Articles | Volume 20, issue 9
https://doi.org/10.5194/hess-20-3843-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/hess-20-3843-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?
Hossein Tabari
CORRESPONDING AUTHOR
Hydraulics Division, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven, Belgium
Rozemien De Troch
Royal Meteorological Institute of Belgium, Brussels, Belgium
Department of Physics and Astronomy, Ghent University, Ghent, Belgium
Olivier Giot
Royal Meteorological Institute of Belgium, Brussels, Belgium
Plant and Vegetation Ecology, University of Antwerp, Antwerp, Belgium
Rafiq Hamdi
Royal Meteorological Institute of Belgium, Brussels, Belgium
Department of Physics and Astronomy, Ghent University, Ghent, Belgium
Piet Termonia
Royal Meteorological Institute of Belgium, Brussels, Belgium
Department of Physics and Astronomy, Ghent University, Ghent, Belgium
Sajjad Saeed
Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Erwan Brisson
Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Nicole Van Lipzig
Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Patrick Willems
Hydraulics Division, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven, Belgium
Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
Related authors
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
Atmos. Chem. Phys., 24, 13751–13768, https://doi.org/10.5194/acp-24-13751-2024, https://doi.org/10.5194/acp-24-13751-2024, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe different concentrations of ice-nucleating particles to our model to assess how these clouds respond to concentration changes, validating results with cloud and aerosol observations from the Princess Elisabeth Antarctica station. Our results show that aerosol–cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Jérôme Neirynck, Jonas Van de Walle, Ruben Borgers, Sebastiaan Jamaer, Johan Meyers, Ad Stoffelen, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 1695–1711, https://doi.org/10.5194/wes-9-1695-2024, https://doi.org/10.5194/wes-9-1695-2024, 2024
Short summary
Short summary
In our study, we assess how mesoscale weather systems influence wind speed variations and their impact on offshore wind energy production fluctuations. We have observed, for instance, that weather systems originating over land lead to sea wind speed variations. Additionally, we noted that power fluctuations are typically more significant in summer, despite potentially larger winter wind speed variations. These findings are valuable for grid management and optimizing renewable energy deployment.
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-132, https://doi.org/10.5194/hess-2024-132, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Future extreme rainfall events are influenced by changes in both absolute and relative humidity. The impact of increasing absolute humidity is reasonably well understood, but the role of relative humidity decreases over land remains largely unknown. Using hourly observations from France and The Netherlands, we find that lower relative humidity generally leads to more intense rainfall extremes. This relation is only captured well in recently developed convection-permitting climate models.
Ruben Borgers, Marieke Dirksen, Ine L. Wijnant, Andrew Stepek, Ad Stoffelen, Naveed Akhtar, Jérôme Neirynck, Jonas Van de Walle, Johan Meyers, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 697–719, https://doi.org/10.5194/wes-9-697-2024, https://doi.org/10.5194/wes-9-697-2024, 2024
Short summary
Short summary
Wind farms at sea are becoming more densely clustered, which means that next to individual wind turbines interfering with each other in a single wind farm also interference between wind farms becomes important. Using a climate model, this study shows that the efficiency of wind farm clusters and the interference between the wind farms in the cluster depend strongly on the properties of the individual wind farms and are also highly sensitive to the spacing between the wind farms.
Rosa Pietroiusti, Inne Vanderkelen, Friederike E. L. Otto, Clair Barnes, Lucy Temple, Mary Akurut, Philippe Bally, Nicole P. M. van Lipzig, and Wim Thiery
Earth Syst. Dynam., 15, 225–264, https://doi.org/10.5194/esd-15-225-2024, https://doi.org/10.5194/esd-15-225-2024, 2024
Short summary
Short summary
Heavy rainfall in eastern Africa between late 2019 and mid 2020 caused devastating floods and landslides and drove the levels of Lake Victoria to a record-breaking maximum in May 2020. In this study, we characterize the spatial extent and impacts of the floods in the Lake Victoria basin and investigate how human-induced climate change influenced the probability and intensity of the record-breaking lake levels and flooding by applying a multi-model extreme event attribution methodology.
Jan De Pue, Sebastian Wieneke, Ana Bastos, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Maral Maleki, Fabienne Maignan, Françoise Gellens-Meulenberghs, Ivan Janssens, and Manuela Balzarolo
Biogeosciences, 20, 4795–4818, https://doi.org/10.5194/bg-20-4795-2023, https://doi.org/10.5194/bg-20-4795-2023, 2023
Short summary
Short summary
The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. To estimate this flux, models can rely on remote sensing data (RS-driven), meteorological data (meteo-driven) or a combination of both (hybrid). An intercomparison of 11 models demonstrated that RS-driven models lack the sensitivity to short-term anomalies. Conversely, the simulation of soil moisture dynamics and stress response remains a challenge in meteo-driven models.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Fabienne Maignan, and Françoise Gellens-Meulenberghs
Biogeosciences, 19, 4361–4386, https://doi.org/10.5194/bg-19-4361-2022, https://doi.org/10.5194/bg-19-4361-2022, 2022
Short summary
Short summary
The functioning of ecosystems involves numerous biophysical processes which interact with each other. Land surface models (LSMs) are used to describe these processes and form an essential component of climate models. In this paper, we evaluate the performance of three LSMs and their interactions with soil moisture and vegetation. Though we found room for improvement in the simulation of soil moisture and drought stress, the main cause of errors was related to the simulated growth of vegetation.
Koen Devesse, Luca Lanzilao, Sebastiaan Jamaer, Nicole van Lipzig, and Johan Meyers
Wind Energ. Sci., 7, 1367–1382, https://doi.org/10.5194/wes-7-1367-2022, https://doi.org/10.5194/wes-7-1367-2022, 2022
Short summary
Short summary
Recent research suggests that offshore wind farms might form such a large obstacle to the wind that it already decelerates before reaching the first turbines. Part of this phenomenon could be explained by gravity waves. Research on these gravity waves triggered by mountains and hills has found that variations in the atmospheric state with altitude can have a large effect on how they behave. This paper is the first to take the impact of those vertical variations into account for wind farms.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Karen Gabriels, Patrick Willems, and Jos Van Orshoven
Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, https://doi.org/10.5194/nhess-22-395-2022, 2022
Short summary
Short summary
As land use influences hydrological processes (e.g., forests have a high water retention and infiltration capacity), it also impacts floods downstream in the river system. This paper demonstrates an approach quantifying the impact of land use changes on economic flood damages: damages in an initial situation are quantified and compared to damages of simulated floods associated with a land use change scenario. This approach can be used as an explorative tool in sustainable flood risk management.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Panitz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, https://doi.org/10.5194/gmd-14-5125-2021, 2021
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia, and Africa. How the model configuration, horizontal and vertical resolutions, and choice of driving data influence the model results for the five domains is assessed, with the purpose of aiding the planning and design of regional climate simulations in the future.
