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Abstract. Ensemble Kalman filtering (EnKF) is an efficient
approach to addressing uncertainties in subsurface ground-
water models. The EnKF sequentially integrates field data
into simulation models to obtain a better characterization of
the model’s state and parameters. These are generally esti-
mated following joint and dual filtering strategies, in which,
at each assimilation cycle, a forecast step by the model is
followed by an update step with incoming observations. The
joint EnKF directly updates the augmented state-parameter
vector, whereas the dual EnKF empirically employs two sep-
arate filters, first estimating the parameters and then estimat-
ing the state based on the updated parameters. To develop
a Bayesian consistent dual approach and improve the state-
parameter estimates and their consistency, we propose in this
paper a one-step-ahead (OSA) smoothing formulation of the
state-parameter Bayesian filtering problem from which we
derive a new dual-type EnKF, the dual EnKFpsas. Compared
with the standard dual EnKF, it imposes a new update step
to the state, which is shown to enhance the performance of
the dual approach with almost no increase in the computa-
tional cost. Numerical experiments are conducted with a two-
dimensional (2-D) synthetic groundwater aquifer model to
investigate the performance and robustness of the proposed
dual EnKFpga, and to evaluate its results against those of
the joint and dual EnKFs. The proposed scheme is able to
successfully recover both the hydraulic head and the aquifer
conductivity, providing further reliable estimates of their un-
certainties. Furthermore, it is found to be more robust to dif-
ferent assimilation settings, such as the spatial and temporal
distribution of the observations, and the level of noise in the

data. Based on our experimental setups, it yields up to 25 %
more accurate state and parameter estimations than the joint
and dual approaches.

1 Introduction

In modern hydrology research, uncertainty quantification
studies have focused on field applications, including surface
and subsurface water flow, contaminant transport, and reser-
voir engineering. The motivations behind these studies were
driven by the uncertain and stochastic nature of hydrological
systems. For instance, surface rainfall-runoff models that ac-
count for soil moisture and streamflows are subject to many
uncertain parameters such as free- and tension water storage
content, water depletion rates, and melting threshold temper-
atures (Samuel et al., 2014). Groundwater flow models, on
the other hand, depend on our knowledge of spatially variable
aquifer properties, such as porosity and hydraulic conductiv-
ity, which are often poorly known (Chen and Zhang, 2006;
Hendricks Franssen and Kinzelbach, 2008). In addition, con-
taminant transport models that investigate the migration of
pollutants in subsurface aquifers are quite sensitive to reac-
tion parameters, e.g., sorption rates, radioactive decay, and
biodegradation (Gharamti and Hoteit, 2014; Gharamti et al.,
2014b). To this end, it is important to study the variability
of hydrological parameters and reduce their associated un-
certainties in order to obtain reliable simulations. To achieve
this goal, hydrologists have resorted to various inverse and
Monte Carlo-based statistical techniques with the standard
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procedure of pinpointing parameter values that, when in-
tegrated with the simulation models, allow some system-
response variables (e.g., hydraulic head, solute concentra-
tion) to fit given observations (Vrugt et al., 2003; Valstar
et al., 2004; Alcolea et al., 2006; Feyen et al., 2007; Hen-
dricks Franssen and Kinzelbach, 2009; Zhou et al., 2014).
Recently, sequential data assimilation techniques, such as the
particle filter (PF), have been proposed to handle any type of
statistical distribution, Gaussian or not, to properly deal with
strongly nonlinear systems (Chang et al., 2012). The PF may
require, however, a prohibitive number of particles (and thus
model runs) to accurately sample the distribution of the state
and parameters, making this scheme computationally inten-
sive for large-scale hydrological applications (Doucet et al.,
2001; Moradkhani et al., 2005a; Hoteit et al., 2008; Montzka
et al., 2011). This problem has been partially addressed by
the popular ensemble Kalman filter (EnKF), which further
provides robustness, efficiency, and non-intrusive formula-
tion (Reichle et al., 2002; Vrugt et al., 2006; Zhou et al.,
2011; Gharamti et al., 2013; Panzeri et al., 2014; Crestani
et al., 2013; McMillam et al., 2013; Erdal and Cirpka, 2016)
to tackle the state-parameter estimation problem.

