRESPONDING AUTHOR
Department for Biogeochemical Processes, Max-Planck Institute for
Biogeochemistry, Hans-Knöll Straße 10, 07745 Jena, Germany
currently at: Bavarian Environment Agency, Hans-Högn-Straße 12, 95030 Hof, Germany
Valérie F. Schwab
Chair of Hydrogeology, Institute of Geosciences, Friedrich Schiller
University Jena, Burgweg 11, 07749 Jena, Germany
Cassandre S. Lazar
Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena,
Dornburger Str. 159, 07743 Jena, Germany
Thomas Behrendt
Department for Biogeochemical Processes, Max-Planck Institute for
Biogeochemistry, Hans-Knöll Straße 10, 07745 Jena, Germany
Bernd Kohlhepp
Chair of Hydrogeology, Institute of Geosciences, Friedrich Schiller
University Jena, Burgweg 11, 07749 Jena, Germany
Kai Uwe Totsche
Chair of Hydrogeology, Institute of Geosciences, Friedrich Schiller
University Jena, Burgweg 11, 07749 Jena, Germany
Kirsten Küsel
Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena,
Dornburger Str. 159, 07743 Jena, Germany
German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig,
Germany
Susan E. Trumbore
Department for Biogeochemical Processes, Max-Planck Institute for
Biogeochemistry, Hans-Knöll Straße 10, 07745 Jena, Germany
Related authors
M. E. Nowak, F. Beulig, J. von Fischer, J. Muhr, K. Küsel, and S. E. Trumbore
Biogeosciences, 12, 7169–7183, https://doi.org/10.5194/bg-12-7169-2015, https://doi.org/10.5194/bg-12-7169-2015, 2015
Short summary
Short summary
Microorganisms have been recognized as an important source of soil organic matter (SOM). Autotrophic microorganisms utilize CO2 instead of organic carbon. Microbial CO2 fixation is accompanied with high 13C isotope discrimination. Because autotrophs are abundant in soils, they might be a significant factor influencing 13C signatures of SOM. Thus, it is important to asses the importance of autotrophs for C isotope signatures in soils, in order to use isotopes as a tracer for soil C dynamics.
Luciano Emmert, Susan Trumbore, Joaquim dos Santos, Adriano Lima, Niro Higuchi, Robinson Negrón-Juárez, Cléo Dias-Júnior, Tarek El-Madany, Olaf Kolle, Gabriel Ribeiro, and Daniel Marra
EGUsphere, https://doi.org/10.5194/egusphere-2024-3234, https://doi.org/10.5194/egusphere-2024-3234, 2024
Short summary
Short summary
For the first time, we documented wind gusts with the potential to damage trees in a forest in the Central Amazon. We used meteorological data collected at crown height over 24 months. We recorded 424 gusts, which occur more frequently and intensely in higher elevated areas and during the transition from the dry to the wet season. More intense rains showed the strongest relationship with extreme winds, highlighting the role of extreme events in tree mortality.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Maximiliano González-Sosa, Carlos A. Sierra, J. Andrés Quincke, Walter E. Baethgen, Susan Trumbore, and M. Virginia Pravia
SOIL, 10, 467–486, https://doi.org/10.5194/soil-10-467-2024, https://doi.org/10.5194/soil-10-467-2024, 2024
Short summary
Short summary
Based on an approach that involved soil organic carbon (SOC) monitoring, radiocarbon measurement in bulk soil, and incubations from a long-term 60-year experiment, it was concluded that the avoidance of old carbon losses in the integrated crop–pasture systems is the main reason that explains their greater carbon storage capacities compared to continuous cropping. A better understanding of these processes is essential for making agronomic decisions to increase the carbon sequestration capacity.
Saqr Munassar, Christian Roedenbeck, Michał Gałkowski, Frank-Thomas Koch, Kai U. Totsche, Santiago Botía, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-291, https://doi.org/10.5194/egusphere-2024-291, 2024
Short summary
Short summary
CO2 mole fractions simulated over a global stations showed an overestimation of CO2 if the diurnal cycle is missing NEE. This led to biases in the estimated fluxes derived from the inversions at continental and regional scales. IAVof estimated NEE was affected by the diurnal effect. The findings point to the importance of including the diurnal variations of CO2 in the biosphere priors used in inversions to better converge flux estimates among inversions, in particular those contributing to GCB.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos Sierra
EGUsphere, https://doi.org/10.5194/egusphere-2024-883, https://doi.org/10.5194/egusphere-2024-883, 2024
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a doubling of the transit time from 6 ± 2 years and 18 ± 5 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Saqr Munassar, Guillaume Monteil, Marko Scholze, Ute Karstens, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, and Christoph Gerbig
Atmos. Chem. Phys., 23, 2813–2828, https://doi.org/10.5194/acp-23-2813-2023, https://doi.org/10.5194/acp-23-2813-2023, 2023
Short summary
Short summary
Using different transport models results in large errors in optimized fluxes in the atmospheric inversions. Boundary conditions and inversion system configurations lead to a smaller but non-negligible impact. The findings highlight the importance to validate transport models for further developments but also to properly account for such errors in inverse modelling. This will help narrow the convergence of gas estimates reported in the scientific literature from different inversion frameworks.
Jeffrey Prescott Beem-Miller, Craig Rasmussen, Alison May Hoyt, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore
EGUsphere, https://doi.org/10.5194/egusphere-2022-1083, https://doi.org/10.5194/egusphere-2022-1083, 2022
Preprint withdrawn
Short summary
Short summary
We compared the age of persistent soil organic matter as well as active emissions of carbon dioxide from soils across a gradient of climate and geology. We found that clay minerals are more important than mean annual temperature for both persistent and actively cycling soil carbon, and that they may attenuate the sensitivity of soil organic matter decomposition to temperature. Accounting for geology and soil development could therefore improve estimates of soil carbon stocks and changes.
