Articles | Volume 20, issue 8
https://doi.org/10.5194/hess-20-3289-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-3289-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology
Boujemaa Ait-El-Fquih
Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
Mohamad El Gharamti
Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
Mohn-Sverdrup Center for Global Ocean Studies and Operational Oceanography, Nansen Environmental and Remote Sensing Center (NERSC), 5006 Bergen, Norway
Ibrahim Hoteit
CORRESPONDING AUTHOR
Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
Related authors
No articles found.
Andreas Schiller, Simon A. Josey, John Siddorn, and Ibrahim Hoteit
State Planet Discuss., https://doi.org/10.5194/sp-2024-13, https://doi.org/10.5194/sp-2024-13, 2024
Preprint under review for SP
Short summary
Short summary
The study illustrates the way atmospheric fields are used in ocean models as boundary conditions for the provisioning of the exchanges of heat, freshwater and momentum fluxes. Such fluxes can be based on remote-sensing instruments or provided directly by Numerical Weather Prediction systems. Air-sea flux datasets are defined by their spatial and temporal resolutions and are limited by associated biases. Air-sea flux data sets for ocean models should be chosen with the applications in mind.
Ibrahim Hoteit, Eric Chassignet, and Mike Bell
State Planet Discuss., https://doi.org/10.5194/sp-2024-10, https://doi.org/10.5194/sp-2024-10, 2024
Preprint under review for SP
Short summary
Short summary
This paper explores how using multiple predictions instead of just one can improve ocean forecasts and help prepare for changes in ocean conditions. By combining different forecasts, scientists can better understand the uncertainty in predictions, leading to more reliable forecasts and better decision-making. This method is useful for responding to hazards like oil spills, improving climate forecasts, and supporting decision-making in fields like marine safety and resource management.
Ségolène Berthou, John Siddorn, Vivian Fraser-Leonhardt, Pierre-Yves Le Traon, and Ibrahim Hoteit
State Planet Discuss., https://doi.org/10.5194/sp-2024-28, https://doi.org/10.5194/sp-2024-28, 2024
Preprint under review for SP
Short summary
Short summary
Ocean forecasting is traditionally done independently from atmospheric, wave, or river modeling. We discuss the benefits and challenges of bringing all these modelling systems together for ocean forecasting.
Matthew J. Martin, Ibrahim Hoteit, Laurent Bertino, and Andrew M. Moore
State Planet Discuss., https://doi.org/10.5194/sp-2024-20, https://doi.org/10.5194/sp-2024-20, 2024
Preprint under review for SP
Short summary
Short summary
Observations of the ocean from satellites and platforms in the ocean are combined with information from computer models to produce predictions of how the ocean temperature, salinity and currents will evolve over the coming days and weeks, as well as to describe how the ocean has evolved in the past. This paper summarises the methods used to produce these ocean forecasts at various centres around the world and outlines the practical considerations for implementing such forecasting systems.
Manal Hamdeno, Aida Alvera-Azcárate, George Krokos, and Ibrahim Hoteit
Ocean Sci., 20, 1087–1107, https://doi.org/10.5194/os-20-1087-2024, https://doi.org/10.5194/os-20-1087-2024, 2024
Short summary
Short summary
Our study focuses on the characteristics of MHWs in the Red Sea during the last 4 decades. Using satellite-derived sea surface temperatures (SSTs), we found a clear warming trend in the Red Sea since 1994, which has intensified significantly since 2016. This SST rise was associated with an increase in the frequency and days of MHWs. In addition, a correlation was found between the frequency of MHWs and some climate modes, which was more pronounced in some years of the study period.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Yasser O. Abualnaja, Alexandra Pavlidou, James H. Churchill, Ioannis Hatzianestis, Dimitris Velaoras, Harilaos Kontoyiannis, Vassilis P. Papadopoulos, Aristomenis P. Karageorgis, Georgia Assimakopoulou, Helen Kaberi, Theodoros Kannelopoulos, Constantine Parinos, Christina Zeri, Dionysios Ballas, Elli Pitta, Vassiliki Paraskevopoulou, Afroditi Androni, Styliani Chourdaki, Vassileia Fioraki, Stylianos Iliakis, Georgia Kabouri, Angeliki Konstantinopoulou, Georgios Krokos, Dimitra Papageorgiou, Alkiviadis Papageorgiou, Georgios Pappas, Elvira Plakidi, Eleni Rousselaki, Ioanna Stavrakaki, Eleni Tzempelikou, Panagiota Zachioti, Anthi Yfanti, Theodore Zoulias, Abdulah Al Amoudi, Yasser Alshehri, Ahmad Alharbi, Hammad Al Sulami, Taha Boksmati, Rayan Mutwalli, and Ibrahim Hoteit
Earth Syst. Sci. Data, 16, 1703–1731, https://doi.org/10.5194/essd-16-1703-2024, https://doi.org/10.5194/essd-16-1703-2024, 2024
Short summary
Short summary
We present oceanographic measurements obtained during two surveillance cruises conducted in June and September 2021 in the Red Sea and the Arabian Gulf. It is the first multidisciplinary survey within the Saudi Arabian coastal zone, extending from near the Saudi–Jordanian border in the north of the Red Sea to the south close to the Saudi--Yemen border and in the Arabian Gulf. The objective was to record the pollution status along the coastal zone of the kingdom related to specific pressures.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Rui Sun, Alison Cobb, Ana B. Villas Bôas, Sabique Langodan, Aneesh C. Subramanian, Matthew R. Mazloff, Bruce D. Cornuelle, Arthur J. Miller, Raju Pathak, and Ibrahim Hoteit
Geosci. Model Dev., 16, 3435–3458, https://doi.org/10.5194/gmd-16-3435-2023, https://doi.org/10.5194/gmd-16-3435-2023, 2023
Short summary
Short summary
In this work, we integrated the WAVEWATCH III model into the regional coupled model SKRIPS. We then performed a case study using the newly implemented model to study Tropical Cyclone Mekunu, which occurred in the Arabian Sea. We found that the coupled model better simulates the cyclone than the uncoupled model, but the impact of waves on the cyclone is not significant. However, the waves change the sea surface temperature and mixed layer, especially in the cold waves produced due to the cyclone.
