

Supplement of

Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

Y. Y. Zhang et al.

Correspondence to: Y. Y. Zhang (zhangyy003@igsnrr.ac.cn) and Q. X. Shao (quanxi.shao@cisro.au)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 Supplementary material

2 1. Soil P cycle simulation (Neitsch *et al.*, 2011)

- 3 *Mineralization*: The mineralized P is added to the solution P pool, and the amounts of
- 4 active and stable organic P pools ($orgP_{act}$ and $orgP_{sta}$, kg/ha) are calculated by

$$5 \begin{cases} orgP_{act} = orgP_{hum} \cdot orgN_{act} / (orgN_{act} + orgN_{sta}) \\ orgP_{sta} = orgP_{hum} \cdot orgN_{sta} / (orgN_{act} + orgN_{sta}) \end{cases}$$
(S1)

- 6 where $orgP_{hum}$ is the humic organic P amount (kg/ha); $orgN_{act}$ and $orgN_{sta}$ are the
- 7 amounts of N in the active organic pool and stable organic pool (kg/ha), respectively,
- 8 which are simulated by DNDC.
- 9 The mineralization rate of the humus active organic P pool (*RHP*) is calculated by

10
$$\begin{cases} RHP = 1.4 \cdot \beta_{\min} \cdot (\gamma_{tmp} \cdot \gamma_{SW})^{1/2} \\ \gamma_{tmp} = 0.9 \cdot T_{soil} / [T_{soil} + \exp(9.93 - 0.312 \cdot T_{soil})] \\ \gamma_{SW} = SW / W_{sat} \end{cases}$$
(S2)

- 11 where β_{min} is the mineralization rate of the humus active organic P; γ_{tmp} and γ_{SW} are
- 12 the reduction factors of soil temperature and moisture, respectively.
- 13 The mineralization rate of the residue fresh organic P pool (*RRP*) is calculated by

14
$$RRP = 0.8 \cdot \delta_P = 0.8 \cdot \beta_{rsd} \cdot (\gamma_{tmp} \cdot \gamma_{SW})^{1/2}$$
(S3)

- where δ_P and β_{rsd} are the decay rate and the mineralization rate of the residue fresh organic P, respectively.
- Decomposition: The decomposition rate of the residue fresh organic P pool (DRP) is
 given as

$$19 \quad DRP = 0.2 \cdot \delta_P \tag{S4}$$

20 Sorption: The P movement between the dissolved and active mineral pools ($P_{dis|act}$,

21 kg/ha) and between active and stable mineral pools ($P_{act|sta}$, kg/ha) are

22
$$P_{dis|act} = \begin{cases} P_{dis} - \min P_{act} \cdot pai / (1 - pai) & if \quad P_{dis} > \min P_{act} \cdot pai / (1 - pai) \\ 0.1 \cdot [P_{dis} - \min P_{act} \cdot pai / (1 - pai)] if \quad P_{dis} < \min P_{act} \cdot pai / (1 - pai) \end{cases}$$
(S5)

23 and

$$1 \qquad P_{act|sta} = \begin{cases} 0.0006 \cdot (4 \cdot \min P_{act} - \min P_{sta}) & \text{if} & \min P_{sta} < 4 \cdot \min P_{act} \\ 0.00006 \cdot \beta_{eqP} \cdot (4 \cdot \min P_{act} - \min P_{sta}) & \text{if} & \min P_{sta} > 4 \cdot \min P_{act} \end{cases}$$
(S6)

respectively. Here P_{sol} , $minP_{act}$ and $minP_{sta}$ are the amounts of dissolved, mineral active and stable P (kg/ha), respectively; and *pai* is the P availability index.

4

5 **2. Crop growth module**

6 2.1 Crop yield (Williams et al., 1989)

7 The crop growth depends on the accumulation of thermal time (Sharpley and Williams,

8 1990). The daily thermal time (*HU*, °C) and the thermal time index for *jth* crop (*HUI*)
9 are calculated as:

10
$$\begin{cases} HU_{K} = (T_{mx,K} + T_{mn,K})/2 - T_{b,j} \\ HUI_{i} = \sum_{K=1}^{i} HU_{K} / PHU_{j} \end{cases}$$
(S7)

11 where $T_{mx,K}$ and $T_{mn,K}$ are the maximum and minimum temperatures (°C) on the K^{th} day, 12 respectively; $T_{b,j}$ is the base temperature of the j^{th} crop (°C). Crop growth will stop when 13 HU_K is below 0.0. PHU_j is the required cumulative thermal time for the j^{th} crop from 14 sowing to physical maturity (°C). The range of HUI is from 0.0 at sowing to 1.0 at 15 maturity. *i* is the total days of crop growth.

16 The daily potential biomass accumulation (
$$\Delta B_p$$
, t/ha/d) is estimated as:

$$\Delta B_{p,i} = 0.001 \cdot BE_i \cdot PAR_i \cdot [1 + \Delta HRLT_i]^3$$

= 0.0005 \cdot BE_i \cdot RA_i \cdot [1 - exp(-0.65 \cdot LAI)] \cdot [1 + \Delta HRLT_i]^3 (S8)

where *BE* is the crop parameter for converting energy to biomass (kg·ha·m²/MJ); *HRLT* and \triangle *HRLT* are the length of a day (hr) and its variation (hr/d), respectively; *PAR* is the intercepted photosynthetic active radiation (MJ/m²). *RA* is the solar radiation (MJ/m²). *LAI* is the leaf area index (m²/m²), which is a function of heat units, crop stress and crop development stages.

23 From emergence to the start of leaf decline, *LAI* is estimated by the following

equation:

$$LAI_{i} = LAI_{i-1} + \Delta LAI$$

$$= LAI_{i-1} + (\Delta HUF)(LAI_{mx})(1 - \exp(5 \cdot (LAI_{i-1} - LAI_{mx}))) \cdot \sqrt{REG_{i}}$$
(S9)

2 From the start of leaf decline to the end of the growing season,

3
$$LAI_i = LAI_0 \cdot (1 - HUI_i/1 - HUI_0)^{ad_j}$$
 (S10)

where *HUF* is a thermal time factor; *REG* is the minimum crop stress factor; *ad* is a
parameter controlling *LAI* decline rate for crop *j*; *HUI*₀ is the *HUI* value when *LAI*begins to decline.