Karel Castro-Morales, Anna Canning, Sophie Arzberger, Will A. Overholt, Kirsten Küsel, Olaf Kolle, Mathias Göckede, Nikita Zimov, and Arne Körtzinger
Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, https://doi.org/10.5194/bg-19-5059-2022, 2022
Short summary
Short summary
Permafrost thaw releases methane that can be emitted into the atmosphere or transported by Arctic rivers. Methane measurements are lacking in large Arctic river regions. In the Kolyma River (northeast Siberia), we measured dissolved methane to map its distribution with great spatial detail. The river’s edge and river junctions had the highest methane concentrations compared to other river areas. Microbial communities in the river showed that the river’s methane likely is from the adjacent land.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Short summary
The results obtained from ensembles of inversions over 13 years show the largest spread in the a posteriori fluxes over the station set ensemble. Using different prior fluxes in the inversions led to a smaller impact. Drought occurrences in 2018 and 2019 affected CO2 fluxes as seen in net ecosystem exchange estimates. Our study highlights the importance of expanding the atmospheric site network across Europe to better constrain CO2 fluxes in inverse modelling.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Jinxuan Chen, Christoph Gerbig, Julia Marshall, and Kai Uwe Totsche
Geosci. Model Dev., 13, 4091–4106, https://doi.org/10.5194/gmd-13-4091-2020, https://doi.org/10.5194/gmd-13-4091-2020, 2020
Short summary
Short summary
One of the essential challenge for atmospheric CO2 forecasting is predicting CO2 flux variation on synoptic timescale. For CAMS CO2 forecast, a process-based vegetation model is used.
In this research we evaluate another type of model (i.e., the light-use-efficiency model VPRM), which is a data-driven approach and thus ideal for realistic estimation, on its ability of flux prediction. Errors from different sources are assessed, and overall the model is capable of CO2 flux prediction.
Ann-Sophie Lehnert, Thomas Behrendt, Alexander Ruecker, Georg Pohnert, and Susan E. Trumbore
Atmos. Meas. Tech., 13, 3507–3520, https://doi.org/10.5194/amt-13-3507-2020, https://doi.org/10.5194/amt-13-3507-2020, 2020
Short summary
Short summary
Volatile organic compounds (VOCs) like scents can appear and disappear quickly. For example, when a bug starts on a tree, the tree releases VOCs that warn the trees around him. Thus, one needs instruments measuring their concentration in real time and identify which VOC is measured. In our study, we compared two instruments doing that, PTR-MS and SIFT-MS. Both work similarly, but we found that the PTR-MS can measure lower concentrations, but the SIFT-MS can identify VOCs better.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Shaun R. Levick, Anna E. Richards, Garry D. Cook, Jon Schatz, Marcus Guderle, Richard J. Williams, Parash Subedi, Susan E. Trumbore, and Alan N. Andersen
Biogeosciences, 16, 1493–1503, https://doi.org/10.5194/bg-16-1493-2019, https://doi.org/10.5194/bg-16-1493-2019, 2019
Short summary
Short summary
We used airborne lidar to map the three-dimensional structure and model the biomass of plant canopies across a long-term fire experiment in the Northern Territory of Australia. Our results show that late season fires occurring every 2 years reduce the amount of carbon stored above-ground by 50 % relative to unburnt control plots. We also show how increased fire intensity removes the shrub layer from savannas and discuss the implications for biodiversity conservation.
Thomas Behrendt, Elisa C. P. Catão, Rüdiger Bunk, Zhigang Yi, Elena Schweer, Steffen Kolb, Jürgen Kesselmeier, and Susan Trumbore
SOIL, 5, 121–135, https://doi.org/10.5194/soil-5-121-2019, https://doi.org/10.5194/soil-5-121-2019, 2019
Short summary
Short summary
We measured net fluxes of OCS from nine soils with different land use in a dynamic chamber system and analyzed for one soil RNA relative abundance and gene transcripts. Our data suggest that indeed carbonic anhydrase (CA) plays an important role for OCS exchange, but the role of other enzymes might have been underestimated. Our study is the first assessment of the environmental significance of different microbial groups producing and consuming OCS by various enzymes other than CA.
Boaz Hilman, Jan Muhr, Susan E. Trumbore, Norbert Kunert, Mariah S. Carbone, Päivi Yuval, S. Joseph Wright, Gerardo Moreno, Oscar Pérez-Priego, Mirco Migliavacca, Arnaud Carrara, José M. Grünzweig, Yagil Osem, Tal Weiner, and Alon Angert
Biogeosciences, 16, 177–191, https://doi.org/10.5194/bg-16-177-2019, https://doi.org/10.5194/bg-16-177-2019, 2019
Short summary
Short summary
Combined measurement of CO2 / O2 fluxes in tree stems suggested that on average 41 % of the respired CO2 was not emitted locally to the atmosphere. This finding strengthens the recognition that CO2 efflux from tree stems is not an accurate measure of respiration. The CO2 / O2 fluxes did not vary as expected if CO2 dissolution in the xylem sap was the main driver for the CO2 retention. We suggest the examination of refixation of respired CO2 as a possible mechanism for CO2 retention.
Fabio Boschetti, Valerie Thouret, Greet Janssens Maenhout, Kai Uwe Totsche, Julia Marshall, and Christoph Gerbig
Atmos. Chem. Phys., 18, 9225–9241, https://doi.org/10.5194/acp-18-9225-2018, https://doi.org/10.5194/acp-18-9225-2018, 2018
Short summary
Short summary
Retrieving surface–atmosphere fluxes from the combination of atmospheric observations with atmospheric transport models can benefit from combining multiple species in a single inversion. The underlying effect is that species such as CO2 and CO have partially overlapping emission patterns for given sectors and fuel types and so share part of the uncertainties, both related to the a priori knowledge of emissions, and to model–data mismatch error. We show this for airborne profile data from IAGOS.
Rüdiger Bunk, Zhigang Yi, Thomas Behrendt, Dianming Wu, Meinrat Otto Andreae, and Jürgen Kesselmeier
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-20, https://doi.org/10.5194/bg-2018-20, 2018
Manuscript not accepted for further review
Short summary
Short summary
We examined the OCS exchange of four soils with the atmosphere. The laboratory setup used allowed to monitor this exchange while simultaneously monitor soil moisture. The OCS exchange of those soils was measured over full range from very wet to very dry.
We found that uptake of OCS is highly dependent on soil moisture, that probably heterotroph and autotrophs drive the uptake at different soil moistures and that the role of soils as net consumer or producers of OCS may vary with soil moisture.