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Bertold Mariën, Inge Dox, Hans J. De Boeck, Patrick Willems, Sebastien Leys, Dimitri Papadimitriou, and Matteo Campioli
Biogeosciences, 18, 3309–3330, https://doi.org/10.5194/bg-18-3309-2021, https://doi.org/10.5194/bg-18-3309-2021, 2021
Short summary
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
Sara Top, Lola Kotova, Lesley De Cruz, Svetlana Aniskevich, Leonid Bobylev, Rozemien De Troch, Natalia Gnatiuk, Anne Gobin, Rafiq Hamdi, Arne Kriegsmann, Armelle Reca Remedio, Abdulla Sakalli, Hans Van De Vyver, Bert Van Schaeybroeck, Viesturs Zandersons, Philippe De Maeyer, Piet Termonia, and Steven Caluwaerts
Geosci. Model Dev., 14, 1267–1293, https://doi.org/10.5194/gmd-14-1267-2021, https://doi.org/10.5194/gmd-14-1267-2021, 2021
Short summary
Short summary
Detailed climate data are needed to assess the impact of climate change on human and natural systems. The performance of two high-resolution regional climate models, ALARO-0 and REMO2015, was investigated over central Asia, a vulnerable region where detailed climate information is scarce. In certain subregions the produced climate data are suitable for impact studies, but bias adjustment is required for subregions where significant biases have been identified.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Benjamin Campforts, Veerle Vanacker, Frédéric Herman, Matthias Vanmaercke, Wolfgang Schwanghart, Gustavo E. Tenorio, Patrick Willems, and Gerard Govers
Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020, https://doi.org/10.5194/esurf-8-447-2020, 2020
Short summary
Short summary
In this contribution, we explore the spatial determinants of bedrock river incision in the tropical Andes. The model results illustrate the problem of confounding between climatic and lithological variables, such as rock strength. Incorporating rock strength explicitly into river incision models strongly improves the explanatory power of all tested models and enables us to clarify the role of rainfall variability in controlling river incision rates.
Els Van Uytven, Jan De Niel, and Patrick Willems
Hydrol. Earth Syst. Sci., 24, 2671–2686, https://doi.org/10.5194/hess-24-2671-2020, https://doi.org/10.5194/hess-24-2671-2020, 2020
Short summary
Short summary
In recent years many methods have been developed for the statistical downscaling of climate model outputs. Each statistical downscaling method has strengths and limitations, but those are rarely evaluated. This paper illustrates an approach to evaluating the skill of statistical downscaling methods for the specific purpose of impact analysis in hydrology.
Andreas Müller, Willem Deconinck, Christian Kühnlein, Gianmarco Mengaldo, Michael Lange, Nils Wedi, Peter Bauer, Piotr K. Smolarkiewicz, Michail Diamantakis, Sarah-Jane Lock, Mats Hamrud, Sami Saarinen, George Mozdzynski, Daniel Thiemert, Michael Glinton, Pierre Bénard, Fabrice Voitus, Charles Colavolpe, Philippe Marguinaud, Yongjun Zheng, Joris Van Bever, Daan Degrauwe, Geert Smet, Piet Termonia, Kristian P. Nielsen, Bent H. Sass, Jacob W. Poulsen, Per Berg, Carlos Osuna, Oliver Fuhrer, Valentin Clement, Michael Baldauf, Mike Gillard, Joanna Szmelter, Enda O'Brien, Alastair McKinstry, Oisín Robinson, Parijat Shukla, Michael Lysaght, Michał Kulczewski, Milosz Ciznicki, Wojciech Piątek, Sebastian Ciesielski, Marek Błażewicz, Krzysztof Kurowski, Marcin Procyk, Pawel Spychala, Bartosz Bosak, Zbigniew P. Piotrowski, Andrzej Wyszogrodzki, Erwan Raffin, Cyril Mazauric, David Guibert, Louis Douriez, Xavier Vigouroux, Alan Gray, Peter Messmer, Alexander J. Macfaden, and Nick New
Geosci. Model Dev., 12, 4425–4441, https://doi.org/10.5194/gmd-12-4425-2019, https://doi.org/10.5194/gmd-12-4425-2019, 2019
Short summary
Short summary
This paper presents an overview of the ESCAPE project. Dwarfs (key patterns in terms of computation and communication) are identified in weather prediction models. They are optimised for different hardware architectures. New algorithms are developed that are specifically designed for better energy efficiency and improved portability through domain-specific languages. Different numerical techniques are compared in terms of energy efficiency and performance for a variety of computing technologies.
Sara Porchetta, Orkun Temel, Domingo Muñoz-Esparza, Joachim Reuder, Jaak Monbaliu, Jeroen van Beeck, and Nicole van Lipzig
Atmos. Chem. Phys., 19, 6681–6700, https://doi.org/10.5194/acp-19-6681-2019, https://doi.org/10.5194/acp-19-6681-2019, 2019
Short summary
Short summary
Two-way feedback occurs between offshore wind and waves. Using an extensive data set of offshore measurements, we show that the wave roughness affecting the wind is dependent on the alignment between the wind and wave directions. Moreover, we propose a new roughness parameterization that takes into account the dependence on alignment. Using this in numerical models will facilitate a better representation of offshore wind, which is relevant to wind energy and and climate modeling.