7 The biomass accumulation is constrained by the stresses of soil water, temperature, and

8 nutrients (N and P).

9
$$\Delta B = \Delta B_p \cdot REG = \Delta B_p \cdot \min(WS, TS, SN, SP)$$
 (S11)

10 where REG is the crop growth regulating factor.

11 The water stress:
$$WS_i = \sum_{l=1}^{M} U_{l,i} / E_{P,i}$$
 (S12)

12 The temperature stress:
$$TS_i = \sin[\pi \cdot (T_{soil,i} - T_{b,j})/2(T_{o,j} - T_{b,j})] \quad 0 \le TS_i \le 1$$
 (S13)

13 The N stress:
$$\begin{cases} SN_{S,i} = 2[1 - \sum_{K=1}^{i} UN_{K} / (c_{NB,i} \cdot B_{i})] \\ SN_{i} = 1 - SN_{S,i} / [SN_{S,i} + \exp(3.39 - 10.93SN_{S,i})] \end{cases}$$
(S14)

14 The P stress:
$$\begin{cases} SP_{S,i} = 2[1 - \sum_{K=1}^{i} UP_{K} / (c_{NP,i} \cdot B_{i})] \\ SP_{i} = 1 - SP_{S,i} / [SP_{S,i} + \exp(3.39 - 10.93SP_{S,i})] \end{cases}$$
(S15)

where T_{soil} and T_0 are the average daily soil surface temperature and the optimal temperature (°C) for crop *j*, respectively.

17 The crop yield (*YLD*, t/ha) is estimated by using the harvest index, viz.:

$$YLD_j = HI_j \cdot B_{AG}$$
(S16)

19 where *HI* is the harvest index for cop j; B_{AG} is the above-ground biomass (t/ha)..

20 **2.2 Water use**

21 The daily potential water use from surface soil to any root depth is calculated by

1
$$U_{p,i} = E_{p,i} \cdot [1 - \exp(-\Lambda \cdot Z/RZ)] / [1 - \exp(-\Lambda)]$$
 (S17)

The potential water use $(U_{p,l}, mm/day)$ in layer *l* is calculated by taking the difference between $U_{p,i}$ values at the layer boundaries, viz.,

4
$$U_{p,l} = E_{p,i} \cdot \left[\exp(-\Lambda \cdot Z_{l-1}/RZ) - \exp(-\Lambda \cdot Z_l/RZ) \right] / \left[1 - \exp(-\Lambda) \right]$$
(S18)

- where $U_{p,i}$ is the total water used to depth Z m on day *i* (mm); *RZ* is the root zone depth (m); Λ is a water use distribution parameter.
- 7 Restricted by soil moisture, the water use $(U_{l,i}, mm/day)$ in layer l on day i is calculated
- 8 with the following equations (Jones and Kiniry, 1986).

9
$$U_{l,i} = \begin{cases} U_{p,l} \cdot \exp\left[20 \cdot (SW_{l,i} - W_{p,l})/(W_{fc,l} - W_{p,l}) - 1\right] \\ \text{if } SW_{l,i} < (W_{fc,l} - W_{p,l})/4 + W_{\mu} \\ U_{p,l} & \text{if } SW_{l,i} \ge (W_{fc,l} - W_{p,l})/4 + W_{p} \end{cases}$$
(S19)

10 **2.3 Nutrient uptake**

11 The daily crop nutrient (*N* and *P*) demands are the differences between crop nutrient 12 demands and potential nutrient contents.

13
$$\begin{cases} UND_i = c_{NB,i} \cdot B_i - \sum_{K=1}^i UN_K \\ UPD_i = c_{PB,i} \cdot B_i - \sum_{K=1}^i UP_K \end{cases}$$
(S20)

- where *UND* and *UNP* are the potential daily *N* and *P* demands, respectively (kg/ha); *UN* and *UP* are the actual uptakes of *N* and *P*, respectively (kg/ha); c_{NB} and c_{NP} are the optimal *N* and *P* concentrations of the crop, rescpetively (kg/t); *B* is the daily biomass accumulation (t/ha).
- 18 The actual dissolved N (NO₃-N and NH₄-N) mass uptaken by crops is calculated as.

19
$$\begin{cases} UN_{l,i} = U_{l,i} \cdot (WN_l / SW_l)_i \\ UNS_i = \sum_{K=1}^{M} UN_{l,i} \end{cases}$$
(S21)

1 where $UN_{l,i}$ is the actual uptakes of N in the layer l on day i. WN is the NO₃-N or NH₄-

2 N amount in the soil (kg/ha). The amount of N supplied by soil (UNS) is estimated by

- 3 summing UN in all layers (kg/ha).
- 4 The soil *P* availability is calculated as

5
$$\begin{cases} UPS_{i} = 1.50 \cdot UPD_{i} \cdot \sum_{l=1}^{M} LF_{u,l} \cdot (RW_{l}/RWT_{i}) \\ LF_{u,l} = 0.1 + 0.9 \cdot c_{LP,l} / [c_{LP,l} + 117 \cdot \exp(-0.283 \cdot c_{LP,l})] \end{cases}$$
(S22)

- 6 where *UPS* is the amount of *P* supplied by soil (kg/ha); *RW* and *RWT* are the root 7 weights in layer *l* and in total, respectively (kg/ha); LF_u is the labile *P* factor for uptake 8 (g/t).
- 9 A portion of *N* uptake is fixed by legumes, viz.,

$$\begin{cases} WFX_i = FXR_i \cdot UND_i & WFX \le 6.0 \\ FXR = \min(1.0, FXW, FXN) \cdot FXG \end{cases}$$
(S23)

- 11 where *FXG* is the growth stage factor; *FXW* and *FXN* are the factors of soil water and
- 12 *NO*₃-*N*, respectively. All of these factors are calculated by the follow equations.