Bernd Kohlhepp, Robert Lehmann, Paul Seeber, Kirsten Küsel, Susan E. Trumbore, and Kai U. Totsche
Hydrol. Earth Syst. Sci., 21, 6091–6116, https://doi.org/10.5194/hess-21-6091-2017, https://doi.org/10.5194/hess-21-6091-2017, 2017
Rebecca Elizabeth Cooper, Karin Eusterhues, Carl-Eric Wegner, Kai Uwe Totsche, and Kirsten Küsel
Biogeosciences, 14, 5171–5188, https://doi.org/10.5194/bg-14-5171-2017, https://doi.org/10.5194/bg-14-5171-2017, 2017
Short summary
Short summary
In this study we show increasing organic matter (OM) content on ferrihydrite surfaces enhances Fe reduction by the model Fe reducer S. oneidensis and a microbial consortia extracted from peat. Similarities in reduction rates between S. oneidensis and the consortia suggest electron shuttling dominates in OM-rich soils. Community profile analyses showed enrichment of fermenters with pure ferrihydrite, whereas OM–mineral complexes favored enrichment of Fe-reducing Desulfobacteria and Pelosinus sp.
Valérie F. Schwab, Martina Herrmann, Vanessa-Nina Roth, Gerd Gleixner, Robert Lehmann, Georg Pohnert, Susan Trumbore, Kirsten Küsel, and Kai U. Totsche
Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017, https://doi.org/10.5194/bg-14-2697-2017, 2017
Short summary
Short summary
We used phospholipid fatty acids (PLFAs) to link specific microbial markers to the spatio-temporal changes of groundwater physico-chemistry. PLFA-based functional groups were directly supported by DNA/RNA results. O2 resulted in increased eukaryotic biomass and abundance of nitrite-oxidizing bacteria but impeded anammox, sulphate-reducing and iron-reducing bacteria. Our study demonstrates the power of PLFA-based approaches to study the nature and activity of microorganisms in pristine aquifers.
Shreeya Verma, Julia Marshall, Christoph Gerbig, Christian Rödenbeck, and Kai Uwe Totsche
Atmos. Chem. Phys., 17, 5665–5675, https://doi.org/10.5194/acp-17-5665-2017, https://doi.org/10.5194/acp-17-5665-2017, 2017
Short summary
Short summary
The inverse modelling approach for estimating surface fluxes is based on transport models that have an imperfect representation of atmospheric processes like vertical mixing. In this paper, we show how assimilating commercial aircraft-based vertical profiles of CO2 into inverse models can help reduce error due to the transport model, thus providing more accurate estimates of surface fluxes. Further, the reduction in flux uncertainty due to aircraft profiles from the IAGOS project is quantified.
Lesego Khomo, Susan Trumbore, Carleton R. Bern, and Oliver A. Chadwick
SOIL, 3, 17–30, https://doi.org/10.5194/soil-3-17-2017, https://doi.org/10.5194/soil-3-17-2017, 2017
Short summary
Short summary
We evaluated mineral control of organic carbon dynamics by relating the content and age of carbon stored in soils of varied mineralogical composition found in the landscapes of Kruger National Park, South Africa. Carbon associated with smectite clay minerals, which have stronger surface–organic matter interactions, averaged about a thousand years old, while most soil carbon was only decades to centuries old and was associated with iron and aluminum oxide minerals.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Daniel Magnabosco Marra, Niro Higuchi, Susan E. Trumbore, Gabriel H. P. M. Ribeiro, Joaquim dos Santos, Vilany M. C. Carneiro, Adriano J. N. Lima, Jeffrey Q. Chambers, Robinson I. Negrón-Juárez, Frederic Holzwarth, Björn Reu, and Christian Wirth
Biogeosciences, 13, 1553–1570, https://doi.org/10.5194/bg-13-1553-2016, https://doi.org/10.5194/bg-13-1553-2016, 2016
Short summary
Short summary
Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases.
Leandro T. dos Santos, Daniel Magnabosco Marra, Susan Trumbore, Plínio B. de Camargo, Robinson I. Negrón-Juárez, Adriano J. N. Lima, Gabriel H. P. M. Ribeiro, Joaquim dos Santos, and Niro Higuchi
Biogeosciences, 13, 1299–1308, https://doi.org/10.5194/bg-13-1299-2016, https://doi.org/10.5194/bg-13-1299-2016, 2016
Short summary
Short summary
In the Amazon forest, wind disturbances can create canopy gaps of many hundreds of hectares. We show that inputs of plant litter associated with large windthrows cause a short-term increase in soil carbon stock. The degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.
P. Kountouris, C. Gerbig, K.-U. Totsche, A. J. Dolman, A. G. C. A. Meesters, G. Broquet, F. Maignan, B. Gioli, L. Montagnani, and C. Helfter
Biogeosciences, 12, 7403–7421, https://doi.org/10.5194/bg-12-7403-2015, https://doi.org/10.5194/bg-12-7403-2015, 2015
M. E. Nowak, F. Beulig, J. von Fischer, J. Muhr, K. Küsel, and S. E. Trumbore
Biogeosciences, 12, 7169–7183, https://doi.org/10.5194/bg-12-7169-2015, https://doi.org/10.5194/bg-12-7169-2015, 2015
Short summary
Short summary
Microorganisms have been recognized as an important source of soil organic matter (SOM). Autotrophic microorganisms utilize CO2 instead of organic carbon. Microbial CO2 fixation is accompanied with high 13C isotope discrimination. Because autotrophs are abundant in soils, they might be a significant factor influencing 13C signatures of SOM. Thus, it is important to asses the importance of autotrophs for C isotope signatures in soils, in order to use isotopes as a tracer for soil C dynamics.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
J. F. Mori, T. R. Neu, S. Lu, M. Händel, K. U. Totsche, and K. Küsel
Biogeosciences, 12, 5277–5289, https://doi.org/10.5194/bg-12-5277-2015, https://doi.org/10.5194/bg-12-5277-2015, 2015
Short summary
Short summary
We studied filamentous macroscopic algae growing in metal-rich stream water that leaked from a former uranium-mining district. These algae were encrusted with Fe-deposits that were associated with microbes, mainly Gallionella-related Fe-oxidizing bacteria, and extracellular polymeric substances. Algae with a lower number of chloroplasts often exhibited discontinuous series of precipitates, likely due to the intercalary growth of algae which allowed them to avoid detrimental encrustation.