M. G. Ziliani, M. U. Altaf, B. Aragon, R. Houborg, T. E. Franz, Y. Lu, J. Sheffield, I. Hoteit, and M. F. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1045–1052, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, 2022
Mohamad El Gharamti, James L. McCreight, Seong Jin Noh, Timothy J. Hoar, Arezoo RafieeiNasab, and Benjamin K. Johnson
Hydrol. Earth Syst. Sci., 25, 5315–5336, https://doi.org/10.5194/hess-25-5315-2021, https://doi.org/10.5194/hess-25-5315-2021, 2021
Short summary
Short summary
The article introduces novel ensemble data assimilation (DA) techniques for streamflow forecasting using WRF-Hydro and DART. Model-related biases are tackled through spatially and temporally varying adaptive prior and posterior inflation. Spurious and physically incorrect correlations, on the other hand, are mitigated using a topologically based along-the-stream localization. Hurricane Florence (2018) in the Carolinas, USA, is used as a test case to investigate the performance of DA techniques.
Oliver Miguel López Valencia, Kasper Johansen, Bruno José Luis Aragón Solorio, Ting Li, Rasmus Houborg, Yoann Malbeteau, Samer AlMashharawi, Muhammad Umer Altaf, Essam Mohammed Fallatah, Hari Prasad Dasari, Ibrahim Hoteit, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 24, 5251–5277, https://doi.org/10.5194/hess-24-5251-2020, https://doi.org/10.5194/hess-24-5251-2020, 2020
Short summary
Short summary
The agricultural sector in Saudi Arabia has expanded rapidly over the last few decades, supported by non-renewable groundwater abstraction. This study describes a novel data–model fusion approach to compile national-scale groundwater abstractions and demonstrates its use over 5000 individual center-pivot fields. This method will allow both farmers and water management agencies to make informed water accounting decisions across multiple spatial and temporal scales.
Rui Sun, Aneesh C. Subramanian, Arthur J. Miller, Matthew R. Mazloff, Ibrahim Hoteit, and Bruce D. Cornuelle
Geosci. Model Dev., 12, 4221–4244, https://doi.org/10.5194/gmd-12-4221-2019, https://doi.org/10.5194/gmd-12-4221-2019, 2019
Short summary
Short summary
A new regional coupled ocean–atmosphere model, SKRIPS, is developed and presented. The oceanic component is the MITgcm and the atmospheric component is the WRF model. The coupler is implemented using ESMF according to NUOPC protocols. SKRIPS is demonstrated by simulating a series of extreme heat events occurring in the Red Sea region. We show that SKRIPS is capable of performing coupled ocean–atmosphere simulations. In addition, the scalability test shows SKRIPS is computationally efficient.
Hugo Cruz-Jiménez, Guotu Li, Paul Martin Mai, Ibrahim Hoteit, and Omar M. Knio
Geosci. Model Dev., 11, 3071–3088, https://doi.org/10.5194/gmd-11-3071-2018, https://doi.org/10.5194/gmd-11-3071-2018, 2018
Short summary
Short summary
One of the most important challenges seismologists and earthquake engineers face is reliably estimating ground motion in an area prone to large damaging earthquakes. This study aimed at better understanding the relationship between characteristics of geological faults (e.g., hypocenter location, rupture size/location, etc.) and resulting ground motion, via statistical analysis of a rupture simulation model. This study provides important insight on ground-motion responses to geological faults.
Khan Zaib Jadoon, Muhammad Umer Altaf, Matthew Francis McCabe, Ibrahim Hoteit, Nisar Muhammad, Davood Moghadas, and Lutz Weihermüller
Hydrol. Earth Syst. Sci., 21, 5375–5383, https://doi.org/10.5194/hess-21-5375-2017, https://doi.org/10.5194/hess-21-5375-2017, 2017
Short summary
Short summary
In this study electromagnetic induction (EMI) measurements were used to estimate soil salinity in an agriculture field irrigated with a drip irrigation system. Electromagnetic model parameters and uncertainty were estimated using adaptive Bayesian Markov chain Monte Carlo (MCMC). Application of the MCMC-based inversion to the synthetic and field measurements demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil.
