Articles | Volume 21, issue 4
https://doi.org/10.5194/hess-21-1991-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/hess-21-1991-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-amount times
Marie-Claire ten Veldhuis
CORRESPONDING AUTHOR
Delft University of Technology, Water Management Department, Delft, the Netherlands
Princeton University, Hydrometeorology Group, Princeton, USA
Marc Schleiss
Delft University of Technology, Geosciences and Remote Sensing Department, Delft, the Netherlands
Princeton University, Hydrometeorology Group, Princeton, USA
Related authors
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-260, https://doi.org/10.5194/hess-2024-260, 2024
Preprint under review for HESS
Short summary
Short summary
This research examines how future climate changes impact root zone storage, a crucial hydrological model parameter. Root zone storage—the soil water accessible to plants—adapts to climate but is often treated as constant in models. We estimated climate-adapted storage for six Austrian Alps catchments. Although storage increased, streamflow projections showed minimal change, indicating that dynamic root zone representation is less critical in humid regions but warrants more study in arid areas.
Cynthia Maan, Marie-Claire ten Veldhuis, and Bas J. H. van de Wiel
Hydrol. Earth Syst. Sci., 27, 2341–2355, https://doi.org/10.5194/hess-27-2341-2023, https://doi.org/10.5194/hess-27-2341-2023, 2023
Short summary
Short summary
Their flexible growth provides the plants with a strong ability to adapt and develop resilience to droughts and climate change. But this adaptability is badly included in crop and climate models. To model plant development in changing environments, we need to include the survival strategies of plants. Based on experimental data, we set up a simple model for soil-moisture-driven root growth. The model performance suggests that soil moisture is a key parameter determining root growth.
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022, https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Short summary
The density of rain gauge networks plays an important role in radar rainfall bias correction. In this work, we aimed to assess the extent to which daily rainfall observations from a dense network of citizen scientists improve the accuracy of hourly radar rainfall estimates in the Tubma Basin, Thailand. Results show that citizen rain gauges significantly enhance the performance of radar rainfall bias adjustment up to a range of about 40 km from the center of the citizen rain gauge network.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data, 14, 163–177, https://doi.org/10.5194/essd-14-163-2022, https://doi.org/10.5194/essd-14-163-2022, 2022
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g., UNEP, Thornthwaite) that make use of this formula. The coefficients were produced using as a benchmark the ASCE-standardized reference evapotranspiration formula (formerly FAO-56) that requires temperature, solar radiation, wind speed, and relative humidity data.
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Elena Cristiano, Marie-Claire ten Veldhuis, Santiago Gaitan, Susana Ochoa Rodriguez, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018, https://doi.org/10.5194/hess-22-2425-2018, 2018
Short summary
Short summary
In this work we investigate the influence rainfall and catchment scales have on hydrological response. This problem is quite relevant in urban areas, where the response is fast due to the high degree of imperviousness. We presented a new approach to classify rainfall variability in space and time and use this classification to investigate rainfall aggregation effects on urban hydrological response. This classification allows the spatial extension of the main core of the storm to be identified.
Marie-Claire ten Veldhuis, Zhengzheng Zhou, Long Yang, Shuguang Liu, and James Smith
Hydrol. Earth Syst. Sci., 22, 417–436, https://doi.org/10.5194/hess-22-417-2018, https://doi.org/10.5194/hess-22-417-2018, 2018
Short summary
Short summary
The effect of storm scale and movement on runoff flows in urban catchments remains poorly understood due to the complexity of urban land use and man-made infrastructure. In this study, interactions among rainfall, urbanisation and peak flows were analyzed based on 15 years of radar rainfall and flow observations. We found that flow-path networks strongly smoothed rainfall peaks. Unexpectedly, the storm position relative to impervious cover within the basins had little effect on flow peaks.
Christian Bouwens, Marie-Claire ten Veldhuis, Marc Schleiss, Xin Tian, and Jerôme Schepers
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-751, https://doi.org/10.5194/hess-2017-751, 2018
Revised manuscript not accepted
Short summary
Short summary
Urban drainage systems are challenged by both urbanization and climate change, intensifying flooding impacts by rainfall. We performed this study to better understand and predict this process. The paper provides an approach to analyze the functioning of an urban drainage system without the need to run hydrodynamic models. Rainfall thresholds for urban flood prediction were derived, which surprisingly are only approximately half of the theoretical drainage system design capacity.