13
$$FXG_{i} = \begin{cases} 0.0 & HUI_{i} \le 0.15, HUI_{i} \ge 0.75 \\ 6.67HUI_{i} - 1.0 & 0.15 < HUI_{i} \le 0.3 \\ 1.0 & 0.3 < HUI_{i} \le 0.55 \\ 3.75 - 5.0HUI_{i} & 0.55 < HUI_{i} < 0.75 \end{cases}$$
(S24)

14
$$FXW_i = (SW_{0.3,i} - W_{p,0.3})/(0.85 \cdot (W_{fc,0.3} - W_{p,0.3}))$$
 $SW_{0.3} < 0.85(W_{fc,0.3} - W_{p,0.3}) + W_{p,0.3}$

16
$$FXN_{i} = \begin{cases} 0.0 & WNO_{3} > 300kg \cdot ha^{-1} \cdot m^{-1} \\ 1.5 - 0.005 \cdot WNO_{3}/RD & 100 < WNO_{3} \le 300 \\ 1.0 & WNO_{3} \le 100 \end{cases}$$
(S25)

where
$$SW_{0.3}$$
, $W_{p,0.3}$ and $W_{fc,0.3}$ are the moistures in the top 0.3 m soil, at wilting point
and field capacity (mm), respectively.

19

20 **3. Soil erosion module (Onstad and Foster, 1975)**

21 The soil erosion by precipitation is estimated by the improved USLE equation (Onstad

22 and Foster, 1975), viz.,

1
$$V_{sed} = \begin{cases} (0.646EI + 0.45Q_{overl} \cdot q_p^{0.333}) \cdot K \cdot CE \cdot PE \cdot LS & Q_{overl} > 0. \\ 0 & Q_{overl} = 0. \end{cases}$$
 (S26)

- 2 where V_{sed} is the sediment yield (t/ha); q_p is the peak runoff rate (mm/hour); K is the
- 3 soil erodibility factor; *PE* is the erosion control practice factor.
- 4 *LS* is the factor of slope length and steepness:

5
$$\begin{cases} LS = (\lambda/22.1)^{\xi} (65.41S^2 + 4.56S + 0.065) \\ \xi = 0.6 \cdot [1 - \exp(-35.835S)] \end{cases}$$
(S27)

6 *CE* is the crop management factor:

7
$$CE = (0.8 - CE_{mn,j})\exp(-0.00115CV) + CE_{mn,j}$$
 (S28)

8 *EI* is the precipitation energy factor:

9
$$EI = P \cdot [12.1 + 8.9 \cdot (\log r_p - 0.434) \cdot r_{0.5}]/1000$$
 (S29)

where *S* and λ are the land surface slope (m/m) and slope length (m), both of which are obtained during the procedure of preparing the spatial simulation units; ζ is a parameter depending on the slope; $CE_{mn,j}$ is the minimum crop management factor of crop j; *CV* is the soil cover (above ground biomass and residue) (kg/ha); *P* is the daily precipitation (mm); r_p and $r_{0.5}$ are the peak precipitation rate and maximum 0.5 h precipitation intensity (mm/hr). The value of r_p is obtained according to the exponential precipitation distribution.

17

18 **4. Overland water quality module**

19 4.1 Nutrient loss in urban and rural area

20 Generally, the inhabitant and industrial sewage in the urban area are collected, treated

- and discharged into the river system from the wastewater discharge outlets. This
- amount of nutrient flux is the model input as the point source pollutant load. The
- 23 diffuse nutrient loss in urban area takes place along the flow pathways and is

estimated by the export coefficient model (Johnes, 1996) as

25
$$V_{ur_N} = 100 \cdot R_{ur} \cdot c_{ur_N} \cdot Area_{urban}$$

S6

(S30)

- 1 where V_{ur_N} , c_{ur_N} and $Area_{urban}$ are the amount of nutrient loss in the urban area (kg);
- 2 the export coefficient (kg/ha/year) and urban area (km²), respectively. R_{ur} is the loss
- 3 rate from urban area.
- 4 The farm manure of rural living and livestock farming is also considered as one of
- 5 important diffuse source of nutrient due to the deficiency of sewage treatment
- 6 facilities in the rural area. The total loss is estimated as

7
$$\begin{cases} V_{liv_N} = R_{liv} \cdot c_{liv_N} \cdot Pop_{rural} \\ V_{lst_N} = R_{lst} \cdot c_{lst_N} \cdot Pop_{stock} \end{cases}$$
(S31)

- 8 where V_{liv_N} and V_{lst_N} are the amounts of nutrient loss from living and livestock
- 9 farming in the rural area, respectively (kg/year); R_{liv} and R_{lst} are the loss rates from
- 10 living and livestock farming. C_{liv_N} and C_{lst_N} are the export coefficients of living
- 11 (kg/day/person) and livestock (kg/day/animal), respectively; *Pop_{rural}* and *Pop_{stock}* are

12 the human and livestock populations, respectively.

13

14 **4.2 Nutrient loss of soil layer**

15 The loss of dissolved nutrient is considered to happen in both upper and lower soil 16 layers. The loss amounts of NO₃-N, NH₄-N and dissolved P are calculated 17 respectively by

 $\begin{cases} V_{sol_{N}} = V_{sol_{N_{up}}} + V_{sol_{N_{low}}} \\ V_{sol_{N_{up}}} = W_{N_{up}} \cdot [1 - \exp(-\frac{R_{s} + R_{ss}}{SW})] \\ V_{sol_{N_{low}}} = W_{N_{ulow}} \cdot [1 - \exp(-\frac{R_{bs}}{SW})] \end{cases}$ (S32)

$$1 \qquad V_{sed_ON} = 0.001 \cdot V_{sed} \cdot c_{ON} \cdot ER \tag{S33}$$

- 2 (Neitsch *et al.*, 2011), where V_{sed_ON} is loss of organic N or P (kg/ha); c_{ON} is the
- insoluble nutrient concentration in the soil layer (g/m^3) ; *ER* is the enrich ratio.