K. Eusterhues, A. Hädrich, J. Neidhardt, K. Küsel, T. F. Keller, K. D. Jandt, and K. U. Totsche
Biogeosciences, 11, 4953–4966, https://doi.org/10.5194/bg-11-4953-2014, https://doi.org/10.5194/bg-11-4953-2014, 2014
C. A. Sierra, M. Müller, and S. E. Trumbore
Geosci. Model Dev., 7, 1919–1931, https://doi.org/10.5194/gmd-7-1919-2014, https://doi.org/10.5194/gmd-7-1919-2014, 2014
R. Kretschmer, C. Gerbig, U. Karstens, G. Biavati, A. Vermeulen, F. Vogel, S. Hammer, and K. U. Totsche
Atmos. Chem. Phys., 14, 7149–7172, https://doi.org/10.5194/acp-14-7149-2014, https://doi.org/10.5194/acp-14-7149-2014, 2014
B. Ahrens, M. Reichstein, W. Borken, J. Muhr, S. E. Trumbore, and T. Wutzler
Biogeosciences, 11, 2147–2168, https://doi.org/10.5194/bg-11-2147-2014, https://doi.org/10.5194/bg-11-2147-2014, 2014
M. S. Torn, M. Kleber, E. S. Zavaleta, B. Zhu, C. B. Field, and S. E. Trumbore
Biogeosciences, 10, 8067–8081, https://doi.org/10.5194/bg-10-8067-2013, https://doi.org/10.5194/bg-10-8067-2013, 2013
E. Solly, I. Schöning, S. Boch, J. Müller, S. A. Socher, S. E. Trumbore, and M. Schrumpf
Biogeosciences, 10, 4833–4843, https://doi.org/10.5194/bg-10-4833-2013, https://doi.org/10.5194/bg-10-4833-2013, 2013
Related subject area
Subject: Biogeochemical processes | Techniques and Approaches: Instruments and observation techniques
CAMELS-Chem: augmenting CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) with atmospheric and stream water chemistry data
Hydrological connectivity controls dissolved organic carbon exports in a peatland-dominated boreal catchment stream
Technical note: Testing the effect of different pumping rates on pore-water sampling for ions, stable isotopes, and gas concentrations in the hyporheic zone
Geophysically based analysis of breakthrough curves and ion exchange processes in soil
Spatio-temporal controls of C–N–P dynamics across headwater catchments of a temperate agricultural region from public data analysis
Pesticide peak concentration reduction in a small vegetated treatment system controlled by chemograph shape
On the role of operational dynamics in biogeochemical efficiency of a soil aquifer treatment system
Hydrological tracers for assessing transport and dissipation processes of pesticides in a model constructed wetland system
Assessing inter-annual and seasonal patterns of DOC and DOM quality across a complex alpine watershed underlain by discontinuous permafrost in Yukon, Canada
A small-volume multiplexed pumping system for automated, high-frequency water chemistry measurements in volume-limited applications
The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia
Nitrogen attenuation, dilution and recycling in the intertidal hyporheic zone of a subtropical estuary
Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment
Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition
The influence of riparian evapotranspiration on stream hydrology and nitrogen retention in a subhumid Mediterranean catchment
Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds
Redox controls on methane formation, migration and fate in shallow aquifers
Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments
Chemical and U–Sr isotopic variations in stream and source waters of the Strengbach watershed (Vosges mountains, France)
Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China
Impacts of tropical cyclones on hydrochemistry of a subtropical forest
Acid-base characteristics of the Grass Pond watershed in the Adirondack Mountains of New York State, USA: interactions among soil, vegetation and surface waters
Catchment features controlling nitrogen dynamics in running waters above the tree line (central Italian Alps)
Dissolved organic carbon characteristics in surface ponds from contrasting wetland ecosystems: a case study in the Sanjiang Plain, Northeast China
Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring
Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland)
Gary Sterle, Julia Perdrial, Dustin W. Kincaid, Kristen L. Underwood, Donna M. Rizzo, Ijaz Ul Haq, Li Li, Byung Suk Lee, Thomas Adler, Hang Wen, Helena Middleton, and Adrian A. Harpold
Hydrol. Earth Syst. Sci., 28, 611–630, https://doi.org/10.5194/hess-28-611-2024, https://doi.org/10.5194/hess-28-611-2024, 2024
Short summary
Short summary
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. The newly developed dataset, termed CAMELS-Chem, includes common stream water chemistry constituents and wet deposition chemistry in 516 catchments. Examples show the value of CAMELS-Chem to trend and spatial analyses, as well as its limitations in sampling length and consistency.
Antonin Prijac, Laure Gandois, Pierre Taillardat, Marc-André Bourgault, Khawla Riahi, Alex Ponçot, Alain Tremblay, and Michelle Garneau
Hydrol. Earth Syst. Sci., 27, 3935–3955, https://doi.org/10.5194/hess-27-3935-2023, https://doi.org/10.5194/hess-27-3935-2023, 2023
Short summary
Short summary
The peatland dissolved organic carbon (DOC) lost through aquatic exports can offset a significant proportion of the ecosystem carbon balance. Hence, we propose a new approach to better estimate the DOC exports based on the specific contribution of a boreal peatland (Canada) during periods of high flow. In addition, we studied the relations between DOC concentrations and stream discharge in order to better understand the DOC export mechanisms under contrasted hydrometeorological conditions.
Tamara Michaelis, Anja Wunderlich, Thomas Baumann, Juergen Geist, and Florian Einsiedl
Hydrol. Earth Syst. Sci., 27, 3769–3782, https://doi.org/10.5194/hess-27-3769-2023, https://doi.org/10.5194/hess-27-3769-2023, 2023
Short summary
Short summary
Riverbeds are densely populated with microorganisms which catalyze ecologically relevant processes. To study this complex zone, we tested pore-water extraction with microfilter tubes. The method was found to be suitable for the measurement of dissolved solutes but less so for gases. The pumping rate during sample extraction strongly influenced gas analyses in the samples. The combination with an optical oxygen sensor and a temperature monitoring system was found to be highly valuable.
Shany Ben Moshe, Pauline Kessouri, Dana Erlich, and Alex Furman
Hydrol. Earth Syst. Sci., 25, 3041–3052, https://doi.org/10.5194/hess-25-3041-2021, https://doi.org/10.5194/hess-25-3041-2021, 2021
Short summary
Short summary
A non-invasive geophysical method (spectral induced polarization, SIP) was used to characterize and predict solute transport patterns in soil columns. Our results show that SIP-based breakthrough curve (BTC) analysis is superior over conventional outflow-based analysis as it can characterize system heterogeneity and is superior over electrical-conductivity-based analysis as it is capable of distinguishing between the adsorption end-members without the need for sampling.