Abdellah Ichiba, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Philippe Bompard, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 22, 331–350, https://doi.org/10.5194/hess-22-331-2018, https://doi.org/10.5194/hess-22-331-2018, 2018
Short summary
Short summary
This paper proposes a two-step investigation to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependency observed within GIS data inputted in urban hydrological models. Then an intensive multi-scale modelling work was carried out to confirm effects on model performances. The model was implemented at 17 spatial resolutions ranging from 100 to 5 m. Results allow the understanding of scale challenges in hydrology modelling.
Matthieu Spekkers, Viktor Rözer, Annegret Thieken, Marie-Claire ten Veldhuis, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 17, 1337–1355, https://doi.org/10.5194/nhess-17-1337-2017, https://doi.org/10.5194/nhess-17-1337-2017, 2017
Elena Cristiano, Marie-Claire ten Veldhuis, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, https://doi.org/10.5194/hess-21-3859-2017, 2017
Short summary
Short summary
In the last decades, new instruments were developed to measure rainfall and hydrological processes at high resolution. Weather radars are used, for example, to measure how rainfall varies in space and time. At the same time, new models were proposed to reproduce and predict hydrological response, in order to prevent flooding in urban areas. This paper presents a review of our current knowledge of rainfall and hydrological processes in urban areas, focusing on their variability in time and space.
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Susana Ochoa-Rodriguez, Patrick Willems, Abdellah Ichiba, Li-Pen Wang, Rui Pina, Johan Van Assel, Guendalina Bruni, Damian Murla Tuyls, and Marie-Claire ten Veldhuis
Hydrol. Earth Syst. Sci., 21, 2361–2375, https://doi.org/10.5194/hess-21-2361-2017, https://doi.org/10.5194/hess-21-2361-2017, 2017
Short summary
Short summary
Data from 10 urban or peri-urban catchments located in five EU countries are used to analyze the imperviousness distribution and sewer network geometry. Consistent scale invariant features are retrieved for both (fractal dimensions can be defined), which enables to define a level of urbanization. Imperviousness representation in operational model is also found to exhibit scale-invariant features (even multifractality). The research was carried out as part of the UE INTERREG IV RainGain project.
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary
Short summary
This paper reviews how weather radar data can be used in urban hydrological applications. It focuses on three areas of research: (1) temporal and spatial resolution of rainfall data, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Moreover, the paper provides examples of urban hydrological applications which can benefit from radar rainfall data in comparison to tradition rain gauge measurements of rainfall.
S. Gaitan and J. A. E. ten Veldhuis
Proc. IAHS, 370, 9–14, https://doi.org/10.5194/piahs-370-9-2015, https://doi.org/10.5194/piahs-370-9-2015, 2015
Short summary
Short summary
The objective of this paper is to outline opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks. To that end, a cluster analysis is performed. Results indicate that incidence of
rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.
M. H. Spekkers, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Nat. Hazards Earth Syst. Sci., 15, 261–272, https://doi.org/10.5194/nhess-15-261-2015, https://doi.org/10.5194/nhess-15-261-2015, 2015
G. Bruni, R. Reinoso, N. C. van de Giesen, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, https://doi.org/10.5194/hess-19-691-2015, 2015
M. H. Spekkers, M. Kok, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Nat. Hazards Earth Syst. Sci., 14, 2531–2547, https://doi.org/10.5194/nhess-14-2531-2014, https://doi.org/10.5194/nhess-14-2531-2014, 2014
M. H. Spekkers, M. Kok, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 17, 913–922, https://doi.org/10.5194/hess-17-913-2013, https://doi.org/10.5194/hess-17-913-2013, 2013
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-260, https://doi.org/10.5194/hess-2024-260, 2024
Preprint under review for HESS
Short summary
Short summary
This research examines how future climate changes impact root zone storage, a crucial hydrological model parameter. Root zone storage—the soil water accessible to plants—adapts to climate but is often treated as constant in models. We estimated climate-adapted storage for six Austrian Alps catchments. Although storage increased, streamflow projections showed minimal change, indicating that dynamic root zone representation is less critical in humid regions but warrants more study in arid areas.