The EnKEF is a filtering technique that is relatively simple
to implement, even with complex nonlinear models, requir-
ing only an observation operator that maps the state variables
from the model space into the observation space. Compared
with traditional inverse and direct optimization techniques,
which are generally based on least-squares-like formulations,
the EnKF has the advantage of being able to account for
model errors that are present not only in the uncertain param-
eters but also in the external forcings (Hendricks Franssen
and Kinzelbach, 2008). Because of its sequential formula-
tion, the EnKF does not require one to store all past informa-
tion about the states and parameters, leading to consequent
savings in computational cost (McLaughlin, 2002; Gharamti
et al., 2014b).

The EnKF is widely used in surface and subsurface hydro-
logical studies to tackle state-parameter estimation problems
(Zhou et al., 2014; Panzeri et al., 2014). Two approaches are
usually considered based on the joint and the dual estima-
tion strategies. The standard joint approach concurrently es-
timates the state and the parameters by augmenting (in the
same vector) the state variables with the unknown parame-
ters, that do not vary in time. The parameters could also be
set to follow an artificial evolution (random walk) before they
get updated with incoming observations (Wan et al., 1999).
One of the early applications of the joint EnKF to subsurface
groundwater flow models was presented by Chen and Zhang
(2006). In their study, a conceptual subsurface flow system
was considered and ensemble filtering was performed to es-
timate the transient pressure field alongside the hydraulic
conductivity. In a reservoir engineering application, Nav-
dal et al. (2005) considered a two-dimensional (2-D) North
Sea field model and considered the joint estimation prob-
lem of the dynamic pressure and saturation on top of the
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static permeability field. Groundwater contamination prob-
lems were also tackled using the joint EnKF (e.g., Li et al.,
2012; Gharamti and Hoteit, 2014), in which the hydraulic
head, contaminant concentration, and spatially variable per-
meability and porosity parameters were estimated for cou-
pled groundwater flow and contaminant transport systems.

Several studies argued that the joint EnKF may suffer from
important inconsistencies between the estimated state and
parameters that could degrade the filter performance, espe-
cially with large-dimensional and strongly nonlinear systems
(e.g., Moradkhani et al., 2005b; Chen and Zhang, 2006; Wen
and Chen, 2007). One classical approach that has been pro-
posed to tackle this issue is the so-called dual filter, which
separately updates the state and parameters using two in-
teractive EnKFs, one acting on the state and the other on
the parameters (Moradkhani et al., 2005b). The dual EnKF
has been applied to streamflow forecasting problems using
rainfall-runoff models (e.g., Lii et al., 2013; Samuel et al.,
2014), subsurface contaminant (e.g., Tian et al., 2008; Li
et al., 2011; Gharamti et al., 2014b), and compositional flow
models (e.g., Phale and Oliver, 2011; Gharamti et al., 2014a),
to cite but a few. Gharamti et al. (2014a) concluded that
the dual scheme provides more accurate state and param-
eter estimations than the joint scheme when implemented
with large enough ensembles. In terms of complexity, how-
ever, the dual scheme requires integrating the filter ensem-
ble twice with the numerical model at every assimilation cy-
cle, and is therefore computationally more demanding. In re-
lated works, Gharamti et al. (2013) extended the dual filter-
ing scheme to tackle the state estimation problem of one-
way coupled models, and to the framework of hybrid-EnKF
(Gharamti et al., 2014b).

The dual filter has been basically introduced as a heuris-
tic scheme and is not consistent with the Bayesian filtering
framework (Hendricks Franssen and Kinzelbach, 2008). A
first attempt to build a Bayesian consistent dual-like filter
was recently proposed by Gharamti et al. (2015) in which a
new joint EnKF scheme was derived following the one-step-
ahead (OSA) smoothing formulation of the Bayesian filter-
ing problem. The new joint scheme reverses the order of the
measurement-update and the forecast (or time) update, lead-
ing to two Kalman-like update steps based on the current ob-
servations: one for state smoothing and one for parameters
updating.