Mohamad E. Gharamti, Johan Valstar, Gijs Janssen, Annemieke Marsman, and Ibrahim Hoteit
Hydrol. Earth Syst. Sci., 20, 4561–4583, https://doi.org/10.5194/hess-20-4561-2016, https://doi.org/10.5194/hess-20-4561-2016, 2016
Short summary
Short summary
The paper addresses the issue of sampling errors when using the ensemble Kalman filter, in particular its hybrid and second-order formulations. The presented work is aimed at estimating concentration and biodegradation rates of subsurface contaminants at the port of Rotterdam in the Netherlands. Overall, we found that accounting for both forecast and observation sampling errors in the joint data assimilation system helps recover more accurate state and parameter estimates.
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Stochastic approaches
A comprehensive framework for stochastic calibration and sensitivity analysis of large-scale groundwater models
Towards a community-wide effort for benchmarking in subsurface hydrological inversion: benchmarking cases, high-fidelity reference solutions, procedure and a first comparison
An ensemble-based approach for pumping optimization in an island aquifer considering parameter, observation and climate uncertainty
Improving understanding of groundwater flow in an alpine karst system by reconstructing its geologic history using conduit network model ensembles
The effects of rain and evapotranspiration statistics on groundwater recharge estimations for semi-arid environments
Characterization of the highly fractured zone at the Grimsel Test Site based on hydraulic tomography
Influence of low-frequency variability on high and low groundwater levels: example of aquifers in the Paris Basin
Technical note: Using long short-term memory models to fill data gaps in hydrological monitoring networks
Technical note: Discharge response of a confined aquifer with variable thickness to temporal, nonstationary, random recharge processes
Data assimilation with multiple types of observation boreholes via the ensemble Kalman filter embedded within stochastic moment equations
A field evidence model: how to predict transport in heterogeneous aquifers at low investigation level
3D multiple-point statistics simulations of the Roussillon Continental Pliocene aquifer using DeeSse
Technical Note: Improved sampling of behavioral subsurface flow model parameters using active subspaces
Efficient screening of groundwater head monitoring data for anthropogenic effects and measurement errors
Regionalization with hierarchical hydrologic similarity and ex situ data in the context of groundwater recharge estimation at ungauged watersheds
Long-term groundwater recharge rates across India by in situ measurements
Stochastic hydrogeology's biggest hurdles analyzed and its big blind spot
Contributions to uncertainty related to hydrostratigraphic modeling using multiple-point statistics
Recent trends of groundwater temperatures in Austria
Moment-based metrics for global sensitivity analysis of hydrological systems
Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies
Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices
Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near-real time
Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions
Technical note: Application of artificial neural networks in groundwater table forecasting – a case study in a Singapore swamp forest
Regional analysis of groundwater droughts using hydrograph classification
Scalable statistics of correlated random variables and extremes applied to deep borehole porosities
Observed groundwater temperature response to recent climate change
The effect of training image and secondary data integration with multiple-point geostatistics in groundwater modelling
Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?
Investigation of solute transport in nonstationary unsaturated flow fields
Extended power-law scaling of heavy-tailed random air-permeability fields in fractured and sedimentary rocks
Stochastic analysis of field-scale heat advection in heterogeneous aquifers
Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter
Extended power-law scaling of air permeabilities measured on a block of tuff
Quantifying flow and remediation zone uncertainties for partially opened wells in heterogeneous aquifers
Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 Area
Spectral approach to seawater intrusion in heterogeneous coastal aquifers
Andrea Manzoni, Giovanni Michele Porta, Laura Guadagnini, Alberto Guadagnini, and Monica Riva
Hydrol. Earth Syst. Sci., 28, 2661–2682, https://doi.org/10.5194/hess-28-2661-2024, https://doi.org/10.5194/hess-28-2661-2024, 2024
Short summary
Short summary
We introduce a comprehensive methodology that combines multi-objective optimization, global sensitivity analysis (GSA) and 3D groundwater modeling to analyze subsurface flow dynamics across large-scale domains. In this way, we effectively consider the inherent uncertainty associated with subsurface system characterizations and their interactions with surface waterbodies. We demonstrate the effectiveness of our proposed approach by applying it to the largest groundwater system in Italy.
Teng Xu, Sinan Xiao, Sebastian Reuschen, Nils Wildt, Harrie-Jan Hendricks Franssen, and Wolfgang Nowak
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-60, https://doi.org/10.5194/hess-2024-60, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We provide a set of benchmarking scenarios for geostatistical inversion, and we encourage the scientific community to use these to compare their newly developed methods. To facilitate transparent, appropriate, and uncertainty-aware comparison of novel methods, we also provide accurate reference solutions, a high-end reference algorithm, and a diverse set of benchmarking metrics, all of which are publicly available. With this, we seek to foster more targeted and transparent progress in the field.
Cécile Coulon, Jeremy T. White, Alexandre Pryet, Laura Gatel, and Jean-Michel Lemieux
Hydrol. Earth Syst. Sci., 28, 303–319, https://doi.org/10.5194/hess-28-303-2024, https://doi.org/10.5194/hess-28-303-2024, 2024
Short summary
Short summary
In coastal areas, groundwater managers require information on the risk of well salinization associated with various pumping scenarios. We developed a modeling approach to identify the optimal tradeoff between groundwater pumping and probability of salinization, considering model parameter and historical observation uncertainty as well as uncertainty in sea level and recharge projections. The workflow can be implemented in a wide range of coastal settings.
