Articles | Volume 20, issue 9
https://doi.org/10.5194/hess-20-3673-2016
https://doi.org/10.5194/hess-20-3673-2016
Research article
 | 
08 Sep 2016
Research article |  | 08 Sep 2016

Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration

Xu-Sheng Wang and Yangxiao Zhou

Related authors

Evolution of low-karstified rock-blocks and their influence on reservoir leakage: a modelling perspective
Youjun Jiao, Franci Gabrovšek, Xusheng Wang, and Qingchun Yu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1320,https://doi.org/10.5194/egusphere-2025-1320, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Interaction of soil water and groundwater during the freezing–thawing cycle: field observations and numerical modeling
Hong-Yu Xie, Xiao-Wei Jiang, Shu-Cong Tan, Li Wan, Xu-Sheng Wang, Si-Hai Liang, and Yijian Zeng
Hydrol. Earth Syst. Sci., 25, 4243–4257, https://doi.org/10.5194/hess-25-4243-2021,https://doi.org/10.5194/hess-25-4243-2021, 2021
Short summary
Response of streamflow to climate change in a sub-basin of the source region of the Yellow River based on a tank model
Pan Wu, Xu-Sheng Wang, and Sihai Liang
Proc. IAHS, 379, 231–241, https://doi.org/10.5194/piahs-379-231-2018,https://doi.org/10.5194/piahs-379-231-2018, 2018
Short summary
Estimating lake-water evaporation from data of large-aperture scintillometer in the Badain Jaran Desert, China, with two comparable methods
Peng-Fei Han, Xu-Sheng Wang, Xiaomei Jin, and Bill X. Hu
Proc. IAHS, 379, 433–442, https://doi.org/10.5194/piahs-379-433-2018,https://doi.org/10.5194/piahs-379-433-2018, 2018
Climate-induced hydrologic change in the source region of the Yellow River: a new assessment including varying permafrost
Pan Wu, Sihai Liang, Xu-Sheng Wang, Yuqing Feng, and Jeffrey M. McKenzie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-744,https://doi.org/10.5194/hess-2017-744, 2018
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Extended-range forecasting of stream water temperature with deep-learning models
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025,https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Projections of streamflow intermittence under climate change in European drying river networks
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025,https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary

Cited articles

Alley, W. M.: On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models, Water Resour. Res., 20, 1137–1149, 1984.
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol,, 265, 164–177, 2002.
Budyko, M. I.: Evaporation under natural conditions, Isr. Program for Sci. Transl., Jerusalem, Isreal, 1948.
Budyko, M. I.: The heat balance of the earth's surface, US Department of Commerce, Washington, D.C., USA, 1958.
Budyko, M. I.: Climate and life, Academic, New York, USA, 1974.
Download
Short summary
This study reveals the effects of groundwater-dependent evapotranspiration (GDE) in the shift of annual water balance for a catchment in the Budyko space. The ABCD model is modified to incorporate GDE in simulating the monthly hydrological behaviors of a catchment, and the results are aggregated to annual data. GDE enhances the occurrence of excess evapotranspiration (E / P > 1) in dry years, which could not be captured by the traditional Budyko curves. Six catchments are analyzed with the model.
Share