4 4.3 Overland migration (Neitsch *et al.*, 2011)

$$\begin{cases} V_{dif,i} = (V'_{dif,i} + V_{stor,i-1}) \cdot \left[1 - \exp(-T_{retain}/T_{route})\right] \\ V_{stor,i} = V'_{dif,i} + V_{stor,i-1} - V_{dif,i} \\ V'_{dif,i} = V_{ur_{N,i}} + V_{liv_{N,i}} + V_{lst_{N,i}} + V_{soil_{N,i}} \\ V'_{dif,i} = V_{sed_{ON,i}} \\ V'_{dif,i} = V_{sed,i} \\ \end{cases}$$

$$for insoluble nutrient for sediment$$

$$for sediment$$

6 where $V_{dif,i}$ is the amount of overland pollutant discharged into river system on day *i*

7 including sediment (tons/day), dissolved and insoluble nutrient (kg/day); V'_{dif,i} and

- $V_{stor,i}$ are the pollutant loads generated in the sub-basin on day *i*, retained from the
- 9 previous day (tons for sediment, kg for nutrient), respectively. *T_{retain}* and *T_{route}* are the
- 10 retain time and routing time of flow (days), respectively.
- 11

12 5. Water quality module of water bodies

13 5.1 In-stream water quality module (Brown and Barnwell 1987; Neitsch *et al.*,

14 **2011)**

- 15 The water temperature $(T_{water}, {}^{\circ}C)$ has a strongly positive relationship with the air
- 16 temperature and is calculated as

17
$$T_{water} = 5.0 + 0.375 \cdot (T_{min} + T_{max})$$
 (S35)

- where T_{min} and T_{max} are the daily minimum and maximum air temperatures,
- 19 respectively (°C), which are obtained as the model inputs.
- 20 The basic equation of in-stream water quality module is

21
$$dC/dt = V_{dif} + rpnt \cdot V_{point} - V_d - V_{set}$$
(S36)

1 where C is the water quality concentration (mg/L); V_d and V_{set} are the degradation and

- 2 settling load of pollutant (mg/L/day), respectively; *rpnt* is the monthly ratio of point
- source pollutant; and V_{point} is the annual point source pollution loads (mg/L/day),
- 4 which are all the model inputs.

5
$$V_{set} = C \cdot R_{set,20} \cdot 1.024^{(T_{water} - 20)}$$
 (S37)

- 6 where $R_{set,20}$ is the settling coefficient of pollutant at 20 °C.
- For algae growth, the growth rate (G_{alg}, day^{-1}) is constrained by the stresses of light,
- 8 nutrients, and water temperature, viz.,

9
$$G_{a \lg} = g_{\max} \cdot R_{light} \cdot R_N \cdot R_P \cdot 1.047^{(T_{water} - 20)}$$
(S38)

where g_{max} is the maximum growth rate of algae (day⁻¹); R_{light} , R_N and R_P are the stress of light, N and P.

12 The light stress:
$$\begin{cases} R_{light} = I_{hr} \cdot fr_{pho} \cdot \exp(-k_l \cdot h) / [I_{hr} \cdot fr_{pho} \cdot \exp(-k_l \cdot h) + K_L] \\ k_l = 1.0 + 0.0088 \cdot C_{alg} + 0.054 \cdot C_{alg}^{2/3} \end{cases}$$
(S39)

13 The N stress:
$$R_N = (C_{NO_3} + C_{NH_4}) / (C_{NO_3} + C_{NH_4} + K_N)$$
 (S40)

14 The P stress:
$$R_P = C_{solP} / (C_{solP} + K_P)$$
 (S41)

- 15 where k_l is the light extinction coefficient (m⁻¹); *h* is the water depth (m); I_{hr} is the
- solar radiation reaching to the water surface per hour (MJ/m²/hr); fr_{pho} is the fraction
- of solar radiation for photosynthesis. K_L , K_N and K_P are the half-saturation
- 18 coefficients for light (MJ/m²/hr), N (mg/L) and P (mg/L).
- 19 The algae death rate (D_{alg}, day^{-1}) is calculated as

20
$$D_{a \lg} = d_{20} \cdot 1.047^{(T_{water} - 20)}$$
 (S42)

- 21 where d_{20} is the death rate of algae at 20°C (day⁻¹).
- 22 For N cycle, the transformation sequence in degradation is organic $N \rightarrow NH_4-N \rightarrow NO_2^{-1}$
- $-N \rightarrow NO_3^{-}N$. The degradation load of every form is calculated as follows.

$$\begin{cases} V_{d,orgN} = [R_{d,20,orgN} \cdot C_{orgN} - AI_N \cdot R_{d,20,a\,lg} \cdot C_{a\,lg}] \cdot 1.047^{(T_{water} - 20)} \\ V_{d,NH_4} = [R_{d,20,NH_4} \cdot C_{NH_4} - R_{d,20,orgN} \cdot C_{orgN} \\ + AI_N \cdot G_{a\,lg} \cdot A_N \cdot C_{a\,lg}] \cdot 1.047^{(T_{water} - 20)} \\ V_{d,NO_2} = [R_{d,20,NO_2} \cdot C_{NO_2} - R_{d,20,NH_4} \cdot C_{NH_4}] \cdot 1.047^{(T_{water} - 20)} \\ V_{d,NO_3} = [AI_N \cdot G_{a\,lg} \cdot (1 - A_N) \cdot C_{a\,lg} - R_{d,20,NO_2} \cdot C_{NO_2}] \cdot 1.047^{(T_{water} - 20)} \end{cases}$$
(S43)

- where $R_{d,20}$ is the degradation coefficient at 20 °C (day⁻¹); AI_N is the N fraction of algal
- 3 biomass; A_N is the algal preference factor for NH₄-N.
- 4 For P cycle, the transformation sequence in degradation is organic $P \rightarrow$ dissolved P.
- 5 The degradation load of every form is calculated as follows.

$$6 \begin{cases} V_{d,orgP} = [AI_P \cdot R_{d,20,alg} \cdot C_{alg} - R_{d,20,orgP} \cdot C_{orgP}] \cdot 1.047^{(T_{water} - 20)} \\ V_{d,disP} = [R_{d,20,orgP} \cdot C_{orgP} - AI_P \cdot G_{alg} \cdot C_{alg}] \cdot 1.047^{(T_{water} - 20)} \end{cases}$$
(S44)

- 7 where AI_P is the P fraction of algal biomass.
- 8 For BOD and COD variables,

9
$$\begin{cases} V_{d,BOD} = R_{d,20,BOD} \cdot C_{BOD} \cdot 1.047^{(T_{water} - 20)} \\ C_{COD} = CtoB \cdot C_{BOD} \end{cases}$$
(S45)

10 where *CtoB* is the ratio of COD to BOD concentrations.