Chloé Fandel, Ty Ferré, François Miville, Philippe Renard, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 4205–4215, https://doi.org/10.5194/hess-27-4205-2023, https://doi.org/10.5194/hess-27-4205-2023, 2023
Short summary
Short summary
From the surface, it is hard to tell where underground cave systems are located. We developed a computer model to create maps of the probable cave network in an area, based on the geologic setting. We then applied our approach in reverse: in a region where an old cave network was mapped, we used modeling to test what the geologic setting might have been like when the caves formed. This is useful because understanding past cave formation can help us predict where unmapped caves are located today.
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 27, 289–302, https://doi.org/10.5194/hess-27-289-2023, https://doi.org/10.5194/hess-27-289-2023, 2023
Short summary
Short summary
Groundwater is an essential resource affected by climate conditions and anthropogenic activities. Estimations of groundwater recharge under current and future climate conditions require long-term climate records that are scarce. Different methods to synthesize climate data, based on observations, are used to estimate groundwater recharge. In terms of groundwater recharge estimation, the best synthesis method is based on the daily statistics corrected to match the observed monthly statistics.
Lisa Maria Ringel, Mohammadreza Jalali, and Peter Bayer
Hydrol. Earth Syst. Sci., 26, 6443–6455, https://doi.org/10.5194/hess-26-6443-2022, https://doi.org/10.5194/hess-26-6443-2022, 2022
Short summary
Short summary
Fractured rocks host a class of aquifers that serve as major freshwater resources worldwide. This work is dedicated to resolving the three-dimensional hydraulic and structural properties of fractured rock. For this purpose, hydraulic tomography experiments at the Grimsel Test Site in Switzerland are utilized, and the discrete fracture network is inverted. The comparison of the inversion results with independent findings from other studies demonstrates the validity of the approach.
Lisa Baulon, Nicolas Massei, Delphine Allier, Matthieu Fournier, and Hélène Bessiere
Hydrol. Earth Syst. Sci., 26, 2829–2854, https://doi.org/10.5194/hess-26-2829-2022, https://doi.org/10.5194/hess-26-2829-2022, 2022
Short summary
Short summary
Aquifers often act as low-pass filters, dampening high-frequency (intra-annual) and amplifying low-frequency (LFV, multi-annual to multidecadal) variabilities originating from climate variability. By processing groundwater level signals, we show the key role of LFV in the occurrence of groundwater extremes (GWEs). Results highlight how changes in LFV may impact future GWEs as well as the importance of correct representation of LFV in general circulation model outputs for GWE projection.
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022, https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary
Short summary
We used a deep learning method called long short-term memory (LSTM) to fill gaps in data collected by hydrologic monitoring networks. LSTM accounted for correlations in space and time and nonlinear trends in data. Compared to a traditional regression-based time-series method, LSTM performed comparably when filling gaps in data with smooth patterns, while it better captured highly dynamic patterns in data. Capturing such dynamics is critical for understanding dynamic complex system behaviors.
Ching-Min Chang, Chuen-Fa Ni, We-Ci Li, Chi-Ping Lin, and I-Hsien Lee
Hydrol. Earth Syst. Sci., 25, 2387–2397, https://doi.org/10.5194/hess-25-2387-2021, https://doi.org/10.5194/hess-25-2387-2021, 2021
Short summary
Short summary
A transfer function to describe the variation in the integrated specific discharge in response to the temporal variation in the rainfall event in the frequency domain is developed. It can be used to quantify the variability in the integrated discharge field induced by the variation in rainfall field or to simulate the discharge response of the system to any varying rainfall input, at any time resolution, using the convolution model.
Chuan-An Xia, Xiaodong Luo, Bill X. Hu, Monica Riva, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 1689–1709, https://doi.org/10.5194/hess-25-1689-2021, https://doi.org/10.5194/hess-25-1689-2021, 2021
Short summary
Short summary
Our study shows that (i) monitoring wells installed with packers provide the (overall) best conductivity estimates; (ii) conductivity estimates anchored on information from partially and fully screened wells are of similar quality; (iii) inflation of the measurement-error covariance matrix can improve conductivity estimates when a simplified flow model is adopted; and (iv) when compared to the MC-based EnKF, the MEs-based EnKF can efficiently and accurately estimate conductivity and head fields.
Alraune Zech, Peter Dietrich, Sabine Attinger, and Georg Teutsch
Hydrol. Earth Syst. Sci., 25, 1–15, https://doi.org/10.5194/hess-25-1-2021, https://doi.org/10.5194/hess-25-1-2021, 2021
Valentin Dall'Alba, Philippe Renard, Julien Straubhaar, Benoit Issautier, Cédric Duvail, and Yvan Caballero
Hydrol. Earth Syst. Sci., 24, 4997–5013, https://doi.org/10.5194/hess-24-4997-2020, https://doi.org/10.5194/hess-24-4997-2020, 2020
Short summary
Short summary
Due to climate and population evolution, increased pressure is put on the groundwater resource, which calls for better understanding and models. In this paper, we describe a novel workflow to model the geological heterogeneity of coastal aquifers and apply it to the Roussillon plain (southern France). The main strength of the workflow is its capability to model aquifer heterogeneity when only sparse data are available while honoring the local geological trends and quantifying uncertainty.