Motivated by the promising results of Gharamti et al.
(2015), we follow here the same OSA smoothing formula-
tion to derive a new dual EnKF, which we refer to as the
dual EnKFpga hereafter, generalizing the joint scheme of
Gharamti et al. (2015) and, in particular, the standard dual
EnKF. Our goal is to derive a new dual EnKF-like algo-
rithm that retains the separate formulation of the state and
parameters update steps, within a fully Bayesian framework.
The new dual-type filter relaxes the assumption of indepen-
dence between the state and its observation conditionally
on the previous state and parameters, which have been im-
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posed by Gharamti et al. (2015). Exploiting the conditional
dependency between the state and its observation leads to
one more Kalman-like update of the state, generalizing the
joint scheme of Gharamti et al. (2015), at practically no in-
crease in the computational cost. Likewise, the new dual fil-
tering scheme is not only more general than the standard
dual scheme, but also explicitly derives the conditions un-
der which the (heuristic) steps of the standard dual EnKF
can be derived within a Bayesian framework. Synthetic nu-
merical experiments based on a groundwater flow model and
estimating the hydraulic head and the conductivity parame-
ter field, are conducted to assess the performance of the pro-
posed dual EnKFpga and to compare its results against those
of the joint and the dual EnKFs, which we consider as ref-
erences to evaluate the behavior of the dual EnKFpgsa. The
numerical results suggest that the proposed scheme is ben-
eficial in terms of estimation accuracy compared to the two
standard joint and dual schemes, and is more robust to vari-
ous experimental settings and observational scenarios.

The rest of the paper is organized as follows. Section 2 re-
views the standard joint and dual EnKF strategies. The dual
EnKFos4 is derived in Sect. 3 and its relation with the joint
and dual EnKFs is discussed. Section 4 presents a concep-
tual groundwater flow model and outlines the experimen-
tal setup. Numerical results are presented and discussed in
Sect. 5. Conclusions are offered in Sect. 6, followed by an
Appendix.

2 Joint and dual ensemble Kalman filtering
2.1 Problem formulation
Consider a discrete-time state-parameter dynamical system:

Xy = Mu_1 (Xn—1,60) + 15— 1 (1)

Yo = HyX, +&p
where x, € RVr and y,, € RV denote the system state and the
observation at time #,, of dimensions N, and Ny, respectively,
and € RM is the parameter vector of dimension Ny. M, is
a nonlinear operator integrating the system state from time
t, to t,41, and the observational operator at time #,, H,, is
assumed to be linear for simplicity; the proposed scheme can
be easily extended to the nonlinear case!. The model pro-
cess noise, 1= {n,},eN, and the observation process noise,
& ={&}neN, are assumed to be independent, jointly indepen-
dent, and independent of x¢ and 6. Furthermore, let 1, and ¢,
be Gaussian with zero means and covariances Q,, and R,;, re-

spectively. Throughout the paper, yo., &ef {yo0,¥1, -, yn} and
p(x,) and p(X,|yo.;) stand for the prior probability density
function (pdf) of x,, and the posterior pdf of x,, given yq.;, re-
spectively. All other pdf’s used are defined in a similar way.

I'The term H,,xf; (m) is replaced by Hj, (x,fq’ (m)) in Eq. (26), and
H, &, (m) ; is replaced by ‘Hj (g,E’")) in Eq. (34).
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We focus on the state-parameter filtering problem, i.e., the
estimation at each time, t,, of the state, x,, as well as the
parameters vector, @, from the history of the observations,
Yo:n- The standard solution of this problem is the a posteriori
mean (AM):

Ep(x,,lyo;n) [xn] = /an (an 9|Y0:n)and9, (2)

Ep@lyon[01= / Op (Xn, 01y0:n) dx,d0, (3)

which minimizes the a posteriori mean square error. In prac-
tice, analytical computation of Egs. (2) and (3) is not feasible,
mainly due to the nonlinear character of the system. The joint
and dual EnKFs have been introduced as efficient schemes
to compute approximations of Egs. (2) and (3). These algo-
rithms are reviewed in the next section.