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021, https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Short summary
This study investigates the drivers of spatial variations in stream water quality in poorly studied headwater catchments and includes multiple elements involved in major water quality issues, such as eutrophication. We used a regional public dataset of monthly stream water concentrations monitored for 10 years over 185 agricultural catchments. We found a spatial and seasonal opposition between carbon and nitrogen concentrations, while phosphorus concentrations showed another spatial pattern.
Jan Greiwe, Oliver Olsson, Klaus Kümmerer, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 497–509, https://doi.org/10.5194/hess-25-497-2021, https://doi.org/10.5194/hess-25-497-2021, 2021
Short summary
Short summary
We investigated the linkage between contaminant mobilization in catchments and their mitigation in vegetated treatment systems (VTSs). We identified different patterns in chemographs recorded at the inlet of a VTS, indicating distinct mobilization patterns that were associated with similar source areas, transport pathways, and discharge dynamics. Peak concentration reduction in the VTS was strongest for sharp-peaked chemographs, suggesting that dispersion was the principle mitigation process.
Shany Ben Moshe, Noam Weisbrod, Felix Barquero, Jana Sallwey, Ofri Orgad, and Alex Furman
Hydrol. Earth Syst. Sci., 24, 417–426, https://doi.org/10.5194/hess-24-417-2020, https://doi.org/10.5194/hess-24-417-2020, 2020
Short summary
Short summary
In soil aquifer treatment (a soil-based treatment for wastewater), infiltration ponds are operated in flooding and drying cycles, and the reclaimed water may be used for irrigation. We tested the effect of hydraulic operation on the biogeochemical system via long-column experiments. We found that longer drying periods not only were beneficial for the upper area of the profile but also increased the volume of the system that maintained oxidizing conditions.
Elena Fernández-Pascual, Marcus Bork, Birte Hensen, and Jens Lange
Hydrol. Earth Syst. Sci., 24, 41–60, https://doi.org/10.5194/hess-24-41-2020, https://doi.org/10.5194/hess-24-41-2020, 2020
Short summary
Short summary
In this study we explore the use of hydrological tracers coupled with high vertical resolution sampling and monitoring to evaluate temporal and spatial mechanisms that dominate transport and dissipation of pesticides in a laboratory-scale constructed wetland. Our results reveal different transport vectors and dissipation pathways of solutes over time and space that are influenced by the constructional design, the presence of plants and the alternation of different hydrological conditions.
Nadine J. Shatilla and Sean K. Carey
Hydrol. Earth Syst. Sci., 23, 3571–3591, https://doi.org/10.5194/hess-23-3571-2019, https://doi.org/10.5194/hess-23-3571-2019, 2019
Short summary
Short summary
High-latitude permafrost environments are changing rapidly due impacts and feedbacks associated with climate warming. We used streamflow and DOC concentrations as well as export estimates and optical indices to better understand how different surface water bodies transport and process dissolved material over multiple seasons and years. Information on DOM quality provides insight into organic material sources and possible composition changes related to higher summer rainfall in summer/fall.
Bryan M. Maxwell, François Birgand, Brad Smith, and Kyle Aveni-Deforge
Hydrol. Earth Syst. Sci., 22, 5615–5628, https://doi.org/10.5194/hess-22-5615-2018, https://doi.org/10.5194/hess-22-5615-2018, 2018
Short summary
Short summary
A multiplexed pumping system (MPS) for obtaining continuous water quality data at multiple locations was previously reported. The existing design was not practical for sampling water in volume-limited applications such as small mesocosms or porewater sampling. This paper discusses the design and performance of a small-volume MPS and illustrates two applications, showing spatial variability in replicate in situ mesocosms and short-circuiting in a woodchip bioreactor using porewater sampling.
Alistair Grinham, Simon Albert, Nathaniel Deering, Matthew Dunbabin, David Bastviken, Bradford Sherman, Catherine E. Lovelock, and Christopher D. Evans
Hydrol. Earth Syst. Sci., 22, 5281–5298, https://doi.org/10.5194/hess-22-5281-2018, https://doi.org/10.5194/hess-22-5281-2018, 2018
Short summary
Short summary
Artificial water bodies are a major source of methane and an important contributor to flooded land greenhouse gas emissions. Past studies focussed on large water supply or hydropower reservoirs with small artificial water bodies (ponds) almost completely ignored. This regional study demonstrated ponds accounted for one-third of flooded land surface area and emitted over 1.6 million t CO2 eq. yr−1 (10 % of land use sector emissions). Ponds should be included in regional GHG inventories.
Sébastien Lamontagne, Frédéric Cosme, Andrew Minard, and Andrew Holloway
Hydrol. Earth Syst. Sci., 22, 4083–4096, https://doi.org/10.5194/hess-22-4083-2018, https://doi.org/10.5194/hess-22-4083-2018, 2018
Short summary
Short summary
The dual nitrate isotope technique is one of the most commonly used approaches to study the origin and fate of N introduced in aquifers. In this study, we first demonstrate a large attenuation of groundwater N at a former industrial site, especially at the interface between surface and groundwater. We also provide evidence for a switch in the oxygen isotopic signature of groundwater due to this extensive N attenuation. This could be used to better quantify N attenuation processes in aquifers.
Susana Bernal, Anna Lupon, Núria Catalán, Sara Castelar, and Eugènia Martí
Hydrol. Earth Syst. Sci., 22, 1897–1910, https://doi.org/10.5194/hess-22-1897-2018, https://doi.org/10.5194/hess-22-1897-2018, 2018
Sam P. Jones, Jérôme Ogée, Joana Sauze, Steven Wohl, Noelia Saavedra, Noelia Fernández-Prado, Juliette Maire, Thomas Launois, Alexandre Bosc, and Lisa Wingate
Hydrol. Earth Syst. Sci., 21, 6363–6377, https://doi.org/10.5194/hess-21-6363-2017, https://doi.org/10.5194/hess-21-6363-2017, 2017
Anna Lupon, Susana Bernal, Sílvia Poblador, Eugènia Martí, and Francesc Sabater
Hydrol. Earth Syst. Sci., 20, 3831–3842, https://doi.org/10.5194/hess-20-3831-2016, https://doi.org/10.5194/hess-20-3831-2016, 2016
Short summary
Short summary
The influence of riparian evapotranspiration (ET) on stream hydrology and chemistry is poorly understood. We investigated temporal changes in riparian ET, stream discharge and nutrient chemistry along a Mediterranean catchment. Despite being a small component of annual water budgets (4.5 %), our results highlight that riparian ET drives stream and groundwater hydrology in Mediterranean catchments and, further, question the potential of the riparian zone as a natural filter of nitrogen loads.