Syed M. Touhidul Mustafa, M. Moudud Hasan, Ajoy Kumar Saha, Rahena Parvin Rannu, Els Van Uytven, Patrick Willems, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 23, 2279–2303, https://doi.org/10.5194/hess-23-2279-2019, https://doi.org/10.5194/hess-23-2279-2019, 2019
Short summary
Short summary
This study evaluates the effect of conceptual hydro(geo)logical model (CHM) structure, climate change and groundwater abstraction on future groundwater-level prediction uncertainty. If the current groundwater abstraction trend continues, groundwater level is predicted to decline quickly. Groundwater abstraction in NW Bangladesh should decrease by 60 % to ensure sustainable use. Abstraction scenarios are the dominant uncertainty source, followed by CHM uncertainty and climate model uncertainty.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Alexandra Gossart, Stephen P. Palm, Niels Souverijns, Jan T. M. Lenaerts, Irina V. Gorodetskaya, Stef Lhermitte, and Nicole P. M. van Lipzig
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-25, https://doi.org/10.5194/tc-2019-25, 2019
Manuscript not accepted for further review
Short summary
Short summary
Blowing snow measurements are scarce, both in time and space over the Antarctic ice sheet. We compare here CALIPSO satellite blowing snow measurements, to ground-base remote sensing ceilometer retrievals at two coastal stations in East Antarctica. Results indicate that 95 % of the blowing snow occurs under cloudy conditions, and are missed by the satellite. In addition, difficulties arise if comparing point locations to satellite overpasses.
Jan De Niel and Patrick Willems
Hydrol. Earth Syst. Sci., 23, 871–882, https://doi.org/10.5194/hess-23-871-2019, https://doi.org/10.5194/hess-23-871-2019, 2019
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Short summary
Precipitation is the main input in the surface mass balance of the Antarctic ice sheet, but it is still poorly understood due to a lack of observations in this region. We analyzed the vertical structure of the precipitation using multiyear observation of vertically pointing micro rain radars (MRRs) at two stations located in East Antarctica. The use of MRRs showed the potential to study the effect of climatology and hydrometeor microphysics on the vertical structure of Antarctic precipitation.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Gabriel Gerard Rooney, Nicole van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 6357–6369, https://doi.org/10.5194/hess-22-6357-2018, https://doi.org/10.5194/hess-22-6357-2018, 2018
Short summary
Short summary
This paper uses a unique observational dataset of a tropical African lake (L. Kivu) to assess the effect of rain on lake surface temperature. Data from 4 years were categorised by daily rain amount and total net radiation to show that heavy rain may reduce the end-of-day lake temperature by about 0.3 K. This is important since lake surface temperature may influence local weather on short timescales, but the effect of rain on lake temperature has been little studied or parametrised previously.
Niels Souverijns, Alexandra Gossart, Stef Lhermitte, Irina V. Gorodetskaya, Jacopo Grazioli, Alexis Berne, Claudio Duran-Alarcon, Brice Boudevillain, Christophe Genthon, Claudio Scarchilli, and Nicole P. M. van Lipzig
The Cryosphere, 12, 3775–3789, https://doi.org/10.5194/tc-12-3775-2018, https://doi.org/10.5194/tc-12-3775-2018, 2018
Short summary
Short summary
Snowfall observations over Antarctica are scarce and currently limited to information from the CloudSat satellite. Here, a first evaluation of the CloudSat snowfall record is performed using observations of ground-based precipitation radars. Results indicate an accurate representation of the snowfall climatology over Antarctica, despite the low overpass frequency of the satellite, outperforming state-of-the-art model estimates. Individual snowfall events are however not well represented.
Julie Berckmans, Roeland Van Malderen, Eric Pottiaux, Rosa Pacione, and Rafiq Hamdi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1097, https://doi.org/10.5194/acp-2018-1097, 2018
Preprint withdrawn
Short summary
Short summary
The use of ground-based observations is suitable for the assessment of atmospheric water vapour in climate models. We used water vapour observations from 100 European sites to evaluate two models: a reanalysis product and a regional climate model. The results reveal patterns in the water vapour distribution both in time and space that are relevant as water vapour plays a key role in the feedback process of a changing climate.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Inne Vanderkelen, Nicole P. M. van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 5509–5525, https://doi.org/10.5194/hess-22-5509-2018, https://doi.org/10.5194/hess-22-5509-2018, 2018
Short summary
Short summary
Lake Victoria is the largest lake in Africa and one of the two major sources of the Nile river. The water level of Lake Victoria is determined by its water balance, consisting of lake precipitation and evaporation, inflow from rivers and lake outflow, controlled by two hydropower dams. Here, we present a water balance model for Lake Victoria, which closely represents the observed lake levels. The model results highlight the sensitivity of the lake level to human operations at the dam.
Inne Vanderkelen, Nicole P. M. van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 5527–5549, https://doi.org/10.5194/hess-22-5527-2018, https://doi.org/10.5194/hess-22-5527-2018, 2018
Short summary
Short summary
Lake Victoria is the second largest freshwater lake in the world and one of the major sources of the Nile River, which is controlled by two hydropower dams. In this paper we estimate the potential consequences of climate change for future water level fluctuations of Lake Victoria. Our results reveal that the operating strategies at the dam are the main controlling factors of future lake levels and that regional climate simulations used in the projections encompass large uncertainties.
Maite Bauwens, Trissevgeni Stavrakou, Jean-François Müller, Bert Van Schaeybroeck, Lesley De Cruz, Rozemien De Troch, Olivier Giot, Rafiq Hamdi, Piet Termonia, Quentin Laffineur, Crist Amelynck, Niels Schoon, Bernard Heinesch, Thomas Holst, Almut Arneth, Reinhart Ceulemans, Arturo Sanchez-Lorenzo, and Alex Guenther
Biogeosciences, 15, 3673–3690, https://doi.org/10.5194/bg-15-3673-2018, https://doi.org/10.5194/bg-15-3673-2018, 2018
Short summary
Short summary
Biogenic isoprene fluxes are simulated over Europe with the MEGAN–MOHYCAN model for the recent past and end-of-century climate at high spatiotemporal resolution (0.1°, 3 min). Due to climate change, fluxes increased by 40 % over 1979–2014. Climate scenarios for 2070–2099 suggest an increase by 83 % due to climate, and an even stronger increase when the potential impact of CO2 fertilization is considered (up to 141 %). Accounting for CO2 inhibition cancels out a large part of these increases.