Marc Schleiss
Atmos. Meas. Tech., 17, 4789–4802, https://doi.org/10.5194/amt-17-4789-2024, https://doi.org/10.5194/amt-17-4789-2024, 2024
Short summary
Short summary
Research is conducted to identify special rainfall patterns in the Netherlands using multiple types of rainfall sensors. A total of eight potentially unique events are analyzed, considering both the number and size of raindrops. However, no clear evidence supporting the existence of a special rainfall regime could be found. The results highlight the challenges in experimentally confirming well-established theoretical ideas in the field of precipitation sciences.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024, https://doi.org/10.5194/amt-17-235-2024, 2024
Short summary
Short summary
A common method to retrieve important information about the microphysical structure of rain (DSD retrievals) requires a constrained relationship between the drop size distribution parameters. The most widely accepted empirical relationship is between μ and Λ. The relationship shows variability across the different types of rainfall (convective or stratiform). The new proposed power-law model to represent the μ–Λ relation provides a better physical interpretation of the relationship coefficients.
Cynthia Maan, Marie-Claire ten Veldhuis, and Bas J. H. van de Wiel
Hydrol. Earth Syst. Sci., 27, 2341–2355, https://doi.org/10.5194/hess-27-2341-2023, https://doi.org/10.5194/hess-27-2341-2023, 2023
Short summary
Short summary
Their flexible growth provides the plants with a strong ability to adapt and develop resilience to droughts and climate change. But this adaptability is badly included in crop and climate models. To model plant development in changing environments, we need to include the survival strategies of plants. Based on experimental data, we set up a simple model for soil-moisture-driven root growth. The model performance suggests that soil moisture is a key parameter determining root growth.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022, https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022, https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Short summary
The density of rain gauge networks plays an important role in radar rainfall bias correction. In this work, we aimed to assess the extent to which daily rainfall observations from a dense network of citizen scientists improve the accuracy of hourly radar rainfall estimates in the Tubma Basin, Thailand. Results show that citizen rain gauges significantly enhance the performance of radar rainfall bias adjustment up to a range of about 40 km from the center of the citizen rain gauge network.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data, 14, 163–177, https://doi.org/10.5194/essd-14-163-2022, https://doi.org/10.5194/essd-14-163-2022, 2022
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g., UNEP, Thornthwaite) that make use of this formula. The coefficients were produced using as a benchmark the ASCE-standardized reference evapotranspiration formula (formerly FAO-56) that requires temperature, solar radiation, wind speed, and relative humidity data.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Marc Schleiss
Hydrol. Earth Syst. Sci., 24, 3699–3723, https://doi.org/10.5194/hess-24-3699-2020, https://doi.org/10.5194/hess-24-3699-2020, 2020
Short summary
Short summary
A new way to downscale rainfall fields based on the notion of equal-volume areas (EVAs) is proposed. Experiments conducted on 100 rainfall events in the Netherlands show that the EVA method outperforms classical methods based on fixed grid cell sizes, producing fields with more realistic spatial structures. The main novelty of the method lies in its adaptive sampling strategy, which avoids many of the mathematical challenges associated with the presence of zero rainfall values.
Marc Schleiss, Jonas Olsson, Peter Berg, Tero Niemi, Teemu Kokkonen, Søren Thorndahl, Rasmus Nielsen, Jesper Ellerbæk Nielsen, Denica Bozhinova, and Seppo Pulkkinen
Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, https://doi.org/10.5194/hess-24-3157-2020, 2020
Short summary
Short summary
A multinational assessment of radar's ability to capture heavy rain events is conducted. In total, six different radar products in Denmark, the Netherlands, Finland and Sweden were considered. Results show a fair agreement, with radar underestimating by 17 %-44 % on average compared with gauges. Despite being adjusted for bias, five of six radar products still exhibited strong conditional biases with intensities of 1–2% per mm/h. Median peak intensity bias was significantly higher, reaching 44 %–67%.