2.2 The joint and dual EnKFs
2.2.1 The joint EnKF

The key idea behind the joint EnKF is to transform the state-
parameter system (Eq. 1) into a classical state-space system

based on the augmented state, z, = [X,{ OT]T, on which the
classical EnKF can be directly applied. The new augmented
state-space system can be written as

Mn 1 (Zn—1) + - l

“)
yn =H,z, + ¢,

Miy—1(Zp—
le(z 1)]’ Mn— 1_[77,1 1 O]T

H,=[H, 0], with 0 a zero matrix with appropriate di-

mensions. x; ™, x> and x5 respectively denote the

mth forecast, analy51s, and (OSA) smoothing member of the

where M,,_1 (2,—1) = [

state, Xx,,, while 6(,:") denotes the mth sample of the parame-
ters posterior pdf, p(6]yo.,). Since the parameters are static
(i.e., time-independent), an ), n=1,2,---, could be consid-
ered as analysis, forecast, or smoothing members.

Starting at time #,_1 from an analysis ensemble of size N,
(x 2(’;’), O(m)l} , sampled from p(z,—1|yo:n—1), the EnKF
uses the augmented state model (lst equation of Eq. 4) to
compute the forecast ensemble, {x’; " 9(’") e, approx-
imating p(z,|yo:n—1). The observation model (2nd equation

of Eq. 4) is then used to obtain the analysis ensemble, x> (m),

H(m)}m |» at time #,. Let, for an ensemble {r(m)}me:l, r de-
note its empirical mean and S, a matrix with N-columns
whose mth column is defined as (r™ — ). The joint EnKF
steps can be summarized as follows:

— Forecast step: the parameters vector members, Gl(r'l)] ,are

kept invariant, while the state vector members, XZ’Y?),

are integrated in time through the dynamical model as

Hydrol. Earth Syst. Sci., 20, 3289-3307, 2016
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f,(m) _ a,(m) ,(m) (m) . (m)
X " —Mn—l ( n—1 > Gln 1) +77n 1> Mo
~N(©,Qu-1). Q)]

The state forecast estimate, which is the mean of
PXnlyon—1) (.., Epeilvons) [Xn]), is taken as the
empirical mean of the forecast ensemble, f(,fl The

associated forecast error covariance is estimated as
_ _ 11 T
Px,ﬁ =(Ne—1) Sx,ﬁ Sx,f,‘

— Analysis step: once a new observation is available, all

members, Xf, ) and Gl(rznj 1> are updated as in the Kalman
filter (KF):

yfl m) _ —H, Xf (m) + 8(m) ~N(0 R,), ©6)
X;‘;s(m) _ Xil,(m) + Px,ﬁ,)‘ﬁp;,g (yn - y;(m)), (7)
—_—
(m)
(m) _ g(m
9\,:” 9 " 1 +P9|,, Lyf e MSzm)' ®

The (cross-)covariances in Eqgs. (7) and (8) are practi-
cally evaluated from the ensembles as

Py =Ne—D7ISySE )
Py =(Ne—1D7'Sy;ST. (10)
Py =N~ 1)—159‘%15;5. (11)

The analysis estimates, Egs. (2) and (3), and
their error covariances, can thus be approxi-
mated by the analysis ensemble means, X2 and
QA‘,,, and covariances Px;lx:(Ne—l)_IngSfa and
Pg‘nz(Ne—l)*IS(gln Sgln, respectively. Note that
Pt Py_,gl
P HJ[H,PHJ +R,]”". This statistical formula-
tion of the Kalman gain offers more flexibility to deal

with nonlinear observational operators (Moradkhani
et al., 2005b).

in Eq. (7) represents the Kalman Gain,

2.2.2 The dual EnKF

In contrast with the joint EnKF, the dual EnKF is empirically
designed following a conditional estimation strategy, oper-
ating as a succession of two EnKF-like filters. First, a (pa-
rameter) filter is applied to compute {9( )}NC from {xa’(m)

n—1 >
Q(m)l} | exactly as in the joint EnKF:
— Forecast step: the parameters ensemble, {Ql(m) }m 1
kept invariant, while the state samples are 1ntegrated in
time as in Eq. (§) to compute the forecast ensemble,

fxy "y
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— Analysis step: as in Eq. (6), the observation forecast

ensemble {yn(m)} 2, is computed from {x; (m)}m 1
This is then used to update the parameters ensemble,

