Articles | Volume 20, issue 9
https://doi.org/10.5194/hess-20-3673-2016
https://doi.org/10.5194/hess-20-3673-2016
Research article
 | 
08 Sep 2016
Research article |  | 08 Sep 2016

Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration

Xu-Sheng Wang and Yangxiao Zhou

Related authors

Evolution of low-karstified rock-blocks and their influence on reservoir leakage: a modelling perspective
Youjun Jiao, Franci Gabrovšek, Xusheng Wang, and Qingchun Yu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1320,https://doi.org/10.5194/egusphere-2025-1320, 2025
Short summary
Interaction of soil water and groundwater during the freezing–thawing cycle: field observations and numerical modeling
Hong-Yu Xie, Xiao-Wei Jiang, Shu-Cong Tan, Li Wan, Xu-Sheng Wang, Si-Hai Liang, and Yijian Zeng
Hydrol. Earth Syst. Sci., 25, 4243–4257, https://doi.org/10.5194/hess-25-4243-2021,https://doi.org/10.5194/hess-25-4243-2021, 2021
Short summary
Response of streamflow to climate change in a sub-basin of the source region of the Yellow River based on a tank model
Pan Wu, Xu-Sheng Wang, and Sihai Liang
Proc. IAHS, 379, 231–241, https://doi.org/10.5194/piahs-379-231-2018,https://doi.org/10.5194/piahs-379-231-2018, 2018
Short summary
Estimating lake-water evaporation from data of large-aperture scintillometer in the Badain Jaran Desert, China, with two comparable methods
Peng-Fei Han, Xu-Sheng Wang, Xiaomei Jin, and Bill X. Hu
Proc. IAHS, 379, 433–442, https://doi.org/10.5194/piahs-379-433-2018,https://doi.org/10.5194/piahs-379-433-2018, 2018
Climate-induced hydrologic change in the source region of the Yellow River: a new assessment including varying permafrost
Pan Wu, Sihai Liang, Xu-Sheng Wang, Yuqing Feng, and Jeffrey M. McKenzie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-744,https://doi.org/10.5194/hess-2017-744, 2018
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary

Cited articles

Alley, W. M.: On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models, Water Resour. Res., 20, 1137–1149, 1984.
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol,, 265, 164–177, 2002.
Budyko, M. I.: Evaporation under natural conditions, Isr. Program for Sci. Transl., Jerusalem, Isreal, 1948.
Budyko, M. I.: The heat balance of the earth's surface, US Department of Commerce, Washington, D.C., USA, 1958.
Budyko, M. I.: Climate and life, Academic, New York, USA, 1974.
Download
Short summary
This study reveals the effects of groundwater-dependent evapotranspiration (GDE) in the shift of annual water balance for a catchment in the Budyko space. The ABCD model is modified to incorporate GDE in simulating the monthly hydrological behaviors of a catchment, and the results are aggregated to annual data. GDE enhances the occurrence of excess evapotranspiration (E / P > 1) in dry years, which could not be captured by the traditional Budyko curves. Six catchments are analyzed with the model.
Share