Niels Souverijns, Alexandra Gossart, Irina V. Gorodetskaya, Stef Lhermitte, Alexander Mangold, Quentin Laffineur, Andy Delcloo, and Nicole P. M. van Lipzig
The Cryosphere, 12, 1987–2003, https://doi.org/10.5194/tc-12-1987-2018, https://doi.org/10.5194/tc-12-1987-2018, 2018
Short summary
Short summary
This work is the first to gain insight into the local surface mass balance over Antarctica using accurate long-term snowfall observations. A non-linear relationship between accumulation and snowfall is discovered, indicating that total surface mass balance measurements are not a good proxy for snowfall over Antarctica. Furthermore, the meteorological drivers causing changes in the local SMB are identified.
Piet Termonia, Claude Fischer, Eric Bazile, François Bouyssel, Radmila Brožková, Pierre Bénard, Bogdan Bochenek, Daan Degrauwe, Mariá Derková, Ryad El Khatib, Rafiq Hamdi, Ján Mašek, Patricia Pottier, Neva Pristov, Yann Seity, Petra Smolíková, Oldřich Španiel, Martina Tudor, Yong Wang, Christoph Wittmann, and Alain Joly
Geosci. Model Dev., 11, 257–281, https://doi.org/10.5194/gmd-11-257-2018, https://doi.org/10.5194/gmd-11-257-2018, 2018
Short summary
Short summary
This paper describes the ALADIN System that has been developed by the international ALADIN consortium of 16 European and northern African partners since its creation in 1990. The paper also describes how its model configurations are used by the consortium partners for their operational weather forecasting applications and for weather and climate research.
Alexandra Gossart, Niels Souverijns, Irina V. Gorodetskaya, Stef Lhermitte, Jan T. M. Lenaerts, Jan H. Schween, Alexander Mangold, Quentin Laffineur, and Nicole P. M. van Lipzig
The Cryosphere, 11, 2755–2772, https://doi.org/10.5194/tc-11-2755-2017, https://doi.org/10.5194/tc-11-2755-2017, 2017
Short summary
Short summary
Blowing snow plays an important role on local surface mass balance of Antarctica. We present here the blowing snow detection algorithm, to retrieve blowing snow occurrence from the attenuated backscatter signal of ceilometers set up at two station. There is a good correspondence in detection of heavy blowing snow by the algorithm and the visual observations performed at Neumayer station. Moreover, most of the blowing snow occurs during events bringing precipitation from the coast inland.
Edouard Goudenhoofdt, Laurent Delobbe, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 5385–5399, https://doi.org/10.5194/hess-21-5385-2017, https://doi.org/10.5194/hess-21-5385-2017, 2017
Short summary
Short summary
Knowing the characteristics of extreme precipitation is useful for flood management applications like sewer system design. The potential of a 12-year high-quality weather radar precipitation dataset is investigated by comparison with rain gauges. Despite known limitations, a good agreement is found between the radar and the rain gauges. Using the radar data allow us to reduce the uncertainty of the extreme value analysis, especially for short duration extremes related to thunderstorms.
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Susana Ochoa-Rodriguez, Patrick Willems, Abdellah Ichiba, Li-Pen Wang, Rui Pina, Johan Van Assel, Guendalina Bruni, Damian Murla Tuyls, and Marie-Claire ten Veldhuis
Hydrol. Earth Syst. Sci., 21, 2361–2375, https://doi.org/10.5194/hess-21-2361-2017, https://doi.org/10.5194/hess-21-2361-2017, 2017
Short summary
Short summary
Data from 10 urban or peri-urban catchments located in five EU countries are used to analyze the imperviousness distribution and sewer network geometry. Consistent scale invariant features are retrieved for both (fractal dimensions can be defined), which enables to define a level of urbanization. Imperviousness representation in operational model is also found to exhibit scale-invariant features (even multifractality). The research was carried out as part of the UE INTERREG IV RainGain project.
Tanja de Boer-Euser, Laurène Bouaziz, Jan De Niel, Claudia Brauer, Benjamin Dewals, Gilles Drogue, Fabrizio Fenicia, Benjamin Grelier, Jiri Nossent, Fernando Pereira, Hubert Savenije, Guillaume Thirel, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 423–440, https://doi.org/10.5194/hess-21-423-2017, https://doi.org/10.5194/hess-21-423-2017, 2017
Short summary
Short summary
In this study, the rainfall–runoff models of eight international research groups were compared for a set of subcatchments of the Meuse basin to investigate the influence of certain model components on the modelled discharge. Although the models showed similar performances based on general metrics, clear differences could be observed for specific events. The differences during drier conditions could indeed be linked to differences in model structures.
Julie Berckmans, Olivier Giot, Rozemien De Troch, Rafiq Hamdi, Reinhart Ceulemans, and Piet Termonia
Geosci. Model Dev., 10, 223–238, https://doi.org/10.5194/gmd-10-223-2017, https://doi.org/10.5194/gmd-10-223-2017, 2017
Short summary
Short summary
The regional climate of western Europe was simulated using an atmospheric and land surface model. This study aims at improving the coupling of the models, by applying an alternative method for the update frequency of the atmospheric and soil parameters. The results show that a daily update of the atmosphere and soil outperforms a continuous approach. However, keeping the land surface continuous but having daily atmospheric updates is preferable at times, as it benefits from soil moisture memory.
Kristof Van Tricht, Stef Lhermitte, Irina V. Gorodetskaya, and Nicole P. M. van Lipzig
The Cryosphere, 10, 2379–2397, https://doi.org/10.5194/tc-10-2379-2016, https://doi.org/10.5194/tc-10-2379-2016, 2016
Short summary
Short summary
Despite the crucial role of polar regions in the global climate system, the limited availability of observations on the ground hampers a detailed understanding of their energy budget. Here we develop a method to use satellites to fill these observational gaps. We show that by sampling satellite observations in a smart way, coverage is greatly enhanced. We conclude that this method might help improve our understanding of the polar energy budget, and ultimately its effects on the global climate.
Hendrik Wouters, Matthias Demuzere, Ulrich Blahak, Krzysztof Fortuniak, Bino Maiheu, Johan Camps, Daniël Tielemans, and Nicole P. M. van Lipzig
Geosci. Model Dev., 9, 3027–3054, https://doi.org/10.5194/gmd-9-3027-2016, https://doi.org/10.5194/gmd-9-3027-2016, 2016
Short summary
Short summary
A methodology is presented for translating three-dimensional information of urban areas into land-surface parameters that can be easily employed in atmospheric modelling. As demonstrated with the COSMO-CLM model for a Belgian summer, it enables them to represent urban heat islands and their dependency on urban design with a low computational cost. It allows for efficiently incorporating urban information systems (e.g., WUDAPT) into climate change assessment and numerical weather prediction.