Marc Schleiss
Earth Syst. Dynam., 9, 955–968, https://doi.org/10.5194/esd-9-955-2018, https://doi.org/10.5194/esd-9-955-2018, 2018
Short summary
Short summary
The present study aims at explaining how intermittency (i.e., the alternation of dry and rainy periods) affects the rate at which precipitation extremes increase with temperature. Using high-resolution rainfall data from 99 stations in the United States, we show that at scales beyond a few hours, intermittency causes rainfall extremes to deviate substantially from Clausius–Clapeyron. A new model is proposed to better represent and predict these changes across scales.
Elena Cristiano, Marie-Claire ten Veldhuis, Santiago Gaitan, Susana Ochoa Rodriguez, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018, https://doi.org/10.5194/hess-22-2425-2018, 2018
Short summary
Short summary
In this work we investigate the influence rainfall and catchment scales have on hydrological response. This problem is quite relevant in urban areas, where the response is fast due to the high degree of imperviousness. We presented a new approach to classify rainfall variability in space and time and use this classification to investigate rainfall aggregation effects on urban hydrological response. This classification allows the spatial extension of the main core of the storm to be identified.
Marie-Claire ten Veldhuis, Zhengzheng Zhou, Long Yang, Shuguang Liu, and James Smith
Hydrol. Earth Syst. Sci., 22, 417–436, https://doi.org/10.5194/hess-22-417-2018, https://doi.org/10.5194/hess-22-417-2018, 2018
Short summary
Short summary
The effect of storm scale and movement on runoff flows in urban catchments remains poorly understood due to the complexity of urban land use and man-made infrastructure. In this study, interactions among rainfall, urbanisation and peak flows were analyzed based on 15 years of radar rainfall and flow observations. We found that flow-path networks strongly smoothed rainfall peaks. Unexpectedly, the storm position relative to impervious cover within the basins had little effect on flow peaks.
Christian Bouwens, Marie-Claire ten Veldhuis, Marc Schleiss, Xin Tian, and Jerôme Schepers
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-751, https://doi.org/10.5194/hess-2017-751, 2018
Revised manuscript not accepted
Short summary
Short summary
Urban drainage systems are challenged by both urbanization and climate change, intensifying flooding impacts by rainfall. We performed this study to better understand and predict this process. The paper provides an approach to analyze the functioning of an urban drainage system without the need to run hydrodynamic models. Rainfall thresholds for urban flood prediction were derived, which surprisingly are only approximately half of the theoretical drainage system design capacity.
Abdellah Ichiba, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Philippe Bompard, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 22, 331–350, https://doi.org/10.5194/hess-22-331-2018, https://doi.org/10.5194/hess-22-331-2018, 2018
Short summary
Short summary
This paper proposes a two-step investigation to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependency observed within GIS data inputted in urban hydrological models. Then an intensive multi-scale modelling work was carried out to confirm effects on model performances. The model was implemented at 17 spatial resolutions ranging from 100 to 5 m. Results allow the understanding of scale challenges in hydrology modelling.
Matthieu Spekkers, Viktor Rözer, Annegret Thieken, Marie-Claire ten Veldhuis, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 17, 1337–1355, https://doi.org/10.5194/nhess-17-1337-2017, https://doi.org/10.5194/nhess-17-1337-2017, 2017
Elena Cristiano, Marie-Claire ten Veldhuis, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, https://doi.org/10.5194/hess-21-3859-2017, 2017
Short summary
Short summary
In the last decades, new instruments were developed to measure rainfall and hydrological processes at high resolution. Weather radars are used, for example, to measure how rainfall varies in space and time. At the same time, new models were proposed to reproduce and predict hydrological response, in order to prevent flooding in urban areas. This paper presents a review of our current knowledge of rainfall and hydrological processes in urban areas, focusing on their variability in time and space.
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Susana Ochoa-Rodriguez, Patrick Willems, Abdellah Ichiba, Li-Pen Wang, Rui Pina, Johan Van Assel, Guendalina Bruni, Damian Murla Tuyls, and Marie-Claire ten Veldhuis
Hydrol. Earth Syst. Sci., 21, 2361–2375, https://doi.org/10.5194/hess-21-2361-2017, https://doi.org/10.5194/hess-21-2361-2017, 2017
Short summary
Short summary
Data from 10 urban or peri-urban catchments located in five EU countries are used to analyze the imperviousness distribution and sewer network geometry. Consistent scale invariant features are retrieved for both (fractal dimensions can be defined), which enables to define a level of urbanization. Imperviousness representation in operational model is also found to exhibit scale-invariant features (even multifractality). The research was carried out as part of the UE INTERREG IV RainGain project.