The DO concentration are the functions of atmospheric reaeration, photosynthesis, algae respiration, sediment demand, biochemical oxygen demand, nitrification and water temperature, and are given as

14
$$\begin{cases} V_{d,DO} = \left(AI_{a\lg,r} \cdot D_{a\lg} - AI_{a\lg,p} \cdot G_{a\lg}\right) \cdot C_{a\lg} + V_{d,BOD} + \\ [AI_{NH4} \cdot R_{d,20,NH_4} \cdot C_{NH_4} + AI_{NO2} \cdot R_{d,20,NO_2} \cdot C_{NO_2}] \cdot 1.047^{(T_{water} - 20)} \\ V_{rea,DO} = Rch_{k_{1,20}} \cdot (C_{DO,sat} - C_{DO}) \cdot 1.024^{(T_{water} - 20)} \end{cases}$$
(S46)

where $AI_{alg,r}$ is the rate of oxygen production per unit of algal photosynthesis, $AI_{alg,p}$ is the rate of oxygen uptake per unit of algal respiration; AI_{NH4} is the rate of oxygen uptake per unit of NH₄-N oxidation, AI_{NO2} is the rate of oxygen uptake per unit of NO₂-N oxidation; $Rch_k_{1,20}$ is the reaeration coefficient at 20 ^oC in channel. $C_{DO,sat}$ is the equilibrium saturation DO in channel and is estimated using the equation developed by APHA (1985) as

$$C_{DO,sat} = \exp\left[-139.34410 + \frac{1.575701 \times 10^{5}}{T_{water} + 273.15} - \frac{6.642308 \times 10^{7}}{(T_{water} + 273.15)^{2}} + \frac{1.243800 \times 10^{10}}{(T_{water} + 273.15)^{3}} - \frac{8.621949 \times 10^{11}}{(T_{water} + 273.15)^{4}}\right]$$
(S47)

2 5.2 Water quality module of water impounding

In the water impounding, the degradation and settling processes of pollutants are basically the same as those in channels and are estimated using the equations (S37-S47). Additionally, given that the sedimentation of water impounding is a global issue, the resuspension and decay processes of sediment are further developed.

7 The equations of water quality module of water impounding are

8
$$\begin{cases} dh/dt = [Q_{in} - Q_{out}]/A + P - E \\ dC_L/dt = [C_{in}Q_{in} - C_LQ_{out}]/A \cdot h - K_{set}C_L - K_dC_L + K_{scu}C_s \cdot d/h \\ dC_s/dt = h/d \cdot K_{set}C_L - K_{scu}C_s - K_{bur}C_s \end{cases}$$
 (S48)

9 where *h* and *d* are the depths of water and sediment (m), respectively; Q_{in} and Q_{out} are 10 inflow and outflow (m³/day), respectively; C_{in} and C_{out} are water quality concentrations 11 into and out of the water body (mg/L), respectively; C_L and C_s are the water quality 12 concentrations in the water body and the sediment (mg/L), respectively; *P* and *E* are 13 the precipitation and evapotranspiration (m/day); K_{scu} and K_{bur} are the resuspension and 14 decay coefficients of pollutant in the sediment (day⁻¹), respectively; *A* is the water 15 surface area (km²).