Daniel Erdal and Olaf A. Cirpka
Hydrol. Earth Syst. Sci., 24, 4567–4574, https://doi.org/10.5194/hess-24-4567-2020, https://doi.org/10.5194/hess-24-4567-2020, 2020
Short summary
Short summary
Assessing model sensitivities with ensemble-based methods can be prohibitively expensive when large parts of the plausible parameter space result in model simulations with nonrealistic results. In a previous work, we used the method of active subspaces to create a proxy model with the purpose of filtering out such unrealistic runs at low cost. This work details a notable improvement in the efficiency of the original sampling scheme, without loss of accuracy.
Christian Lehr and Gunnar Lischeid
Hydrol. Earth Syst. Sci., 24, 501–513, https://doi.org/10.5194/hess-24-501-2020, https://doi.org/10.5194/hess-24-501-2020, 2020
Short summary
Short summary
A screening method for the fast identification of well-specific peculiarities in hydrographs of groundwater head monitoring networks is suggested and tested. The only information required is a set of time series of groundwater head readings all measured at the same instants of time. The results were used to check the data for measurement errors and to identify wells with possible anthropogenic influence.
Ching-Fu Chang and Yoram Rubin
Hydrol. Earth Syst. Sci., 23, 2417–2438, https://doi.org/10.5194/hess-23-2417-2019, https://doi.org/10.5194/hess-23-2417-2019, 2019
Short summary
Short summary
Estimates of hydrologic responses at ungauged watersheds can be conditioned on information transferred from other gauged watersheds. This paper presents an approach to consider the variable controls on information transfer among watersheds under different conditions while at the same time featuring uncertainty representation in both the model structure and the model parameters.
Soumendra N. Bhanja, Abhijit Mukherjee, R. Rangarajan, Bridget R. Scanlon, Pragnaditya Malakar, and Shubha Verma
Hydrol. Earth Syst. Sci., 23, 711–722, https://doi.org/10.5194/hess-23-711-2019, https://doi.org/10.5194/hess-23-711-2019, 2019
Short summary
Short summary
Groundwater depletion in India has been a much-debated issue in recent years. Here we investigate long-term, spatiotemporal variation in prevailing groundwater recharge rates across India. Groundwater recharge rates have been estimated based on field-scale groundwater-level measurements and the tracer injection approach; recharge rates from the two estimates compared favorably. The role of precipitation in controlling groundwater recharge is studied.
Yoram Rubin, Ching-Fu Chang, Jiancong Chen, Karina Cucchi, Bradley Harken, Falk Heße, and Heather Savoy
Hydrol. Earth Syst. Sci., 22, 5675–5695, https://doi.org/10.5194/hess-22-5675-2018, https://doi.org/10.5194/hess-22-5675-2018, 2018
Short summary
Short summary
This paper addresses questions related to the adoption of stochastic methods in hydrogeology, looking at factors such as environmental regulations, financial incentives, higher education, and the collective feedback loop involving these factors. We show that stochastic hydrogeology's blind spot is in focusing on risk while ignoring uncertainty, to the detriment of its potential clients. The imbalance between the treatments of risk and uncertainty is shown to be common to multiple disciplines.
Adrian A. S. Barfod, Troels N. Vilhelmsen, Flemming Jørgensen, Anders V. Christiansen, Anne-Sophie Høyer, Julien Straubhaar, and Ingelise Møller
Hydrol. Earth Syst. Sci., 22, 5485–5508, https://doi.org/10.5194/hess-22-5485-2018, https://doi.org/10.5194/hess-22-5485-2018, 2018
Short summary
Short summary
The focus of this study is on the uncertainty related to using multiple-point statistics (MPS) for stochastic modeling of the upper 200 m of the subsurface. The main research goal is to showcase how MPS methods can be used on real-world hydrogeophysical data and show how the uncertainty related to changing the underlying MPS setup propagates into the finalized 3-D subsurface models.
Susanne A. Benz, Peter Bayer, Gerfried Winkler, and Philipp Blum
Hydrol. Earth Syst. Sci., 22, 3143–3154, https://doi.org/10.5194/hess-22-3143-2018, https://doi.org/10.5194/hess-22-3143-2018, 2018
Short summary
Short summary
Climate change is one of the most pressing challenges modern society faces. Increasing temperatures are observed both above ground and, as discussed here, in the groundwater – the source of most drinking water. Within Austria average temperature increased by 0.7 °C over the past 20 years, with an increase of more than 3 °C in some wells and temperature decrease in others. However, these extreme changes can be linked to local events such as the construction of a new drinking water supply.
Aronne Dell'Oca, Monica Riva, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 21, 6219–6234, https://doi.org/10.5194/hess-21-6219-2017, https://doi.org/10.5194/hess-21-6219-2017, 2017
Short summary
Short summary
We propose new metrics to assist global sensitivity analysis of Earth systems. Our approach allows assessing the impact of model parameters on the first four statistical moments of a target model output, allowing us to ascertain which parameters can affect some moments of the model output pdf while being uninfluential to others. Our approach is fully compatible with analysis in the context of model complexity reduction, design of experiment, uncertainty quantification and risk assessment.