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary
Short summary
This paper reviews how weather radar data can be used in urban hydrological applications. It focuses on three areas of research: (1) temporal and spatial resolution of rainfall data, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Moreover, the paper provides examples of urban hydrological applications which can benefit from radar rainfall data in comparison to tradition rain gauge measurements of rainfall.
S. Gaitan and J. A. E. ten Veldhuis
Proc. IAHS, 370, 9–14, https://doi.org/10.5194/piahs-370-9-2015, https://doi.org/10.5194/piahs-370-9-2015, 2015
Short summary
Short summary
The objective of this paper is to outline opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks. To that end, a cluster analysis is performed. Results indicate that incidence of
rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.
M. Stähli, M. Sättele, C. Huggel, B. W. McArdell, P. Lehmann, A. Van Herwijnen, A. Berne, M. Schleiss, A. Ferrari, A. Kos, D. Or, and S. M. Springman
Nat. Hazards Earth Syst. Sci., 15, 905–917, https://doi.org/10.5194/nhess-15-905-2015, https://doi.org/10.5194/nhess-15-905-2015, 2015
Short summary
Short summary
This review paper describes the state of the art in monitoring and predicting rapid mass movements for early warning. It further presents recent innovations in observation technologies and modelling to be used in future early warning systems (EWS). Finally, the paper proposes avenues towards successful implementation of next-generation EWS.
M. H. Spekkers, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Nat. Hazards Earth Syst. Sci., 15, 261–272, https://doi.org/10.5194/nhess-15-261-2015, https://doi.org/10.5194/nhess-15-261-2015, 2015
G. Bruni, R. Reinoso, N. C. van de Giesen, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, https://doi.org/10.5194/hess-19-691-2015, 2015
M. H. Spekkers, M. Kok, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Nat. Hazards Earth Syst. Sci., 14, 2531–2547, https://doi.org/10.5194/nhess-14-2531-2014, https://doi.org/10.5194/nhess-14-2531-2014, 2014
M. H. Spekkers, M. Kok, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 17, 913–922, https://doi.org/10.5194/hess-17-913-2013, https://doi.org/10.5194/hess-17-913-2013, 2013
Related subject area
Subject: Urban Hydrology | Techniques and Approaches: Stochastic approaches
Improving radar-based rainfall nowcasting by a nearest-neighbour approach – Part 1: Storm characteristics
The role of storm scale, position and movement in controlling urban flood response
Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series
Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling
Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?
Downscaling future precipitation extremes to urban hydrology scales using a spatio-temporal Neyman–Scott weather generator
Stochastic rainfall analysis for storm tank performance evaluation
Bora Shehu and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 26, 1631–1658, https://doi.org/10.5194/hess-26-1631-2022, https://doi.org/10.5194/hess-26-1631-2022, 2022
Short summary
Short summary
In this paper we investigate whether similar storms behave similarly and whether the information obtained from past similar storms can improve storm nowcast based on radar data. Here a nearest-neighbour approach is employed to first identify similar storms and later to issue either a single or an ensemble nowcast based on k most similar past storms. The results indicate that the information obtained from similar storms can reduce the errors considerably, especially for convective storm nowcast.
Marie-Claire ten Veldhuis, Zhengzheng Zhou, Long Yang, Shuguang Liu, and James Smith
Hydrol. Earth Syst. Sci., 22, 417–436, https://doi.org/10.5194/hess-22-417-2018, https://doi.org/10.5194/hess-22-417-2018, 2018
Short summary
Short summary
The effect of storm scale and movement on runoff flows in urban catchments remains poorly understood due to the complexity of urban land use and man-made infrastructure. In this study, interactions among rainfall, urbanisation and peak flows were analyzed based on 15 years of radar rainfall and flow observations. We found that flow-path networks strongly smoothed rainfall peaks. Unexpectedly, the storm position relative to impervious cover within the basins had little effect on flow peaks.