Vincent Wolfs, Quan Tran Quoc, and Patrick Willems
Proc. IAHS, 373, 1–6, https://doi.org/10.5194/piahs-373-1-2016, https://doi.org/10.5194/piahs-373-1-2016, 2016
Short summary
Short summary
Water management is constantly evolving. Trends, such as population growth, urbanization and climate change, pose new challenges to water management. We developed a new and flexible modelling approach to generate very fast models of catchment hydrology, rivers and sewer systems that can be tailored to numerous applications in water management. To illustrate the developed framework, a case study of integrated hydrological-hydraulic modelling for the Grote Nete catchment in Belgium is elaborated.
Olivier Giot, Piet Termonia, Daan Degrauwe, Rozemien De Troch, Steven Caluwaerts, Geert Smet, Julie Berckmans, Alex Deckmyn, Lesley De Cruz, Pieter De Meutter, Annelies Duerinckx, Luc Gerard, Rafiq Hamdi, Joris Van den Bergh, Michiel Van Ginderachter, and Bert Van Schaeybroeck
Geosci. Model Dev., 9, 1143–1152, https://doi.org/10.5194/gmd-9-1143-2016, https://doi.org/10.5194/gmd-9-1143-2016, 2016
Short summary
Short summary
The Royal Meteorological Institute of Belgium and Ghent University have performed two simulations with different horizontal resolutions of the past observed climate of Europe for the period 1979–2010. Of special interest is the new way of handling convective precipitation in the model that was used. Results show that the model is capable of representing the European climate and comparison with other models reveals that precipitation patterns are well represented.
C. Onyutha and P. Willems
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-12167-2015, https://doi.org/10.5194/hessd-12-12167-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
To investigate the possible change in catchment behavior, which may interfere with the flow-rainfall relationship, three rainfall-runoff models were applied to the main catchments of the Nile Basin in Africa based on inputs covering the period from 1940 to 2003. There was close agreement between the changes in the observed and simulated overland flow from all the models. Thus, change in catchment behavior due to anthropogenic influence in the Nile basin over the selected time period was minimal.
A. Molina, V. Vanacker, E. Brisson, D. Mora, and V. Balthazar
Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, https://doi.org/10.5194/hess-19-4201-2015, 2015
Short summary
Short summary
Andean catchments play a key role in the provision of freshwater resources. The development of megacities in the inter-Andean valleys raises severe concerns about growing water scarcity. This study is one of the first long-term (1970s-now) analyses of the role of land cover and climate change on provision and regulation of streamflow in the tropical Andes. Forest conversion had the largest impact on streamflow, leading to a 10 % net decrease in streamflow over the last 40 years.
L.-P. Wang, S. Ochoa-Rodríguez, C. Onof, and P. Willems
Hydrol. Earth Syst. Sci., 19, 4001–4021, https://doi.org/10.5194/hess-19-4001-2015, https://doi.org/10.5194/hess-19-4001-2015, 2015
Short summary
Short summary
A new methodology is proposed in this paper, focusing on improving the applicability of the operational weather radar data to urban hydrology with rain gauge data. The proposed methodology employed a simple yet effective technique to extract additional information (called local singularity structure) from radar data, which was generally ignored in related works. The associated improvement can be particularly seen in capturing storm peak magnitudes, which is critical for urban applications.
C. Onyutha and P. Willems
Hydrol. Earth Syst. Sci., 19, 2227–2246, https://doi.org/10.5194/hess-19-2227-2015, https://doi.org/10.5194/hess-19-2227-2015, 2015
Short summary
Short summary
Variability of rainfall in the Nile Basin was found linked to the large-scale atmosphere-ocean interactions. This finding is vital for a number of water management and planning aspects. To give just one example, it may help in obtaining improved quantiles for flood or drought/water scarcity risk management. This is especially important under conditions of (1) questionable data quality, and (2) data scarcity. These conditions are typical of the Nile Basin and inevitably need to be addressed.
M. A. Sunyer, Y. Hundecha, D. Lawrence, H. Madsen, P. Willems, M. Martinkova, K. Vormoor, G. Bürger, M. Hanel, J. Kriaučiūnienė, A. Loukas, M. Osuch, and I. Yücel
Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, https://doi.org/10.5194/hess-19-1827-2015, 2015
A. Duerinckx, R. Hamdi, J.-F. Mahfouf, and P. Termonia
Geosci. Model Dev., 8, 845–863, https://doi.org/10.5194/gmd-8-845-2015, https://doi.org/10.5194/gmd-8-845-2015, 2015
I. V. Gorodetskaya, S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig
The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015, https://doi.org/10.5194/tc-9-285-2015, 2015
Short summary
Short summary
Our paper presents a new cloud-precipitation-meteorological observatory established in the escarpment zone of Dronning Maud Land, East Antarctica. The site is characterised by bimodal cloud occurrence (clear sky or overcast) with liquid-containing clouds occurring 20% of the cloudy periods. Local surface mass balance strongly depends on rare intense snowfall events. A substantial part of the accumulated snow is removed by surface and drifting snow sublimation and wind-driven snow erosion.