Б	Demonsterre	Definition	I In it	Affected				
ID Parameters		Demition	Unit	components				
Sub-b	Sub-basin parameters							
1	W_m	Minimum soil moisture	none	flow				
2	W_p	Soil moisture at permanent wilting point	none	flow				
3	W _{fc}	Field capacity of soil	none	flow				
4	W _{sat,u}	Saturated moisture capacity of upper soil layer	none	flow				
5	W _{sat,l}	Saturated moisture capacity of lower soil layer	none	flow				
6	g_l	Basic surface runoff coefficient	none	flow				
7	<i>g</i> ₂	Influence coefficient of soil moisture	none	flow				
8	K_{ET}	Adjustment factor of evapotranspiration	none	flow				
9	K _{ss}	Interflow yield coefficient	none	flow				
10	T_g	Delay time for aquifer recharge	day	flow				
11	K _{bs}	Baseflow yield coefficient	none	flow				
12	Ksat	Steady-state infiltration rate of soil	mm/hr	flow				
13	<i>kf</i> _{mx}	Ratio of state infiltration rate to maximum rate in soil	none	flow				
14	rch_k	Infiltration rate of channel	mm/hr	sediment				
15	ch_cov	Channel cover factor	none	sediment				
16	ch_erod	Channel erodibility factor	cm/hr/Pa	sediment				
17	$R_{set,20}(alg)$	Settling rate of Algae at 20 °C	mg/day	algae				
18	$R_{set,20}(disP)$	Settling rate of dissolved P at 20 °C mg/m ² /d		Р				
19	<i>R</i> _{set,20} (NH ₄)	Settling rate of NH ₄ -N at 20 ⁰ C in channel	mg/m²/day	N				
20	$R_{set,20}(\text{orgN})$	Settling rate of organic N at 20 °C in channel day ⁻¹		Ν				
21	$R_{set,20}(\text{orgP})$	Settling rate of organic P at 20 ^o C in channel day ⁻¹		Р				
22	$R_{set,20}(BOD)$	Settling rate of BOD at 20 °C in channel	day-1	COD				
23	$Rch_{1,20}$	Reaeration coefficients at 20 °C in channel	day-1	DO				
24	$Rch_{2,20}$	Sediment oxygen demand rate at 20 °C in channel	day-1	DO				
25	$R_{d,20}(BOD)$	BOD deoxygenation rate at 20 °C in channel	day-1	COD				
26	$R_{d,20}(\mathrm{NH_4})$	Bio-oxidation rate of NH ₄ -N at 20 ^o C in channel	day-1	Ν				
27	$R_{d,20}(\mathrm{NO}_2)$	Oxidation rate of NO ₂ -N to NO ₃ -N at 20 ^o C in channel	day-1	Ν				
28	$R_{d,20}(\text{orgN})$	Hydrolysis rate of organic N to NH ₄ -N at 20 ⁰ C in channel	day-1	Ν				
29	$R_{d,20}(\text{orgP})$	Hydrolysis rate of organic P to dissolved P at 20 °C in channel	day-1	Ν				
30	CtoB	Ratio between COD and BOD	none	COD				
31	res_k	Infiltration rate in reservoir or sluice	mm/hr	flow				
32	$K_{set,20}(BOD)$	Settling rate of BOD at 20 °C in reservoir or sluice	m/year	COD				
33	$K_{set, 20}(NH_4)$	Settling rate of NH ₄ -N at 20 ^o C in reservoir or sluice	m/year	N				
34	<i>K</i> _{set,20} (NO ₂)	Settling rate of NO ₂ -N at 20 ^o C in reservoir or sluice	m/year	Ν				
35	<i>K</i> _{set,20} (NO ₃)	Settling rate of NO ₃ -N at 20 ⁰ C in reservoir or sluice	m/year	Ν				
36	$K_{set, 20}(\text{orgN})$	Settling rate of organic N at 20 °C in reservoir or sluice	m/year	Ν				
37	$K_{set, 20}(\text{orgP})$	Settling rate of organic P at 20 °C in reservoir or sluice	m/year	Р				
38	$K_{set, 20}(disP)$	Settling rate of dissolved P at 20 °C in reservoir or sluice	m/year	Р				

Table S1. All the parameters in the extended model

39	$K_{set,20}$ (DO)	Settling rate of DO at 20 °C in reservoir or sluice	m/year	DO
40	$K_{set, 20}(alg)$	Settling rate of algae at 20 °C in reservoir or sluice	m/year	algae
41	$K_{set, 20}(TN)$	Settling rate of TN at 20 °C in reservoir or sluice	m/year	N
42	<i>K</i> _{set,20} (TP)	Settling rate of TP at 20 0C in reservoir or sluice	m/year	Р
43	<i>K</i> _{<i>d</i>,20} (BOD)	BOD deoxygenation rate in reservoirs at 20 °C	day-1	COD
44	<i>res</i> _ $k_{1,20}$	Reaeration coefficients at 20 °C in reservoir or sluice	day-1	DO
45	<i>K</i> _{<i>d</i>,20} (NH ₄)	Bio-oxidation rate of NH ₄ -N in reservoir at 20 ⁰ C	day-1	Ν
46	<i>K</i> _{<i>d</i>,20} (NO ₂)	Oxidation rate of NO ₂ -N to NO ₃ -N at 20 ⁰ C in reservoir or sluice	day-1	Ν
47	<i>K</i> _{<i>d</i>,20} (orgN)	Hydrolysis rate of organic N to NH ₄ -N at 20 ⁰ C in reservoir or sluice	day-1	Ν
48	<i>K</i> _{<i>d</i>,20} (orgP)	Hydrolysis rate of organic P to dissolved P at 20 ⁰ C in reservoir or sluice	day-1	Р
49	<i>K</i> _{scu,20} (BOD)	Resuspension rate of BOD at 20 °C in reservoir or sluice	m/year	COD
50	<i>K</i> _{scu,20} (NH ₄)	Resuspension rate of NH ₄ -N at 20 ^o C in reservoir or sluice	m/year	N
51	$K_{scu,20}(NO_2)$	Resuspension rate of NO ₂ -N at 20 ^o C in reservoir or sluice	m/year	N
52	$K_{scu,20}(NO_3)$	Resuspension rate of NO ₃ -N at 20 ^o C in reservoir or sluice	m/year	N
53	$K_{scu,20}(\text{orgN})$	Resuspension rate of organic N at 20 °C in reservoir or sluice	m/year	N
54	$K_{scu,20}(\text{orgP})$	Resuspension rate of organic P at 20 °C in reservoir or sluice	m/year	Р
55	$K_{scu,20}(disP)$	Resuspension rate of dissolved P at 20 °C in reservoir or sluice	m/year	Р
56	<i>K</i> _{scu,20} (DO)	Resuspension rate of DO at 20 °C in reservoir or sluice	m/year	DO
57	$K_{scu, 20}(alg)$	Resuspension rate of algae at 20 °C in reservoir or sluice	m/year	algae
58	$K_{scu, 20}(TN)$	Resuspension rate of TN at 20 °C in reservoir or sluice	m/year	Ν
59	<i>K</i> _{scu,20} (TP)	Resuspension rate of TP at 20 °C in reservoir or sluice	m/year	Р
60	<i>K</i> _{bur,20} (BOD)	Decay rate of BOD at 20 °C in reservoir or sluice	m/year	COD
61	<i>K</i> _{bur,20} (NH ₄)	Decay rate of NH ₄ -N at 20 ⁰ C in reservoir or sluice	m/year	Ν
62	<i>K</i> _{bur,20} (NO ₂)	Decay rate of NO ₂ -N at 20 ⁰ C in reservoir or sluice	m/year	Ν
63	<i>K</i> _{bur,20} (NO ₃)	Decay rate of NO ₃ -N at 20 ⁰ C in reservoir or sluice	m/year	Ν
64	$K_{bur, 20}(\text{orgN})$	Decay rate of organic N at 20 °C in reservoir or sluice	m/year	Ν
65	$K_{bur, 20}(\text{orgP})$	Decay rate of organic P at 20 °C in reservoir or sluice	m/year	Р
66	$K_{bur, 20}(disP)$	Decay rate of dissolved P at 20 °C in reservoir or sluice	m/year	Р
67	<i>K</i> _{bur,20} (DO)	Decay rate of DO at 20 °C in reservoir or sluice	m/year	DO
68	$K_{bur, 20}(alg)$	Decay rate of algae at 20 °C in reservoir or sluice	m/year	algae
69	$K_{bur, 20}(TN)$	Decay rate of TN at 20 °C in reservoir or sluice	m/year	Ν
70	<i>K</i> _{bur,20} (TP)	Decay rate of TP at 20 °C in reservoir or sluice	m/year	Р
71	usle_k	Soil erodibility factor of USLE equation	none	sediment
72	usle_p	Erosion control practice factor of USLE equation	none	sediment
73	MicrIn	Microbe index none		C, N
74	$K_{ m cl}$	Decomposition rate of labile organic C	day-1	С
75	μclay	Reduction factor of clay content on organic matter decomposition	none	С
76	μ_t	Reduction factor of soil temperature on growth of denitrifier or nitrifier	none	N
77	S	Labile fraction of organic C compounds	none	С
78	<i>kr</i> _{cvl}	Decomposition rate of very labile organic C in residue pool	day ⁻¹	C
79	<i>kr_{cl}</i>	Decomposition rate of labile organic C in residue pool	day-1	C
80	kr _{cr}	Decomposition rate of stable organic C in residue pool	day-1	С

