Articles | Volume 20, issue 9
https://doi.org/10.5194/hess-20-3673-2016
https://doi.org/10.5194/hess-20-3673-2016
Research article
 | 
08 Sep 2016
Research article |  | 08 Sep 2016

Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration

Xu-Sheng Wang and Yangxiao Zhou

Related authors

Interaction of soil water and groundwater during the freezing–thawing cycle: field observations and numerical modeling
Hong-Yu Xie, Xiao-Wei Jiang, Shu-Cong Tan, Li Wan, Xu-Sheng Wang, Si-Hai Liang, and Yijian Zeng
Hydrol. Earth Syst. Sci., 25, 4243–4257, https://doi.org/10.5194/hess-25-4243-2021,https://doi.org/10.5194/hess-25-4243-2021, 2021
Short summary
Response of streamflow to climate change in a sub-basin of the source region of the Yellow River based on a tank model
Pan Wu, Xu-Sheng Wang, and Sihai Liang
Proc. IAHS, 379, 231–241, https://doi.org/10.5194/piahs-379-231-2018,https://doi.org/10.5194/piahs-379-231-2018, 2018
Short summary
Estimating lake-water evaporation from data of large-aperture scintillometer in the Badain Jaran Desert, China, with two comparable methods
Peng-Fei Han, Xu-Sheng Wang, Xiaomei Jin, and Bill X. Hu
Proc. IAHS, 379, 433–442, https://doi.org/10.5194/piahs-379-433-2018,https://doi.org/10.5194/piahs-379-433-2018, 2018
Climate-induced hydrologic change in the source region of the Yellow River: a new assessment including varying permafrost
Pan Wu, Sihai Liang, Xu-Sheng Wang, Yuqing Feng, and Jeffrey M. McKenzie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-744,https://doi.org/10.5194/hess-2017-744, 2018
Manuscript not accepted for further review
Short summary
Origin of water in the Badain Jaran Desert, China: new insight from isotopes
Xiujie Wu, Xu-Sheng Wang, Yang Wang, and Bill X. Hu
Hydrol. Earth Syst. Sci., 21, 4419–4431, https://doi.org/10.5194/hess-21-4419-2017,https://doi.org/10.5194/hess-21-4419-2017, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023,https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
River hydraulic modeling with ICESat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023,https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023,https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Technical note: How physically based is hydrograph separation by recursive digital filtering?
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023,https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023,https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary

Cited articles

Alley, W. M.: On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models, Water Resour. Res., 20, 1137–1149, 1984.
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol,, 265, 164–177, 2002.
Budyko, M. I.: Evaporation under natural conditions, Isr. Program for Sci. Transl., Jerusalem, Isreal, 1948.
Budyko, M. I.: The heat balance of the earth's surface, US Department of Commerce, Washington, D.C., USA, 1958.
Budyko, M. I.: Climate and life, Academic, New York, USA, 1974.
Download
Short summary
This study reveals the effects of groundwater-dependent evapotranspiration (GDE) in the shift of annual water balance for a catchment in the Budyko space. The ABCD model is modified to incorporate GDE in simulating the monthly hydrological behaviors of a catchment, and the results are aggregated to annual data. GDE enhances the occurrence of excess evapotranspiration (E / P > 1) in dry years, which could not be captured by the traditional Budyko curves. Six catchments are analyzed with the model.