Søren Thorndahl, Aske Korup Andersen, and Anders Badsberg Larsen
Hydrol. Earth Syst. Sci., 21, 4433–4448, https://doi.org/10.5194/hess-21-4433-2017, https://doi.org/10.5194/hess-21-4433-2017, 2017
Short summary
Short summary
Time series of rainfall are developed in order to represent future climate conditions. These series can be used in design of, for example, drainage systems where future rainfall loads are important to account for. The climate projections are evaluated on a number of key statistical parameters of rainfall such as yearly and seasonal precipitation amounts, number of extreme events and rainfall intensities, specific duration, and return periods.
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Short summary
We investigated the relative contribution of the spatial versus climatic rainfall variability for flow peaks by applying an advanced stochastic rainfall generator to simulate rainfall for a small urban catchment and simulate flow dynamics in the sewer system. We found that the main contribution to the total flow variability originates from the natural climate variability. The contribution of spatial rainfall variability to the total flow variability was found to increase with return periods.
Hossein Tabari, Rozemien De Troch, Olivier Giot, Rafiq Hamdi, Piet Termonia, Sajjad Saeed, Erwan Brisson, Nicole Van Lipzig, and Patrick Willems
Hydrol. Earth Syst. Sci., 20, 3843–3857, https://doi.org/10.5194/hess-20-3843-2016, https://doi.org/10.5194/hess-20-3843-2016, 2016
Hjalte Jomo Danielsen Sørup, Ole Bøssing Christensen, Karsten Arnbjerg-Nielsen, and Peter Steen Mikkelsen
Hydrol. Earth Syst. Sci., 20, 1387–1403, https://doi.org/10.5194/hess-20-1387-2016, https://doi.org/10.5194/hess-20-1387-2016, 2016
Short summary
Short summary
Fine-resolution spatio-temporal precipitation data are important as input to urban hydrological models to assess performance issues under all possible conditions. In the present study synthetic data at very fine spatial and temporal resolution are generated using a stochastic model. Data are generated for both present and future climate conditions. The results show that it is possible to generate spatially distributed data at resolutions relevant for urban hydrology.
I. Andrés-Doménech, A. Montanari, and J. B. Marco
Hydrol. Earth Syst. Sci., 14, 1221–1232, https://doi.org/10.5194/hess-14-1221-2010, https://doi.org/10.5194/hess-14-1221-2010, 2010
Cited articles
Baker, D., Richards, R., Loftus, T., and Kramer, J.: A new flashiness index: Characteristics and applications to Midwestern rivers and streams, J. Am. Water Resour. As., 40, 503–522, 2004.
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.
Bloeschl, G. and Sivapalan, M.: Process controls on regional flood frequency: Coefficient of variation and basin scale, Water Resour. Res., 33, 2967–2980, 1997.
Brys, G., Hubert, M., and Struyf, A.: A robust measure of skewness, J. Comput. Graph. Stat., 13, 996–1017, https://doi.org/10.1198/106186004X12632, 2004.
Cheng, S.-J. and Wang, R.-Y.: An approach for evaluating the hydrological effects of urbanization and its application, Hydrol. Process., 16, 1403–1418, https://doi.org/10.1002/hyp.350, 2002.
Davies, R.: Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case, Biometrika, 89, 484–489, https://doi.org/10.1093/biomet/89.2.484, 2002.
Dippe, M. A. and Wold, E. H.: ANTIALIASING THROUGH STOCHASTIC SAMPLING, Comp. Graph. (ACM), 19, 69–78, 1985.
Du, J., Qian, L., Rui, H., Zuo, T., Zheng, D., Xu, Y., and Xu, C.-Y.: Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China, J. Hydrol., 464–465, 127–139, https://doi.org/10.1016/j.jhydrol.2012.06.057, 2012.
Emmanuel, I., Andrieu, H., Leblois, E., and Flahaut, B.: Temporal and spatial variability of rainfall at the urban hydrological scale, J. Hydrol., 430–431, 162–172, https://doi.org/10.1016/j.jhydrol.2012.02.013, 2012.
Favre, A.-C., Adlouni, S., Perreault, L., Thémonge, N., and Bobée, B.: Multivariate hydrological frequency analysis using copulas, Water Resour. Res., 40, 1–12, W01101, 2004.