Michael J. Pennino, Sujay S. Kaushal, Paul M. Mayer, Ryan M. Utz, and Curtis A. Cooper
Hydrol. Earth Syst. Sci., 20, 3419–3439, https://doi.org/10.5194/hess-20-3419-2016, https://doi.org/10.5194/hess-20-3419-2016, 2016
Short summary
Short summary
The goal of this study was to compare how differences in urban stream restoration and sanitary infrastructure affect sources and fluxes of water and nutrients. Stream restoration reduced peak discharge and lowered nutrient export compared to unrestored streams, but was similar to a stream with upland stormwater management. The primary source of nitrate at all sites was leaky sanitary sewers, suggesting that combining stream restoration with sanitary pipe repairs may help reduce nutrient loads.
Pauline Humez, Bernhard Mayer, Michael Nightingale, Veith Becker, Andrew Kingston, Stephen Taylor, Guy Bayegnak, Romain Millot, and Wolfram Kloppmann
Hydrol. Earth Syst. Sci., 20, 2759–2777, https://doi.org/10.5194/hess-20-2759-2016, https://doi.org/10.5194/hess-20-2759-2016, 2016
Short summary
Short summary
Development of unconventional energy resources if often associated with public concerns regarding potential contamination of shallow groundwater due to methane leakage. We combined chemical and isotopic analyses of gas and water samples obtained from shallow aquifers in Alberta (Canada) to assess baseline methane sources and found that > 67 % of the samples contained biogenic methane formed in situ in the aquifers. There was no evidence of deep thermogenic methane migration into shallow aquifers.
D. Graeber, G. Goyenola, M. Meerhoff, E. Zwirnmann, N. B. Ovesen, M. Glendell, J. Gelbrecht, F. Teixeira de Mello, I. González-Bergonzoni, E. Jeppesen, and B. Kronvang
Hydrol. Earth Syst. Sci., 19, 2377–2394, https://doi.org/10.5194/hess-19-2377-2015, https://doi.org/10.5194/hess-19-2377-2015, 2015
M. C. Pierret, P. Stille, J. Prunier, D. Viville, and F. Chabaux
Hydrol. Earth Syst. Sci., 18, 3969–3985, https://doi.org/10.5194/hess-18-3969-2014, https://doi.org/10.5194/hess-18-3969-2014, 2014
K. S. Song, S. Y. Zang, Y. Zhao, L. Li, J. Du, N. N. Zhang, X. D. Wang, T. T. Shao, Y. Guan, and L. Liu
Hydrol. Earth Syst. Sci., 17, 4269–4281, https://doi.org/10.5194/hess-17-4269-2013, https://doi.org/10.5194/hess-17-4269-2013, 2013
C. T. Chang, S. P. Hamburg, J. L. Hwong, N. H. Lin, M. L. Hsueh, M. C. Chen, and T. C. Lin
Hydrol. Earth Syst. Sci., 17, 3815–3826, https://doi.org/10.5194/hess-17-3815-2013, https://doi.org/10.5194/hess-17-3815-2013, 2013
K. M. McEathron, M. J. Mitchell, and L. Zhang
Hydrol. Earth Syst. Sci., 17, 2557–2568, https://doi.org/10.5194/hess-17-2557-2013, https://doi.org/10.5194/hess-17-2557-2013, 2013
R. Balestrini, C. Arese, M. Freppaz, and A. Buffagni
Hydrol. Earth Syst. Sci., 17, 989–1001, https://doi.org/10.5194/hess-17-989-2013, https://doi.org/10.5194/hess-17-989-2013, 2013
L. L. Wang, C. C. Song, and G. S. Yang
Hydrol. Earth Syst. Sci., 17, 371–378, https://doi.org/10.5194/hess-17-371-2013, https://doi.org/10.5194/hess-17-371-2013, 2013
A. J. Wade, E. J. Palmer-Felgate, S. J. Halliday, R. A. Skeffington, M. Loewenthal, H. P. Jarvie, M. J. Bowes, G. M. Greenway, S. J. Haswell, I. M. Bell, E. Joly, A. Fallatah, C. Neal, R. J. Williams, E. Gozzard, and J. R. Newman
Hydrol. Earth Syst. Sci., 16, 4323–4342, https://doi.org/10.5194/hess-16-4323-2012, https://doi.org/10.5194/hess-16-4323-2012, 2012
E. Samaritani, J. Shrestha, B. Fournier, E. Frossard, F. Gillet, C. Guenat, P. A. Niklaus, N. Pasquale, K. Tockner, E. A. D. Mitchell, and J. Luster
Hydrol. Earth Syst. Sci., 15, 1757–1769, https://doi.org/10.5194/hess-15-1757-2011, https://doi.org/10.5194/hess-15-1757-2011, 2011
Cited articles
Aeschbach-Hertig, W. and Gleeson, T.: Regional strategies for the accelerating global problem of groundwater depletion, Nat. Geosci., 5, 853–861, 2012.
Akob, D. M. and Küsel, K.: Where microorganisms meet rocks in the Earth's Critical Zone, Biogeosciences, 8, 3531–3543, https://doi.org/10.5194/bg-8-3531-2011, 2011.
Alfreider, A., Schirmer, M., and Vogt, C.: Diversity and expression of different forms of RubisCO genes in polluted groundwater under different redox conditions, FEMS Microbiol. Ecol., 79, 649–660, https://doi.org/10.1111/j.1574-6941.2011.01246.x, 2012.
Aravena, R. and Wassenaar, L. I.: Dissolved Organic-Carbon and Methane in a Regional Confined Aquifer, Southern Ontario, Canada – Carbon-Isotope Evidence for Associated Subsurface Sources, Appl. Geochem., 8, 483–493, https://doi.org/10.1016/0883-2927(93)90077-T, 1993.
Aravena, R., Wassenaar, L. I., and Plummer, L. N.: Estimating C-14 Groundwater Ages in a Methanogenic Aquifer, Water Resour. Res., 31, 2307–2317, https://doi.org/10.1029/95wr01271, 1995.
Assayag, N., Rivé, K., Ader, M., Jézéquel, D., and Agrinier, P.: Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples, Rapid Commun. Mass Sp., 20, 2243–2251, 2006.
Berg, C., Listmann, L., Vandieken, V., Vogts, A., and Jürgens, K.: Chemoautotrophic growth of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic Sea, Front. Microbiol., 5, 786, https://doi.org/10.3389/fmicb.2014.00786, 2014.