{9( 1)} =1 fOllOWlng Eq- (8).
( ) Ne
a,(m } |

Another (state) filter is then applied to compute {x,;’

from {x; ('")} as well as the new parameter ensemble,
{9('") } - again in two steps that can be summarized as fol-
lows

— Forecast step: each member, XZ’E’?), is propagated in

time with the dynamical model using the updated pa-
rameters ensemble:

’)‘(’fi(m) :Mn— ( 2("11)’9011)) (12)
~f,(m) Ne
— Analysis step: as in the parameter filter, {y,~ '} ¢ is

computed from (& )}

(m)}

° , using Eq. (6), which finally

yields {x m—1 asin Eq. (7).

To better understand how the dual EnKF differs from the
joint EnKF, we focus on how the analysis members at time
t,, namely, X ™ and Q(m) are obtained starting from their

counterparts at previous time, x ) and 9( ) . The parame-

ters members, 9|(n ), are computed based on the same equa-

tion (Eq. 8) in both algorithms. For the state members, Xy (m),

we have

3 joint EnKF
i (m) JOLE M,H( a,(m) o (m) ) TP
n*’sn

n—1 >"|n—1
P (v -y ™). (13)
—_—

s

e(m)

|n

a, dual EnKF X (m) ,(m)
Xy CUEKE LG XROD 000 4By

ff"(m)

Py 5P (3n =55, (14)
—_
e

For simplicity, we ignore here the process noise term, 7,
which is commonly applied in geophysical applications. As
one can see, the joint EnKF updates the state members us-
ing one Kalman-like correction (term of ,u,(m) in Eq. (13)),
whereas the dual EnKF applies two Kalman-like corrections.
More speciﬁcally, the dual EnKF updates first the parameters

members, 9 )1, as in the joint EnKF, leading to 9‘ these

a,(m)

are then used to propagate xn_1 ,

with the model to provide
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the “forecast” members X, "

. The X5 are finally updated
using a Kalman-like correction (term of ﬁflm) in Eq. 14), to
obtain the analysis members X ™ Such a separation of the
update steps is expected to provide more consistent estimates
of the parameters. The dual update framework was indeed
shown to provide better performances than the joint EnKF, at
the cost of increased computational burden (see for instance,
Moradkhani et al., 2005b; Samuel et al., 2014; Gharamti
et al., 2014a).

2.2.3 Probabilistic formulation

Following a probabilistic formulation, the augmented state
system (Eq. 4) can be viewed as a continuous state hidden
Markov chain with transition density,

P (Zy|2,-1) = p (Xu1X,—1,0) p(010)
:an (Mnfl (Xn71y9)9Qn71)7 (15)
and likelihood,

P (Ynlzn) = p (YulXp) = N*,, H;x,,Ry,), (16)

where A, (m, C) represents a Gaussian pdf of argument v
and parameters (m, C).

One can then easily verify that the joint EnKF can be de-
rived from a direct application of two classical results of ran-
dom sampling (Properties 1 and 2 in Appendix A) on the
following classical generic formulas:

P(an)’O:nfl)=/P(XnIanl,O)P(anl|YO:n71)an71, a7

P(Ynl)’O:nfl)=/P(YnIXn)P(Xn|Y():n71)an, (18)

(2 Vo) = P Zn. YnlYon-1) (19)
P (Ynlyo:n—1)

Equation (17) refers to a Markovian step (or time-update
step) and uses the transition pdf, p(x,|x,—1, €), of the
Markov chain, {z,},, to compute the forecast pdf of z,, from
the previous analysis pdf. Equation (19) refers to a Bayesian
step (or measurement-update step) since it uses the Bayes’
rule to update the forecast pdf of z, using the current ob-
servation y,. Thus, establishing the link between the joint
EnKF and Egs. (17)-(19), one can show that Property 1 and
Eq. (17) lead to the forecast ensemble of the state (Eq. 5).
Property 1 and Eq. (18) lead to the forecast ensemble of the
observations (Eq. 6). Property 2 and Eq. (19) then provide
the analysis ensemble of the state (Eq. 7) and the parameters
(Eq. 8).