Feizi, S., Angelopoulos, G., Goyal, V., and Medard, M.: Energy-efficient time-stampless adaptive nonuniform sampling, SENSORS IEEE, 912–915, https://doi.org/10.1109/ICSENS.2011.6127202, 2011.
Fletcher, T., Andrieu, H., and Hamel, P.: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art, Adv. Water Resour., 51, 261–279, https://doi.org/10.1016/j.advwatres.2012.09.001, 2013.
Goodrich, D., Lane, L., Shillito, R., Miller, S., Syed, K., and Woolhiser, D.: Linearity of basin response as a function of scale in a semiarid watershed, Water Resour. Res., 33, 2951–2965, 1997.
Grimaldi, S. and Serinaldi, F.: Asymmetric copula in multivariate flood frequency analysis, Adv. Water Resour., 29, 1155–1167, https://doi.org/10.1016/j.advwatres.2005.09.005, 2006.
Gustafson, D., Carr, K., Green, T., Gustin, C., Jones, R., and Richards, R.: Fractal-based scaling and scale-invariant dispersion of peak concentrations of crop protection chemicals in rivers, Envir. Sci. Tech. Lib., 38, 2995–3003, https://doi.org/10.1021/es030522p, 2004.
Hopkins, K., Morse, N., Bain, D., Bettez, N., Grimm, N., Morse, J., Palta, M., Shuster, W., Bratt, A., and Suchy, A.: Assessment of regional variation in streamflow responses to urbanization and the persistence of physiography, Envir. Sci. Tech. Lib., 49, 2724–2732, https://doi.org/10.1021/es505389y, 2015.
Huang, H.-J., Cheng, S.-J., Wen, J.-C., and Lee, J.-H.: Effect of growing watershed imperviousness on hydrograph parameters and peak discharge, Hydrol. Process., 22, 2075–2085, https://doi.org/10.1002/hyp.6807, 2008.
Kjeldsen, T.: Modelling the impact of urbanization on flood frequency relationships in the UK, Hydrol. Res., 41, 391–405, https://doi.org/10.2166/nh.2010.056, 2010.
Labat, D., Mangin, A., and Ababou, R.: Rainfall-runoff relations for karstic springs: Multifractal analyses, J. Hydrol., 256, 176–195, https://doi.org/10.1016/S0022-1694(01)00535-2, 2002.
Labat, D., Hoang, C., Masbou, J., Mangin, A., Tchiguirinskaia, I., Lovejoy, S., and Schertzer, D.: Multifractal behaviour of long-term karstic discharge fluctuations, Hydrol. Process., 27, 3708–3717, https://doi.org/10.1002/hyp.9495, 2013.
Lang, M., Ouarda, T., and Bobée, B.: Towards operational guidelines for over-threshold modeling, J. Hydrol., 225, 103–117, https://doi.org/10.1016/S0022-1694(99)00167-5, 1999.
Lombardo, F., Volpi, E., Koutsoyiannis, D., and Papalexiou, S. M.: Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology, Hydrol. Earth Syst. Sci., 18, 243–255, https://doi.org/10.5194/hess-18-243-2014, 2014.
Miller, J., Kim, H., Kjeldsen, T., Packman, J., Grebby, S., and Dearden, R.: Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover, J. Hydrol., 515, 59–70, https://doi.org/10.1016/j.jhydrol.2014.04.011, 2014.
Pandey, G., Lovejoy, S., and Schertzer, D.: Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years, J. Hydrol., 208, 62–81, https://doi.org/10.1016/S0022-1694(98)00148-6, 1998.
Poff, N.: Ecological response to and management of increased flooding caused by climate change, Philos. T. R. Soc. A, 360, 1497–1510, https://doi.org/10.1098/rsta.2002.1012, 2002.
Praskievicz, S. and Chang, H.: A review of hydrological modelling of basin-scale climate change and urban development impacts, Prog. Phys. Geog., 33, 650–671, https://doi.org/10.1177/0309133309348098, 2009.
Richter, B.: A method for assessing hydrologic alteration within ecosystems [Un metro para evaluar alteraciones hidrologicas dentro de ecosistemas], Conserv. Biol., 10, 1163–1174, https://doi.org/10.1046/j.1523-1739.1996.10041163.x, 1996.