Berg, I. A.: Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways, Appl. Environ. Microbiol., 77, 1925–1936, https://doi.org/10.1128/Aem.02473-10, 2011.
Bethke, C. M. and Johnson, T. M.: Groundwater age and groundwater age dating, Annu. Rev. Earth Pl. Sc., 36, 121–152, https://doi.org/10.1146/annurev.earth.36.031207.124210, 2008.
Cartwright, I., Weaver, T. R., Cendon, D. I., Fifield, L. K., Tweed, S. O., Petrides, B., and Swane, I.: Constraining groundwater flow, residence times, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia, Appl. Geochem., 27, 1698–1709, https://doi.org/10.1016/j.apgeochem.2012.02.006, 2012.
Coetsiers, M. and Walraevens, K.: A new correction model for 14C ages in aquifers with complex geochemistry – Application to the Neogene Aquifer, Belgium, Appl. Geochem., 24, 768–776, https://doi.org/10.1016/j.apgeochem.2009.01.003, 2009.
Coplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A. J., Toman, B., and Verkouteren, R. M.: New guidelines for δ13C measurements, Anal. Chem., 78, 2439–2441, 2006.
Eichinger, L.: A Contribution to the Interpretation of C-14 Groundwater Ages Considering the Example of a Partially Confined Sandstone Aquifer, Radiocarbon, 25, 347–356, 1983.
El-Kadi, A. I., Plummer, L. N., and Aggarwal, P.: NETPATH-WIN: An Interactive User Version of the Mass-Balance Model, NETPATH, Ground Water, 49, 593–599, https://doi.org/10.1111/j.1745-6584.2010.00779.x, 2011.
Emerson, D., Fleming, E. J., and McBeth, J. M.: Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective, Annu. Rev. Microbiol., 64, 561–583, https://doi.org/10.1146/Annurev.Micro.112408.134208, 2010.
Fontes, J. C.: Chemical and Isotopic Constraints on C-14 Dating of Groundwater, Radiocarbon after Four Decades, 242–261, 1992.
Fontes, J. C. and Garnier, J. M.: Determination of the Initial C-14 Activity of the Total Dissolved Carbon – Review of the Existing Models and a New Approach, Water Resour. Res., 15, 399–413, https://doi.org/10.1029/Wr015i002p00399, 1979.
Fuchs, G.: Alternative Pathways of Carbon Dioxide Fixation: Insights into the Early Evolution of Life?, in: Annual Review of Microbiology, edited by: Gottesman, S. and Harwood, C. S., Annu. Rev. Microbiol., 65, 631–658, 2011.
Gao, P., Xu, X., Zhou, L., Pack, M. A., Griffin, S., Santos, G. M., Southon, J. R., and Liu, K.: Rapid sample preparation of dissolved inorganic carbon in natural waters using a headspace-extraction approach for radiocarbon analysis by accelerator mass spectrometry, Limnol. Oceanogr.-Meth., 12, 174–190, https://doi.org/10.4319/lom.2014.12.174, 2014.
Gillon, M., Barbecot, F., Gibert, E., Plain, C., Corcho-Alvarado, J. A., and Massault, M.: Controls on C-13 and C-14 variability in soil CO2, Geoderma, 189, 431–441, https://doi.org/10.1016/j.geoderma.2012.06.004, 2012.
Hahn, V.: Soil carbon sequestration and CO2 flux partitioning, PhD thesis, Chemisch-Geowissenschaftliche Fakultät, Friedrich-Schiller-Universität, Jena, 2004.
Han, L. F. and Plummer, L. N.: Revision of Fontes & Garnier's model for the initial C-14 content of dissolved inorganic carbon used in groundwater dating, Chem. Geol., 351, 105–114, https://doi.org/10.1016/j.chemgeo.2013.05.011, 2013.
Han, L. F. and Plummer, L. N.: A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater, Earth-Sci. Rev., 152, 119–142, https://doi.org/10.1016/j.earscirev.2015.11.004, 2016.
Han, L.-F., Plummer, L. N., and Aggarwal, P.: A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating, Chem. Geol., 318–319, 88–112, https://doi.org/10.1016/j.chemgeo.2012.05.004, 2012.
Herrmann, M., Rusznyak, A., Akob, D. M., Schulze, I., Opitz, S., Totsche, K. U., and Kusel, K.: Large Fractions of CO2-Fixing Microorganisms in Pristine Limestone Aquifers Appear To Be Involved in the Oxidation of Reduced Sulfur and Nitrogen Compounds, Appl. Environ. Microbiol., 81, 2384–2394, https://doi.org/10.1128/AEM.03269-14, 2015.
Hutchins, B. T., Engel, A. S., Nowlin, W. H., and Schwartz, B. F.: Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities, Ecology, 97, 1530–1542, https://doi.org/10.1890/15-1129.1, 2016.
Iino, T., Mori, K., Uchino, Y., Nakagawa, T., Harayama, S., and Suzuki, K.-I.: Ignavibacterium album gen. nov., sp nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria, Int. J. Syst. Evol. Micr., 60, 1376–1382, https://doi.org/10.1099/ijs.0.012484-0, 2010.
IUSS Working Group WRB: World reference base for soil resources (WRB), World soil resources reports, FAO, Rom, 103, 2006.
Kalbitz, K., Geyer, S., and Gehre, M.: Land use impacts on the isotopic signature (C-13, C-14, N-15) of water-soluble fulvic acids in a German fen area, Soil Sci., 165, 728–736, https://doi.org/10.1097/00010694-200009000-00006, 2000.
Kellermann, C., Selesi, D., Lee, N., Hügler, M., Esperschütz, J., Hartmann, A., and Griebler, C.: Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer, FEMS Microbiol. Ecol., 81, 172–187, https://doi.org/10.1111/j.1574-6941.2012.01359.x, 2012.
Kodama, Y., and Watanabe, K.: Sulfuricurvum kujiense gen. nov., sp nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity, Int. J. Syst. Evol. Micr., 54, 2297–2300, https://doi.org/10.1099/ijs.0.63243-0, 2004.
Kohlhepp, B., Lehmann, R., Seeber, P., Küsel, K., Trumbore, S. E., and Totsche, K. U.: Pedological and hydrogeological setting and subsurface flow structure of the carbonate-rock CZE Hainich in western Thuringia, Germany, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-374, in review, 2016.