81	km _{sc}	Decomposition rate of stable organic C in microbial biomass pool	day-1	С			
82	<i>km</i> _{cl}	Decomposition rate of labile organic C in microbial biomass pool	day-1	С			
83	<i>km</i> _h	Decomposition rate of microbial biomass to humands	day-1	С			
84	K _C	Half velocity constant of organic C on denitrifier biomass growth	none	N			
85	K _{NxOy}	Half velocity constant of NO ₃ -N, NO ₂ -N, NO and N ₂ O on denitrifier biomass growth	none	N			
86	u_{NxOy}	Maximum growth rate of NO ₃ -N, NO ₂ -N, NO and N ₂ O denitrifier	day-1	N			
87	M_C	Maintenance coefficient of C	hr-1	С			
88	Y_C	Maximum growth yield of dissolved C	kg/ha/hr	С			
89	M_{NxOy}	Maintenance coefficient of NO ₃ -N, NO ₂ -N, NO and N ₂ O	hr-1	Ν			
90	Y _{NxOy}	Maximum growth yield of NO ₃ -N, NO ₂ -N, NO and N ₂ O	kg/ha/hr	Ν			
91	$CDR_{D:N}$	C:N ratio in bacteria	none	Ν			
92	$\mu_{SW,n}$	Soil water content adjusted factor for denitrification	none	C, N			
93	β_{min}	Mineralization rate of humus active organic P	day-1	Р			
94	β_{rsd}	Mineralization rate of residue fresh organic P	day-1	Р			
Water	shed parameter	S		I			
95	$C_{ur}(\text{COD})$	Export coefficient of COD load in urban area	kg/ha/year	COD			
96	$C_{ur}(\mathrm{NH}_4)$	Export coefficient of NH ₄ -N load in urban area	kg/ha/year	Ν			
97	$C_{ur}(\mathrm{TN})$	Export coefficient of TN load in urban area	kg/ha/year	Ν			
98	$C_{ur}(\mathrm{TP})$	Export coefficient of TP load in urban area	Р				
99	R _{ur}	Loss rate of diffuse source load from urban area	none	pollutant load			
100	$C_{liv}(\text{COD})$	Export coefficient of COD load from living in rural area	kg/year	COD			
101	$C_{liv}(NH_4)$	Export coefficient of NH ₄ -N load from living in rural area	kg/year	Ν			
102	$C_{liv}(TN)$	Export coefficient of TN load from living in rural area	kg/year	Ν			
103	$C_{liv}(\mathrm{TP})$	Export coefficient of TP load from living in rural area	kg/year	Р			
104	R _{liv}	Loss rate of diffuse source load from living	none	pollutant load			
105	C _{lst} (COD)	Export coefficient of COD load from livestock in rural area	kg/year	COD			
106	$C_{lst}(NH_4)$	Export coefficient of NH ₄ -N load from livestock in rural area	kg/year	N			
107	$C_{lst}(TN)$	Export coefficient of TN load from livestock in rural area	kg/year	N			
108	$C_{lst}(TP)$	Export coefficient of TP load from livestock in rural area kg/year		Р			
109	R _{lst}	Loss rate of diffuse source load from livestock none		pollutant load			
110	SF_{tmp}	Snowfall temperature	⁰ C	flow			
111	SM _{tmp}	Snow melt base temperature	⁰ C	flow			
112	SMF_{mx}	Melt factor for snow on June 21	mm/day	flow			
113	SMF_{mn}	Melt factor for snow on December 21 mm/day					
114	TIMP	Snow pack temperature lag factor	none	flow			
115	Coefrad	Factor of maximum possible radiation to net radiation	none	flow			
116	SC_{max}	Minimum snow water content that corresponds to 100% snow cover	mm	flow			
117	SC50	Fraction of snow volume represented by SC_{max} that corresponds to 50% snow cover	none	flow			
118	SC_1	Show cover Coefficients that define shape of snow curve 95% coverage at 100% snow cover none					