A. Ochoa, L. Pineda, P. Crespo, and P. Willems
Hydrol. Earth Syst. Sci., 18, 3179–3193, https://doi.org/10.5194/hess-18-3179-2014, https://doi.org/10.5194/hess-18-3179-2014, 2014
K. Van Tricht, I. V. Gorodetskaya, S. Lhermitte, D. D. Turner, J. H. Schween, and N. P. M. Van Lipzig
Atmos. Meas. Tech., 7, 1153–1167, https://doi.org/10.5194/amt-7-1153-2014, https://doi.org/10.5194/amt-7-1153-2014, 2014
D. Vrebos, T. Vansteenkiste, J. Staes, P. Willems, and P. Meire
Hydrol. Earth Syst. Sci., 18, 1119–1136, https://doi.org/10.5194/hess-18-1119-2014, https://doi.org/10.5194/hess-18-1119-2014, 2014
D. E. Mora, L. Campozano, F. Cisneros, G. Wyseure, and P. Willems
Hydrol. Earth Syst. Sci., 18, 631–648, https://doi.org/10.5194/hess-18-631-2014, https://doi.org/10.5194/hess-18-631-2014, 2014
W. Thiery, A. Martynov, F. Darchambeau, J.-P. Descy, P.-D. Plisnier, L. Sushama, and N. P. M. van Lipzig
Geosci. Model Dev., 7, 317–337, https://doi.org/10.5194/gmd-7-317-2014, https://doi.org/10.5194/gmd-7-317-2014, 2014
R. Hamdi, D. Degrauwe, A. Duerinckx, J. Cedilnik, V. Costa, T. Dalkilic, K. Essaouini, M. Jerczynki, F. Kocaman, L. Kullmann, J.-F. Mahfouf, F. Meier, M. Sassi, S. Schneider, F. Váňa, and P. Termonia
Geosci. Model Dev., 7, 23–39, https://doi.org/10.5194/gmd-7-23-2014, https://doi.org/10.5194/gmd-7-23-2014, 2014
M. T. Taye and P. Willems
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-7857-2013, https://doi.org/10.5194/hessd-10-7857-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Urban Hydrology | Techniques and Approaches: Stochastic approaches
Improving radar-based rainfall nowcasting by a nearest-neighbour approach – Part 1: Storm characteristics
The role of storm scale, position and movement in controlling urban flood response
Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series
Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-amount times
Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling
Downscaling future precipitation extremes to urban hydrology scales using a spatio-temporal Neyman–Scott weather generator
Stochastic rainfall analysis for storm tank performance evaluation
Bora Shehu and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 26, 1631–1658, https://doi.org/10.5194/hess-26-1631-2022, https://doi.org/10.5194/hess-26-1631-2022, 2022
Short summary
Short summary
In this paper we investigate whether similar storms behave similarly and whether the information obtained from past similar storms can improve storm nowcast based on radar data. Here a nearest-neighbour approach is employed to first identify similar storms and later to issue either a single or an ensemble nowcast based on k most similar past storms. The results indicate that the information obtained from similar storms can reduce the errors considerably, especially for convective storm nowcast.
Marie-Claire ten Veldhuis, Zhengzheng Zhou, Long Yang, Shuguang Liu, and James Smith
Hydrol. Earth Syst. Sci., 22, 417–436, https://doi.org/10.5194/hess-22-417-2018, https://doi.org/10.5194/hess-22-417-2018, 2018
Short summary
Short summary
The effect of storm scale and movement on runoff flows in urban catchments remains poorly understood due to the complexity of urban land use and man-made infrastructure. In this study, interactions among rainfall, urbanisation and peak flows were analyzed based on 15 years of radar rainfall and flow observations. We found that flow-path networks strongly smoothed rainfall peaks. Unexpectedly, the storm position relative to impervious cover within the basins had little effect on flow peaks.
Søren Thorndahl, Aske Korup Andersen, and Anders Badsberg Larsen
Hydrol. Earth Syst. Sci., 21, 4433–4448, https://doi.org/10.5194/hess-21-4433-2017, https://doi.org/10.5194/hess-21-4433-2017, 2017
Short summary
Short summary
Time series of rainfall are developed in order to represent future climate conditions. These series can be used in design of, for example, drainage systems where future rainfall loads are important to account for. The climate projections are evaluated on a number of key statistical parameters of rainfall such as yearly and seasonal precipitation amounts, number of extreme events and rainfall intensities, specific duration, and return periods.
Marie-Claire ten Veldhuis and Marc Schleiss
Hydrol. Earth Syst. Sci., 21, 1991–2013, https://doi.org/10.5194/hess-21-1991-2017, https://doi.org/10.5194/hess-21-1991-2017, 2017
Short summary
Short summary
In this paper we analysed flow measurements from 17 watersheds in a (semi-)urban region, to characterise flow patterns according to basin features. Instead of sampling flows at fixed time intervals, we looked at how fast given amounts of flow were accumulated. By doing so, we could identify patterns of flow regulation in urban streams and quantify flashiness of hydrological response. We were able to show that in this region, higher urbanisation was clearly associated with lower basin flashiness.
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Short summary
We investigated the relative contribution of the spatial versus climatic rainfall variability for flow peaks by applying an advanced stochastic rainfall generator to simulate rainfall for a small urban catchment and simulate flow dynamics in the sewer system. We found that the main contribution to the total flow variability originates from the natural climate variability. The contribution of spatial rainfall variability to the total flow variability was found to increase with return periods.
Hjalte Jomo Danielsen Sørup, Ole Bøssing Christensen, Karsten Arnbjerg-Nielsen, and Peter Steen Mikkelsen
Hydrol. Earth Syst. Sci., 20, 1387–1403, https://doi.org/10.5194/hess-20-1387-2016, https://doi.org/10.5194/hess-20-1387-2016, 2016
Short summary
Short summary
Fine-resolution spatio-temporal precipitation data are important as input to urban hydrological models to assess performance issues under all possible conditions. In the present study synthetic data at very fine spatial and temporal resolution are generated using a stochastic model. Data are generated for both present and future climate conditions. The results show that it is possible to generate spatially distributed data at resolutions relevant for urban hydrology.
I. Andrés-Doménech, A. Montanari, and J. B. Marco
Hydrol. Earth Syst. Sci., 14, 1221–1232, https://doi.org/10.5194/hess-14-1221-2010, https://doi.org/10.5194/hess-14-1221-2010, 2010
Cited articles
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011.
Ban, N., Schmidli, J., and Schar, C.: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations, J. Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014.
Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?, Geophys. Res. Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015.
Böhm, U., Kücken, M., Ahrens, W., Block, A., Hauffe, D., Keuler, K., Rockel, B., and Will, A.: CLM – The Climate Version of LM : Brief Description and Long-Term Applications, COSMO Newsletters, 6, 225–235, 2006.
Brisson, E., Demuzere, M., and van Lipzig, N. P. M.: Modelling strategies for performing convection-permitting climate simulations, Meteorol. Z., 25, 149–163, 2016a.
Brisson, E., Van Weverberg, K., Demuzere, M., Devis, A., Saeed, S., Stengel, M., and van Lipzig, N. P. M.: How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics?, Clim. Dynam., https://doi.org/10.1007/s00382-016-3012-z, in press, 2016b.
Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S., Ferro, C. A. T., and Stephenson, D. B.: Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation?, Clim. Dynam., 41, 1475–1495, https://doi.org/10.1007/s00382-012-1568-9, 2013.
Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S., Roberts, N. M., and Ferro, C. A.: The value of high-resolution met office regional climate models in the simulation of multi-hourly precipitation extremes, J. Climate, 27, 6155–6174, https://doi.org/10.1175/JCLI-D-13-00723.1, 2014.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model projections of changes in European climate by the end of this century, Climatic Change, 81, 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007.
Demarée, G. R.: Le pluviographe centenaire du plateau d'Uccle: son histoire, ses données et ses applications, La Houille Blanche, 4, 95–102, https://doi.org/10.1051/lhb/2003082, 2003.
Deng, H., Luo, Y., Yao, Y., and Liu, C.: Spring and summer precipitation changes from 1880 to 2011 and the future projections from CMIP5 models in the Yangtze River Basin, China, Quatern. Int., 304, 95–106, https://doi.org/10.1016/j.quaint.2013.03.036, 2013.
De Troch, R., Hamdi, R., Van De Vyver, H., Geleyn, J.-F., and Termonia, P.: Multiscale performance of the ALARO-0 model for simulating extreme summer precipitation climatology in Belgium, J. Climate, 26, 8895–8915, https://doi.org/10.1175/JCLI-D-12-00844.1, 2013.
Done, J., Davis, C. A., and Weisman, M.: The next generation of NWP: Explicit forecasts of convection using the Weather Research And Forecasting (WRF) model, Atmos. Sci. Lett., 5, 110–117, https://doi.org/10.1002/asl.72, 2004.
ECMWF: Climate reanalysis, http://www.ecmwf.int/en/research/climate-reanalysis, last access: September 2016.
European Climate Assessment & Dataset: E-OBS gridded dataset, http://www.ecad.eu/download/ensembles/download.php, last access: September 2016.
Fosser, G.: Precipitation statistics from regional climate model at resolutions relevant for soil erosion, KIT Scientific Publishing, Karlsruhe, 2014.
Fosser, G., Khodayar, S., and Berg, P.: Benefit of convection permitting climate model simulations in the representation of convective precipitation, Clim. Dynam., 44, 45–60, https://doi.org/10.1007/s00382-014-2242-1, 2015.
Fosser, G., Khodayar, S., and Berg, P.: Climate change in the next 30 years: What can a convection-permitting model tell us that we did not already know?, Clim. Dynam., https://doi.org/10.1007/s00382-016-3186-4, in press, 2016.
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012.
Hamdi, R., Van de Vyver, H., De Troch, R., and Termonia, P.: Assessment of three dynamical urban climate downscaling methods: Brussels's future urban heat island under an A1B emission scenario, Int. J. Climatol., 34, 978–999, https://doi.org/10.1002/joc.3734, 2014.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded dataset of surface temperature and precipitation, J. Geophys. Re.-Atmos., 113, D20119, https://doi.org/10.1029/2008JD10201, 2008.
Hofstra, N., Haylock, M., New, M., and Jones, P. D.: Testing EOBS European high-resolution gridded data set of daily precipitation and surface temperature, J. Geophys. Res., 144, D21101, https://doi.org/10.1029/2009JD011799, 2009.
Hohenegger, C., Brockhaus, P., and Schar, C.: Towards climate simulations at cloud-resolving scales, Meteorol. Z., 17, 383–394, https://doi.org/10.1127/0941-2948/2008/0303, 2008.
Hong, S. Y. and Leetmaa, A.: An evaluation of the NCEP RSM for regional climate modeling, J. Climate, 12, 592–609, https://doi.org/10.1175/1520-0442(1999)012<0592:AEOTNR>2.0.CO;2, 1999.
Ikeda, K., Rasmussen, R., Liu, C., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., Dudhia, J., Miller, K., Arsenault, K., Grubišić, V., Thompson, G., and Guttman, E.: Simulation of seasonal snowfall over Colorado, Atmos. Res., 97, 462–477, https://doi.org/10.1016/j.atmosres.2010.04.010, 2010.
IPCC: The Scientific Basis, in: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge, UK and New York, NY, USA, p. 881, 2001.
IPCC: IPCC Fourth Assessment Report (AR4), Cambridge University Press, Cambridge, 2007.
IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new highresolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Johnson, F., Westra, S., Sharma, A., and Pitman, A. J.: An assessment of GCM skill in simulating persistence across multiple time scales, J. Climate, 24, 3609–3623, https://doi.org/10.1175/2011JCLI3732.1, 2011.
Kendon, E. J., Roberts, N. M., Senior, C. A., and Roberts, M. J.: Realism of rainfall in a very high-resolution regional climate model, J. Climate, 25, 5791–5806, https://doi.org/10.1175/JCLI-D-11-00562.1, 2012.
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., and Senior, C. A.: Heavier summer downpours with climate change revealed by weather forecast resolution model, Nat. Clim. Change, 4, 570–576, https://doi.org/10.1038/nclimate2258, 2014.
Maraun, D.: Bias correction, quantile mapping, and downscaling: revisiting the inflation issue, J. Climate, 26, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themessl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Masson, D. and Knutti, R.: Spatial-scale dependence of climate model performance in the CMIP3 ensemble, J. Climate, 24, 2680–2692, https://doi.org/10.1175/2011JCLI3513.1, 2011.
Mayer, S., Maule, C., Sobolowski, S., Christensen, O., Sørup, H., Sunyer, M., Arnbjerg-Nielsen, K., and Barstad, I.: Identifying added value in high-resolution climate simulations over Scandinavia, Tellus A, 67, 24941, https://doi.org/10.3402/tellusa.v67.24941, 2015.
Mearns, L. O., Giorgi, F., Whetton, P., Pabon, D., Hulme, M., and Lal, M.: Guidelines for use of climate scenarios developed from regional climate model experiments, Data Distribution Centre of the Intergovernmental Panel on Climate Change, Norwich, UK, 2004.
Mearns, L. O., Sain, S., Leung, L. R., Bukovsky, M. S., McGinnis, S., Biner, S., Caya, D., Arritt, R. W., Gutowski, W., Takle, E., Synder, M., Jones, R. G., Nunes, A. M. B., Tucker, S., Herzmann, D., McDaniel, L., and Sloan, L: Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP), Climatic Change, 120, 965–975, https://doi.org/10.1007/s10584-013-0831-3, 2013.