Kojima, H. and Fukui, M.: Sulfuritalea hydrogenivorans gen. nov., sp nov., a facultative autotroph isolated from a freshwater lake, Int. J. Syst. Evol. Micr., 61, 1651–1655, https://doi.org/10.1099/ijs.0.024968-0, 2011.
Küsel, K., Totsche, K. U., Trumbore, S. E., Lehmann, R., Steinhäuser, C., and Herrmann, M.: How deep can surface signals be traced in the critical zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape, Front. Earth Sci., 4, 32, https://doi.org/10.3389/feart.2016.00032, 2016.
Lazar, C. S., Baker, B. J., Seitz, K., Hyde, A. S., Dick, G. J., Hinrichs, K. U., and Teske, A. P.: Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments, Environ. Microbiol., 18, 1200–1211, https://doi.org/10.1111/1462-2920.13142, 2016a.
Lazar, C., Wenke, S., Lehmann, R., Herrmann, M., Schwab, V., Totsche, K. U., Akob, D. M., and Küsel, K.: Ecophysiology of uncultured Archaea in groundwater and carbonate rocks, submitted, 2016b.
Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R., Aradottir, E. S., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H. A., Wolff-Boenisch, D., Mesfin, K., Taya, D. F. d. l. R., Hall, J., Dideriksen, K., and Broecker, W. S.: Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions, Science, 352, 1312–1314, 2016.
Miller, H. M., Matter, J. M., Kelemen, P., Ellison, E. T., Conrad, M. E., Fierer, N., Ruchala, T., Tominaga, M., and Templeton, A. S.: Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability, Geochim. Cosmochim. Ac., 179, 217–241, https://doi.org/10.1016/j.gca.2016.01.033, 2016.
Mook, W. G., Bommerson, J. C., and Staverman, W. H.: Carbon Isotope Fractionation between Dissolved Bicarbonate and Gaseous Carbon-Dioxide, Earth Planet. Sc. Lett., 22, 169–176, https://doi.org/10.1016/0012-821x(74)90078-8, 1974.
NRC: Basic research opportunities in earth science, edited by: Press, N. A., National Academy Press, Washington DC, https://doi.org/10.17226/9981, 2001.
Plummer, L. N., Prestemon, E. C., and Parkhurst, D. L.: An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0. US Geol. Surv., Water Resour. Invest. Rep. 94-4169:130, 1994.
Richter, D. D., Markewitz, D., Trumbore, S. E., and Wells, C. G.: Rapid accumulation and turnover of soil carbon in a re-establishing forest, Nature, 400, 56–58, https://doi.org/10.1038/21867, 1999.
Sampling Procedures for Isotope Hydrology, available at: http://www-naweb.iaea.org/, last access: 5 October 2016, 2009.
Scheibe, A., Krantz, L., and Gleixner, G.: Simultaneous determination of the quantity and isotopic signature of dissolved organic matter from soil water using high-performance liquid chromatography/isotope ratio mass spectrometry, Rapid Commun. Mass Sp., 26, 173–180, https://doi.org/10.1002/Rcm.5311, 2012.
Schiff, S. L., Aravena, R., Trumbore, S. E., Hinton, M. J., Elgood, R., and Dillon, P. J.: Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: Clues from C-13 and C-14, Biogeochemistry, 36, 43–65, https://doi.org/10.1023/a:1005744131385, 1997.
Schwab, V., Roth, V.-N., Gleixner, G., Lehmann, R., Pohnert, G., Trumbore, E. S., Küsel, K., and Totsche, K. U.: Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches, Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017, 2017a.
Schwab, V., Nowak, M., Gleixner, G., Lehmann, R., Pohnert, G., Trumbore, E. S., Küsel, K., and Totsche, K. U.: Microbial carbon cycling in different pristine limestone aquifers inferred from δ13C and δ14C values of in situ phospholipid fatty acids and carbon sources, in preparation, 2017b.
Simkus, D. N., Slater, G. F., Lollar, B. S., Wilkie, K., Kieft, T. L., Magnabosco, C., Lau, M. C. Y., Pullin, M. J., Hendrickson, S. B., Wommack, K. E., Sakowski, E. G., van Heerden, E., Kuloyo, O., Linage, B., Borgonie, G., and Onstott, T. C.: Variations in microbial carbon sources and cycling in the deep continental subsurface, Geochim. Cosmochim. Ac., 173, 264–283, https://doi.org/10.1016/j.gca.2015.10.003, 2016.
Stackebrandt, E., Sproer, C., Rainey, F. A., Burghardt, J., Pauker, O., and Hippe, H.: Phylogenetic analysis of the genus Desulfotomaculum: Evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov., Int. J. Syst. Bacteriol., 47, 1134–1139, 1997.
Steinhof, A., Adamiec, G., Gleixner, G., van Klinken, G. J., and Wagner, T.: The new C-14 analysis laboratory in Jena, Germany, Radiocarbon, 46, 51–58, 2004.
Tamers, M. A., Stipp, J. J., and Weiner, R.: Radiocarbon Ages of Ground-Water as a Basis for Determination of Safe Limits of Aquifer Exploitation, Environ. Res., 9, 250–264, https://doi.org/10.1016/0013-9351(75)90005-5, 1975.
Trumbore, S. E., Sierra, C. A., and Hicks Pries, C. E.: Radiocarbon Nomenclature, Theory, Models, and Interpretation: Measuring Age, Determining Cycling Rates, and Tracing Source Pools, in: Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques, edited by: Schuur, A. G. E., Druffel, E., and Trumbore, E. S., Springer International Publishing, Cham, 45–82, 2016.
van Breukelen, B. M., Griffioen, J., Röling, W. F. M., and van Verseveld, H. W.: Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume, J. Contam. Hydrol., 70, 249–269, https://doi.org/10.1016/j.jconhyd.2003.09.003, 2004.
Wigley, T. M. L.: Effect of Mineral Precipitation on Isotopic Composition and C-14 Dating of Groundwater, Nature, 263, 219–221, https://doi.org/10.1038/263219a0, 1976.
Short summary
In the present study we combined measurements of dissolved inorganic carbon (DIC) isotopes with a set of different geochemical and microbiological methods in order to get a comprehensive view of biogeochemical cycling and groundwater flow in two limestone aquifer assemblages. This allowed us to understand interactions and feedbacks between microbial communities, their carbon sources, and water chemistry.
In the present study we combined measurements of dissolved inorganic carbon (DIC) isotopes with...