119	SC	Coefficients that define shape of snow curve 50% coverage at 100%	none	flow	
117	562	snow cover	none	now	
120	Surlag	Surface runoff lag time	day	flow	
121	n_ch	Channel roughness	none	flow	
122	msk_x	Weighting factor in Muskingum equation	none	flow	
123	msk_k	Storage time constant of channel in Muskingum equation	day	flow	
124	AI_N	N fraction of algal biomass	none	Ν	
125	AI_P	P fraction of algal biomass	none	Р	
126	AI _{alg,p}	Rate of oxygen production per unit of algal photosynthesis	none	DO	
127	AI _{alg,r}	Rate of oxygen uptake per unit of algal respiration	none	DO	
128	AI _{NH4}	Rate of oxygen uptake per unit of NH ₄ -N oxidation	none	Ν	
129	AI _{NO2}	Rate of oxygen uptake per unit of NO2-N oxidation	none	Ν	
130	g _{max}	Maximum specific algal growth rate at 20 ^o C	day-1	algae	
131	d _{max}	Algal respiration rate at 20 ^o C	day-1	algae	
132	fr _{pho}	Fraction of solar radiation for photosynthesis	none	algae	
133	K_L	Half-saturation coefficient for light	kJ/m ²	algae	
134	K_N	Half-saturation coefficient for N	mg/L	algae	
135	K_P	Half-saturation coefficient for P	mg/L	algae	
136	A_N	Algal preference factor for NH ₄ -N	none	Ν	
137	PRF	Peak rate adjustment factor for sediment routing in channel	none	sediment	
120	SP _{con}	Linear parameter for calculating maximum transport capacity of		an dim and	
138		sediment in channel	none	seaiment	
120	SPexp	Exponent parameter for calculating maximum transport capacity of	nono	adimont	
139		sediment in channel	none	seament	
140	pH_{flood}	Flood PH value	none	C, N	
141	<i>rcn</i> _{rvl}	C:N ratio of very labile litter none		C, N	
142	<i>rcn_{rl}</i>	C:N ratio of labile litter	none	C, N	
143	rcn _{rr}	C:N ratio of resistant litter none		C, N	
144	rcn _b	C:N ratio of labile biomass none		C, N	
145	<i>rcn_h</i>	C:N ratio of labile humus none		C, N	
146	rcn _m	C:N ratio of humads	none	C, N	
147	pai	P availability index none C, N		C, N	
148	TtoC	Ratio between TOC and COD	none	COD	
149-	KDM t	Patio of point source pollutent from Ion to Dec		nollutort 1 1	
160	$\frac{rpm_{01} \sim r_{12}}{160} \qquad \text{Natio of point source pointiant from Jan. to Dec.} \qquad \text{none} \qquad \text{point ant } r_{10} = r_$				
	1				

Catagoriu		Spatial agala		
Category	Data	Spatial scale	i emporai scale	Source
CIS	DEM	Grid: 90m*90 m	none	Institute of Geographic Science and Natural Resources
015	Land use	1:1,000,000	none	Research, Chinese Academy of
	Soil	1:4,000,000	none	Sciences
	Precipitation	65 stations	daily (from 2003 to 2008)	Hydrological Yearbooks of Henan Province, China
Weather	Maximum and minimum temperature	6 stations	daily (from 2003 to 2008)	National Meteorological Information Center of China
Hydrology	Total runoff, high and low flows	6 stations	daily (from 2003 to 2008)	Hydrological Yearbooks of Henan Province, China
	Wastewater discharge outlets and the discharge load (wastewater, NH4-N, etc.)	over 200 outlets	annual (from 2003 to 2008)	Water Resources Protection Bureau of Huai River Basin, China
Water quality	Water quality variable concentrations (NH ₄ -N)	6 stations	daily (from 2003 to 2008)	Water Resources Protection Bureau of Huai River Basin, China
	Nonpoint source load (NH ₄ -N)	9 administrative regions	average annual (from 2003 to 2005)	Huai River Commission, China
Ecology	Corn yield	9 administrative regions	average annual (from 2003 to 2005)	Henan Statistical Yearbook, China
Economy	Populations in rural area, breeding stock of large animals and livestock, water withdrawal	9 administrative regions	annual (from 2003 to 2008)	Henan Statistical Yearbook, China
Water projects	Water storage capacities of dead, usable, flood control and maximum flood levels and the corresponding water surface areas; the relationship among water level, storage volume and outflow	5 reservoirs and 12 sluices	none	Water Resources Protection Bureau of Huai River Basin, China
Agricultural management	Fertilization and irrigation types, timing and amount, the time of seeding and harvest, crop types	9 administrative regions	average annual (from 2003 to 2008)	Henan Statistical Yearbooks, China, Wang <i>et al.</i> (2008) and Zhai <i>et al.</i> (2014)
2 3				

1	Table S2.	The detailed	information	of data	sets for t	the case study
-	14010 02.	The actuited	mommenon	or and		me case staay

Table S3. The agricultural management scheme in the Shaying River Catchment

		Time		Patio distribution	Patio distribution	Fertilizer intensity (kg/ha)	
Crop	Management	Start (month- day)	Duration (day)	of annual TN fertilizer	of annual TP fertilizer	TN	TP
	Base fertilization	4-1	1	0.60	0.86	40.60-86.17	25.46-59.47
Doules nice	Plant	4-15	1	-	-		
Early rice	Additional Fertilization	5-1	1	0.40	0.14	27.06-57.45	4.14-9.68
	Harvest & Kill	7-31	1	-	-		
	Base fertilization	8-1	1	0.50	0.86	33.83-71.81	25.46-59.47
T at a star	Plant	8-15	1	-	-		
Late rice	Additional Fertilization	9-1	1	0.50	0.14	33.83-71.81	4.14-9.68
	Harvest & Kill	10-31	1	-	-		
	Base fertilization	10-1	1	0.64	0.02	43.30-271.04	0.59-4.10
Winter	Plant	10-15	1	-	-		
wheat	Additional Fertilization	1-1	1	0.36	0.98	24.36-152.46	29.00-201.11
	Harvest & Kill	6-1	1	-	-		
	Base fertilization	6-1	1	0.41	0.88	27.74-173.63	26.05-180.59
C	Plant	6-15	1	-	-		
Cron	Additional Fertilization	7-15	1	0.59	0.12	39.92-249.86	3.55-24.62
	Harvest & Kill	9-30	1	-	-		