Articles | Volume 20, issue 1
https://doi.org/10.5194/hess-20-529-2016
https://doi.org/10.5194/hess-20-529-2016
Research article
 | 
01 Feb 2016
Research article |  | 01 Feb 2016

Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

Y. Y. Zhang, Q. X. Shao, A. Z. Ye, H. T. Xing, and J. Xia

Related authors

An extension of the logistic function to account for nonstationary drought losses
Tongtiegang Zhao, Zecong Chen, Yongyong Zhang, Bingyao Zhang, and Yu Li
Hydrol. Earth Syst. Sci., 29, 2429–2443, https://doi.org/10.5194/hess-29-2429-2025,https://doi.org/10.5194/hess-29-2429-2025, 2025
Short summary
Understanding meteorological and physio-geographical controls of variability of flood event classes in China
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-126,https://doi.org/10.5194/hess-2024-126, 2024
Revised manuscript accepted for HESS
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary

Cited articles

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An Introduction to the European System: Systeme Hydrologique Europeen (SHE), J. Hydrol., 87, 61–77, 1986.
Abrahamsen, P. and Hansen, S. D.: an open soil-crop-atmosphere system model, Environ. Model. Softw., 15, 313–330, 2000.
Arheimer, B. and Brandt, M.: Modelling nitrogen transport and retention in the catchments of southern Sweden, Ambio, 27, 471–480, 1998.
Arheimer, B. and Brandt, M.: Watershed modelling of non-point nitrogen pollution from arable land to the Swedish coast in 1985 and 1994, Ecol. Engin., 14, 389–404, 2000.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large-area hydrologic modeling and assessment: Part I. Model development, J. Am. Water Resour. Assoc., 34, 73–89, 1998.
Download
Short summary
We developed an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality and ecology, and considering the interference of human activities. The parameter sensitivity and autocalibration modules were also developed to improve the simulation efficiency. The proposed model was applied in the Shaying River catchment, which is a highly regulated and heavily polluted region in China.
Share