Anne-Sophie Høyer, Giulio Vignoli, Thomas Mejer Hansen, Le Thanh Vu, Donald A. Keefer, and Flemming Jørgensen
Hydrol. Earth Syst. Sci., 21, 6069–6089, https://doi.org/10.5194/hess-21-6069-2017, https://doi.org/10.5194/hess-21-6069-2017, 2017
Short summary
Short summary
We present a novel approach for 3-D geostatistical simulations. It includes practical strategies for the development of realistic 3-D training images and for incorporating the diverse geological and geophysical inputs together with their uncertainty levels (due to measurement inaccuracies and scale mismatch). Inputs consist of well logs, seismics, and an existing 3-D geomodel. The simulation domain (45 million voxels) coincides with the Miocene unit over 2810 km2 across the Danish–German border.
Johannes Christoph Haas and Steffen Birk
Hydrol. Earth Syst. Sci., 21, 2421–2448, https://doi.org/10.5194/hess-21-2421-2017, https://doi.org/10.5194/hess-21-2421-2017, 2017
Short summary
Short summary
We show that the variability of groundwater levels within an Alpine river valley is more strongly affected by human impacts on rivers than by extreme events in precipitation. The influence of precipitation is found to be more pronounced in the shallow wells of the Alpine foreland. Groundwater levels, river stages and precipitation behave more similar under drought than under flood conditions and generally exhibit a tendency towards more similar behavior in the most recent decade.
Anne F. Van Loon, Rohini Kumar, and Vimal Mishra
Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, https://doi.org/10.5194/hess-21-1947-2017, 2017
Short summary
Short summary
Summer 2015 was extremely dry in Europe, hampering groundwater supply to irrigation and drinking water. For effective management, the groundwater situation should be monitored in real time, but data are not available. We tested two methods to estimate groundwater in near-real time, based on satellite data and using the relationship between rainfall and historic groundwater levels. The second method gave a good spatially variable representation of the 2015 groundwater drought in Europe.
Lin Zhu, Huili Gong, Zhenxue Dai, Gaoxuan Guo, and Pietro Teatini
Hydrol. Earth Syst. Sci., 21, 721–733, https://doi.org/10.5194/hess-21-721-2017, https://doi.org/10.5194/hess-21-721-2017, 2017
Short summary
Short summary
We developed a method to characterize the distribution and variance of the hydraulic conductivity k in a multiple-zone alluvial fan by fusing multiple-source data. Consistently with the scales of the sedimentary transport energy, the k variance of the various facies decreases from the upper to the lower portion along the flow direction. The 3-D distribution of k is consistent with that of the facies. The potentialities of the proposed approach are tested on the Chaobai River megafan, China.
Yabin Sun, Dadiyorto Wendi, Dong Eon Kim, and Shie-Yui Liong
Hydrol. Earth Syst. Sci., 20, 1405–1412, https://doi.org/10.5194/hess-20-1405-2016, https://doi.org/10.5194/hess-20-1405-2016, 2016
Short summary
Short summary
This study applies artificial neural networks (ANN) to predict the groundwater table variations in a tropical wetland in Singapore. Surrounding reservoir levels and rainfall are selected as ANN inputs. The limited number of inputs eliminates the data-demanding restrictions inherent in the physical-based numerical models. The forecast is made at 4 locations with 3 leading times up to 7 days. The ANN forecast shows promising accuracy with decreasing performance when leading time progresses.
J. P. Bloomfield, B. P. Marchant, S. H. Bricker, and R. B. Morgan
Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, https://doi.org/10.5194/hess-19-4327-2015, 2015
Short summary
Short summary
To improve the design of drought monitoring networks and water resource management during episodes of drought, there is a need for a better understanding of spatial variations in the response of aquifers to major meteorological droughts. This paper is the first to describe a suite of methods to quantify such variations. Using an analysis of groundwater level data for a case study from the UK, the influence of catchment characteristics on the varied response of groundwater to droughts is explored
A. Guadagnini, S. P. Neuman, T. Nan, M. Riva, and C. L. Winter
Hydrol. Earth Syst. Sci., 19, 729–745, https://doi.org/10.5194/hess-19-729-2015, https://doi.org/10.5194/hess-19-729-2015, 2015
Short summary
Short summary
Previously we have shown that many earth-system and other variables can be viewed as samples from scale mixtures of truncated fractional Brownian motion or fractional Gaussian noise. Here we study statistical scaling of extreme absolute increments associated with such samples. As a real example we analyze neutron porosities from deep boreholes in diverse depositional units. Phenomena we uncover are relevant to the analysis of fluid flow and solute transport in complex hydrogeologic environments.