Ntegeka, C., Baguis, P., Roulin, E., and Willems, P.: Developing tailored climate change scenarios for hydrological impact assessments, J. Hydrol., 508, 307–321, https://doi.org/10.1016/j.jhydrol.2013.11.001, 2014.
Olsson, J., Willén, U., and Kawamura, A.: Downscaling extreme short-term regional climate model precipitation for urban hydrological applications, Hydrol. Res., 43, 341–351, https://doi.org/10.2166/nh.2012.135, 2012.
Olsson, J., Berg, P., and Kawamura, A.: Impact of RCM spatial resolution on the reproduction of local, subdaily precipitation, J. Hydrometeorol., 16, 534–547, https://doi.org/10.1175/JHM-D-14-0007.1, 2015.
Prein, A. F., Gobiet, A., Suklitsch, M., Truhetz, H., Awan, N. K., Keuler, K., and Georgievski, G.: Added value of convection permitting seasonal simulations, Clim. Dynam., 41, 2655–2677, https://doi.org/10.1007/s00382-013-1744-6, 2013a.
Prein, A., Holland, G. A., Rasmussen, R. M., Done, J., Ikeda, K., Clark, M. P., and Liu, C. H.: Importance of Regional Climate Model Grid Spacing for the Simulation of Heavy Precipitation in the Colorado Headwaters, J. Climate, 26, 4848–4857, https://doi.org/10.1175/JCLI-D-12-00727.1, 2013b.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Gutjahr, M. T. O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N. P. M., and Leung, R. L.: A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges, Rev. Geophys., 3, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Rajczak, J., Pall, P., and Schär, C.: Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region, J. Geophys. Res.-Atmos., 118, 3610–3626, https://doi.org/10.1002/jgrd.50297, 2013.
Rana, A., Fostera, K., Bosshard, T., Olsson, J., and Bengtsson, L.: Impact of climate change on rainfall over Mumbai using Distribution-based Scaling of Global Climate Model projections, J. Hydrol. Reg. Stud., 1, 107–128, https://doi.org/10.1016/j.ejrh.2014.06.005, 2014.
Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., Dudhia, J., Yu, W., Miller, K., Arsenault, K., Grubišić, V., Thompson, G., and Gutmann, E.: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate, J. Climate, 24, 3015–3048, 2011.
Rauscher, S. A., Coppola, E., Piani, C., and Giorgi, F.: Resolution effects on regional climate model simulations of seasonal precipitation over Europe, Clim. Dynam., 35, 685–711, https://doi.org/10.1007/s00382-009-0607-7, 2010.
RMI: Weather Forecast, http://www.meteo.be/meteo/view/en/65239-Home.html, last access: September 2016.
Rockel, B., Will, A., and Hense, A.: The Regional Climate Model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008.
Steppeler, J., Doms, G., Schättler, U., Bitzer, H. W., Gassmann, A., Damrath, U., and Gregoric, G.: Meso-gamma scale forecasts using the nonhydrostatic model LM, Meteorol. Atmos. Phys., 82, 75–96, https://doi.org/10.1007/s00703-001-0592-9, 2003.
Sun, Q., Miao, C., and Duan, Q.: Projected changes in temperature and precipitation in ten river basins over China in 21st century, Int. J. Climatol., 35, 1125–1141, https://doi.org/10.1002/joc.4043, 2015.
Sunyer, M. A., Sørup, H. J. D., Christensen, O. B., Madsen, H., Rosbjerg, D., Mikkelsen, P. S., and Arnbjerg-Nielsen, K.: On the importance of observational data properties when assessing regional climate model performance of extreme precipitation, Hydrol. Earth Syst. Sci., 17, 4323–4337, https://doi.org/10.5194/hess-17-4323-2013, 2013.
Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., Vormoor, K., Bürger, G., Hanel, M., Kriaučiūnienė, J., Loukas, A., Osuch, M., and Yücel, I.: Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe, Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, 2015.
Tabari, H. and Willems, P.: Daily precipitation extremes in Iran: decadal anomalies and possible drivers, J. Am. Water Resour. As., 52, 541–559, https://doi.org/10.1111/1752-1688.12403, 2016.
Tabari, H., AghaKouchak, A., and Willems, P.: A perturbation approach for assessing trends in precipitation extremes across Iran, J. Hydrol., 519, 1420–1427, https://doi.org/10.1016/j.jhydrol.2014.09.019, 2014.
Tabari, H., Taye, M. T., and Willems, P.: Water availability change in central Belgium for the late 21st century, Global Planet. Change, 131, 115–123, https://doi.org/10.1016/j.gloplacha.2015.05.012, 2015.
Tang, Y., Lean, H. W., and Bornemann, J.: The benefits of the met office variable resolution NWP model for forecasting convection, Meteorol. Appl., 20, 417–426, https://doi.org/10.1002/met.1300, 2013.
van Haren, R., van Oldenborgh, G. J., Lenderink, G., and Hazeleger, W.: Evaluation of modeled changes in extreme precipitation in Europe and the Rhine basin, Environ. Res. Lett., 8, 014053, https://doi.org/10.1088/1748-9326/8/1/014053, 2013.
van Pelt, S. C., Beersma, J. J., Buishand, T. A., van den Hurk, B. J. J. M., and Kabat, P.: Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations, Hydrol. Earth Syst. Sci., 16, 4517–4530, https://doi.org/10.5194/hess-16-4517-2012, 2012.
Willems, P.: Compound IDF-relationships of extreme precipitation for two seasons and two storm types, J. Hydrol., 233, 189–205, https://doi.org/10.1016/S0022-1694(00)00233-X, 2000.
Willems, P.: A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models, Environ. Model. Softw., 24, 311–321, https://doi.org/10.1016/j.envsoft.2008.09.005, 2009.
Willems, P.: Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium, J. Hydrol., 496, 166–177, https://doi.org/10.1016/j.jhydrol.2013.05.037, 2013.
Willems, P. and Vrac, M.: Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change, J. Hydrol., 402, 193–205, https://doi.org/10.1016/j.jhydrol.2011.02.030, 2011.
Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and Nguyen, V.-T.-V.: Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings, Atmos. Res., 103, 106–118, https://doi.org/10.1016/j.atmosres.2011.04.003, 2012.
Special issue