Rose, S. and Peters, N.: Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): A comparative hydrological approach, Hydrol. Process., 15, 1441–1457, https://doi.org/10.1002/hyp.218, 2001.
Salvadori, G. and De Michele, C.: Frequency analysis via copulas: Theoretical aspects and applications to hydrological events, Water Resour. Res., 40, 1–17, https://doi.org/10.1029/2004WR003133, 2004.
Sauquet, E., Ramos, M.-H., Chapel, L., and Bernardara, P.: Streamflow scaling properties: Investigating characteristic scales from different statistical approaches, Hydrol. Process., 22, 3462–3475, https://doi.org/10.1002/hyp.6952, 2008.
Schertzer, D. and Lovejoy, S.: Physical modeling and analysis of rain and clouds by anisotropic scaling mutiplicative processes, J. Geophys. Res., 92, 9693–9714, 1987.
Schertzer, D. and Lovejoy, S.: Multifractals, generalized scale invariance and complexity in geophysics, Int. J. Bifurcat. Chaos, 21, 3417–3456, https://doi.org/10.1142/S0218127411030647, 2011.
Schleiss, M. and Smith, J.: Two simple metrics for quantifying rainfall intermittency: The burstiness and memory of interamount times, J. Hydrometeorol., 17, 421–436, https://doi.org/10.1175/JHM-D-15-0078.1, 2016.
Scott, D.: On optimal and data-based histograms, Biometrika, 66, 605–610, 1979.
Smakhtin, V.: Low flow hydrology: A review, J. Hydrol., 240, 147–186, https://doi.org/10.1016/S0022-1694(00)00340-1, 2001.
Smith, B. and Smith, J.: The flashiest watersheds in the contiguous United States, J. Hydrometeorol., 16, 2365–2381, https://doi.org/10.1175/JHM-D-14-0217.1, 2015.
Smith, B., Smith, J., Baeck, M., Villarini, G., and Wright, D.: Spectrum of storm event hydrologic response in urban watersheds, Water Resour. Res., 49, 2649–2663, https://doi.org/10.1002/wrcr.20223, 2013.
Smith, J.: Representation of basin scale in flood peak distributions, Water Resour. Res., 28, 2993–2999, https://doi.org/10.1029/92WR01718, 1992.
Smith, J., Baeck, M., Meierdiercks, K., Nelson, P., Miller, A., and Holland, E.: Field studies of the storm event hydrologic response in an urbanizing watershed, Water Resour. Res., 41, W10413, https://doi.org/10.1029/2004WR003712, 2005.
Stedinger, J.: Estimating a regional flood frequency distribution, Water Resour. Res., 19, 503–510, https://doi.org/10.1029/WR019i002p00503, 1983.
Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D., and Pecknold, S.: Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions, J. Geophys. Res.-Atmos., 101, 26427–26440, 1996.
USGS (United States Geological Survey): National Water Information System, USGS Surface-Water Historical Instantaneous Data for North Carolina, available at: http://waterdata.usgs.gov/nc/nwis, last access: 1 September 2016.
Villarini, G.: On the seasonality of flooding across the continental United States, Adv. Water Resour., 87, 80–91, https://doi.org/10.1016/j.advwatres.2015.11.009, 2016.
Villarini, G., Serinaldi, F., Smith, J., and Krajewski, W.: On the stationarity of annual flood peaks in the continental United States during the 20th century, Water Resour. Res., 45, W08417, https://doi.org/10.1029/2008WR007645, 2009.
Vittal, H., Singh, J., Kumar, P., and Karmakar, S.: A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches, J. Hydrol., 525, 658–675, https://doi.org/10.1016/j.jhydrol.2015.04.024, 2015.
Short summary
In this paper we analysed flow measurements from 17 watersheds in a (semi-)urban region, to characterise flow patterns according to basin features. Instead of sampling flows at fixed time intervals, we looked at how fast given amounts of flow were accumulated. By doing so, we could identify patterns of flow regulation in urban streams and quantify flashiness of hydrological response. We were able to show that in this region, higher urbanisation was clearly associated with lower basin flashiness.
In this paper we analysed flow measurements from 17 watersheds in a (semi-)urban region, to...
Special issue