K. Menberg, P. Blum, B. L. Kurylyk, and P. Bayer
Hydrol. Earth Syst. Sci., 18, 4453–4466, https://doi.org/10.5194/hess-18-4453-2014, https://doi.org/10.5194/hess-18-4453-2014, 2014
X. L. He, T. O. Sonnenborg, F. Jørgensen, and K. H. Jensen
Hydrol. Earth Syst. Sci., 18, 2943–2954, https://doi.org/10.5194/hess-18-2943-2014, https://doi.org/10.5194/hess-18-2943-2014, 2014
W. Kurtz, H.-J. Hendricks Franssen, P. Brunner, and H. Vereecken
Hydrol. Earth Syst. Sci., 17, 3795–3813, https://doi.org/10.5194/hess-17-3795-2013, https://doi.org/10.5194/hess-17-3795-2013, 2013
C.-M. Chang and H.-D. Yeh
Hydrol. Earth Syst. Sci., 16, 4049–4055, https://doi.org/10.5194/hess-16-4049-2012, https://doi.org/10.5194/hess-16-4049-2012, 2012
A. Guadagnini, M. Riva, and S. P. Neuman
Hydrol. Earth Syst. Sci., 16, 3249–3260, https://doi.org/10.5194/hess-16-3249-2012, https://doi.org/10.5194/hess-16-3249-2012, 2012
C.-M. Chang and H.-D. Yeh
Hydrol. Earth Syst. Sci., 16, 641–648, https://doi.org/10.5194/hess-16-641-2012, https://doi.org/10.5194/hess-16-641-2012, 2012
L. Li, H. Zhou, H. J. Hendricks Franssen, and J. J. Gómez-Hernández
Hydrol. Earth Syst. Sci., 16, 573–590, https://doi.org/10.5194/hess-16-573-2012, https://doi.org/10.5194/hess-16-573-2012, 2012
M. Siena, A. Guadagnini, M. Riva, and S. P. Neuman
Hydrol. Earth Syst. Sci., 16, 29–42, https://doi.org/10.5194/hess-16-29-2012, https://doi.org/10.5194/hess-16-29-2012, 2012
C.-F. Ni, C.-P. Lin, S.-G. Li, and J.-S. Chen
Hydrol. Earth Syst. Sci., 15, 2291–2301, https://doi.org/10.5194/hess-15-2291-2011, https://doi.org/10.5194/hess-15-2291-2011, 2011
H. Murakami, X. Chen, M. S. Hahn, Y. Liu, M. L. Rockhold, V. R. Vermeul, J. M. Zachara, and Y. Rubin
Hydrol. Earth Syst. Sci., 14, 1989–2001, https://doi.org/10.5194/hess-14-1989-2010, https://doi.org/10.5194/hess-14-1989-2010, 2010
C.-M. Chang and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 719–727, https://doi.org/10.5194/hess-14-719-2010, https://doi.org/10.5194/hess-14-719-2010, 2010
Cited articles
Alcolea, A., Carrera, J., and Medina, A.: Pilot points method incorporating prior information for solving the groundwater flow inverse problem, Adv. Water Resour., 29, 1678–1689, 2006.
Bailey, R. and Baú, D.: Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution, Water Resour. Res., 46, W12543, https://doi.org/10.1029/2010WR009147, 2010.
Chang, S.-Y., Chowhan, T., and Latif, S.: State and parameter estimation with an SIR particle filter in a three-dimensional groundwater pollutant transport model, J. Environ. Eng., 138, 1114–1121, 2012.
Chen, Y. and Zhang, D.: Data assimilation for transient flow in geologic formations via ensemble Kalman filter, Adv. Water Resour., 29, 1107–1122, 2006.
Crestani, E., Camporese, M., Baú, D., and Salandin, P.: Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation, Hydrol. Earth Syst. Sci., 17, 1517–1531, https://doi.org/10.5194/hess-17-1517-2013, 2013.
Desbouvries, F., Petetin, Y., and Ait-El-Fquih, B.: Direct, Prediction- and Smoothing-based Kalman and Particle Filter Algorithms, Signal Process., 91, 2064–2077, 2011.
Doucet, A., de Freitas, N., and Gordon, N. (Eds.): Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science, Springer Verlag, New York, 2001.
Erdal, D. and Cirpka, O. A.: Joint inference of groundwater–recharge and hydraulic–conductivity fields from head data using the ensemble Kalman filter, Hydrol. Earth Syst. Sci., 20, 555–569, https://doi.org/10.5194/hess-20-555-2016, 2016.
Feyen, L., Vrugt, J. A., Nualláin, B. Ó., van der Knijff, J., and De Roo, A.: Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model, Journal of Hydrology, 332, 276–289, 2007.
Gharamti, M. E. and Hoteit, I.: Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models, J. Hydrol., 509, 588–600, 2014.
Gharamti, M. E., Kadoura, A., Valstar, J., Sun, S., and Hoteit, I.: Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter, Water Resour. Res., 50, 2444–2467, 2014a.
Gharamti, M. E., Valstar, J., and Hoteit, I.: An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models, Adv. Water Resour., 71, 1–15, 2014b.
Gharamti, M. E., Hoteit, I., and Valstar, J.: Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering, Adv. Water Resour., 60, 75–88, 2013.
Gharamti, M. E., Ait-El-Fquih, B., and Hoteit, I.: An iterative ensemble Kalman filter with one-step-ahead smoothing for state-parameters estimation of contaminant transport models, J. Hydrol., 527, 442–57, 2015.
Gómez-Hernández, J. J. and Journel, A. G.: Joint sequential simulation of multigaussian fields, in: Geostatistics Troia '92, Springer, the Netherlands, Kluwer Academic Publishers, 85–94, 1993.
Hendricks Franssen, H. and Kinzelbach, W.: Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem, Water Resour. Res., 44, W09408, https://doi.org/10.1029/2007WR006505, 2008.
Hendricks Franssen, H. and Kinzelbach, W.: Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems, J. Hydrol., 365, 261–274, 2009.
Hoffman, Y. and Ribak, E.: Constrained realizations of Gaussian fields – a simple algorithm, Astrophys. J., 380, L5–L8, 1991.
Hoteit, I., Pham, D.-T., Triantafyllou, G., and Korres, G.: A New Approximate Solution of the Optimal Nonlinear Filter for Data Assimilation in Meteorology and Oceanography, Mon. Weather Rev., 136, 317–334, 2008.
Lee, W. and Farmer, C.: Data Assimilation by Conditioning of Driving Noise on Future Observations, IEEE T. Signal Process., 62, 3887–3896, 2014.
Li, L., Zhou, H., Gómez-Hernández, J. J., and Hendricks Franssen, H.-J.: Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter, J. Hydrol., 428, 152–169, 2012.
Lü, H., Yua, Z., Zhu, Yonghua, D.-S., Hao, Z., and Sudicky, A. E.: Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation, Adv. Water Resour., 34, 395–406, 2011.
Lü, H., Hou, T., Horton, R., Zhu, Y., Chen, X., Jia, Y., Wang, W., and Fu, X.: The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method, J. Hydrol., 480, 102–114, 2013.
McLaughlin, D.: An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering, Adv. Water Resour., 25, 1275–1286, 2002.
McMillan, H. K., Hreinsson, E. Ö., Clark, M. P., Singh, S. K., Zammit, C., and Uddstrom, M. J.: Operational hydrological data assimilation with the recursive ensemble Kalman filter, Hydrol. Earth Syst. Sci., 17, 21–38, https://doi.org/10.5194/hess-17-21-2013, 2013.
Montzka, C., Moradkhani, H., Weihermüller, L., Franssen, H.-J. H., Canty, M., and Vereecken, H.: Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter, J. Hydrol., 399, 410–421, 2011.
Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604, 2005a.
Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P. R.: Dual state – parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28, 135–147, 2005b.
Nævdal, G., Johnsen, L. M., Aanonsen, S. I., and Vefring, E. H.: Reservoir monitoring and continuous model updating using ensemble Kalman filter, Soc. Petrol. Eng. J., 10, 66–74, 2005.
Panzeri, M., Riva, M., Guadagnini, A., and Neuman, S. P.: Data assimilation and parameter estimation via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater flow, Water Resour. Res., 49, 1334–1344, 2013.
Panzeri, M., Riva, M., Guadagnini, A., and Neuman, S. P.: Comparison of Ensemble Kalman Filter Groundwater-Data Assimilation Methods Based on Stochastic Moment Equations and Monte Carlo Simulation, Adv. Water Resour., 66, 8–18, 2014.
Panzeri, M., Riva, M., Guadagnini, A., and Neuman, S. P.: EnKF coupled with groundwater flow moment equations applied to Lauswiesen aquifer, Germany, J. Hydrol., 521, 205–16, 2015.
Phale, H. A. and Oliver, D. S.: Data Assimilation Using the Constrained Ensemble Kalman Filter, Soc. Petrol. Eng., 16, 331–342, 2011.
Post, V. E. and von Asmuth, J. R.: Review: Hydraulic head measurements-new technologies, classic pitfalls, Hydrogeol. J., 21, 737–750, 2013.
Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Hydrologic data assimilation with the ensemble Kalman filter, Mon. Weather Rev., 130, 103–114, 2002.
Robert, C.: The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, Springer Science & Business Media, New York, 2007.
Samuel, J., Coulibaly, P., Dumedah, G., and Moradkhani, H.: Assessing Model State and Forecasts Variation in Hydrologic Data Assimilation, J. Hydrol., 513, 127–141, 2014.
Tian, X., Xie, Z., and Dai, A.: A land surface soil moisture data assimilation system based on the dual-UKF method and the Community Land Model, J. Geophys. Res., 113, D14127, https://doi.org/10.1029/2007JD009650, 2008.
Valstar, J. R., McLaughlin, D. B., Te Stroet, C., and van Geer, F. C.: A representer-based inverse method for groundwater flow and transport applications, Water Resour. Res., 40, W05116, , https://doi.org/10.1029/2003WR002922, 2004.
Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39, 1201, https://doi.org/10.1029/2002WR001642, 2003.
Vrugt, J. A., Gupta, H. V., Nualláin, B., and Bouten, W.: Real-time data assimilation for operational ensemble streamflow forecasting, J. Hydrometeorol., 7, 548–565, 2006.
Wan, E. A., Van Der Merwe, R., and Nelson, A. T.: Dual Estimation and the Unscented Transformation., in: NIPS, pp. 666–672, Citeseer, 1999.
Wen, X. H. and Chen, W. H.: Real-time reservoir updating using ensemble Kalman Filter: The confirming approach, Soc. Petrol. Eng., 11, 431–442, 2007.
Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., and Li, L.: An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering, Adv. Water Resour., 34, 844–864, 2011.
Zhou, H., Gómez-Hernández, J. J., and Li, L.: Inverse methods in hydrogeology: evolution and recent trends, Adv. Water Resour., 63, 22–37, 2014.
Short summary
We derive a new dual ensemble Kalman filter (EnKF) for state-parameter estimation. The derivation is based on the one-step-ahead smoothing formulation, and unlike the standard dual EnKF, it is consistent with the Bayesian formulation of the state-parameter estimation problem and uses the observations in both state smoothing and forecast. This is shown to enhance the performance and robustness of the dual EnKF in experiments conducted with a two-dimensional synthetic groundwater aquifer model.
We derive a new dual ensemble Kalman filter (EnKF) for state-parameter estimation. The...