Regarding the dual EnKF, the forecast ensemble of the
state and observations in the parameter filter can be obtained
following the same process as in the joint EnKF. This is fol-
lowed by the computation of the analysis ensemble of the
parameters using Property 2 and

P 0,¥nlyo:n—1)

) 20
P (Yulyon—1) 0

p @lyon) =

www.hydrol-earth-syst-sci.net/20/3289/2016/

However, in the state filter, the ensemble, {§f{ ("’)}Z ¢, ob-
tained via Eq. (12) in the forecast step does not represent
the forecast pdf, p(x;,|yo:n—1), since Eq. (12) involves 9‘(,['”)

rather than 9‘(:1_)1. Accordingly, the dual EnKF is basically a

heuristic algorithm in spite of its proven performance.

3 One-step-ahead smoothing-based dual EnKF (dual
EnKFqgga)

The classical (time-update, measurement-update) path
(Egs. 17-19) to compute the analysis pdf p(z,|yo.,) from
p(Zy—1]¥0:n—1) is not the only possible one. One may in-
deed reverse the order of the time- and measurement-update
steps by involving the OSA smoothing pdf, p(z,—1|yo.n),
between two successive analysis pdf’s: p(z,—1|yo:n—1) and
p(z,|y0:n)- Desbouvries et al. (2011) considered the OSA
smoothing-based filtering problem in low-dimensional state-
space systems to derive a class of KF- and PF-like algo-
rithms for filtering the state. The more recent work of Lee
and Farmer (2014) proposed a number of algorithms to es-
timate both the system state and the model noise based on
a similar strategy. In the context of large-dimensional state-
parameters filtering, we show in this section that this leads to
a new fully Bayesian consistent dual-like filtering scheme,
the dual EnKFpga, which, compared to the standard dual
EnKF, not only introduces another Kalman-like update of the
state but also involves a (new) smoothing step that constraints
the state with the future observation. Exploiting the future
observation should be particularly beneficial in the context of
the EnKF as it includes more information in the estimation
process that may help mitigating for the suboptimal character
of the EnKF-like methods, being formulated under a linear
Gaussian framework, and usually implemented with limited
ensembles and crude approximate noise statistics.

3.1 The one-step-ahead smoothing-based dual filtering
algorithm

The analysis pdf, p(x,, 6|yo:n), can be computed from
P(Xn—1, 0]y0:n—1) in two steps:

— Smoothing step: the one-step-ahead smoothing pdf,
P(Xn—1, O]y0:n), is first computed as

P Xn—1,01y0:n) Xp (¥YulXn—-1,6,y0:n—1)
P(Xn—1,9|)’0:n—1), (21)

with,
P(Yn|xn71,9,y0:n7])Z/P(Yn|xnaxn7179ay0:nf])

P (XnlXn—1,0,¥Y0:n—1) dx,, = /P (Yn1%n)

P (Xn|Xp—1,0)dx;,. (22)
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Equation (22) is derived from the fact that in the state-
parameter model (Eq. 1), the observation noise, &, and
the model noise, 1,1, are independent of (x,—1, #) and
past observations yo.,—1.

The smoothing step (Eq. 21) is indeed a measurement-
update step since, given yo.,—1, Eq. (21) translates the
computation of the posterior, p(x,—1, 6|y,), as a nor-
malized product of the prior, p(x,—1, 6), and the likeli-
hood, p(y,|X,—1,0) (note from Eq. (22) that p(y, |X,—1,
0, Yon—1) = p(Yu|Xn—1, 0)).

— Forecast step: the smoothing pdf at 7, is then used to
compute the current analysis pdf, p(X;, €]yo:n), as

P(Xu, 0yo:n) Z/P(Xn|xn—l,9, Yo:n)
P (Xp—1,0y0:n) dXp—1, (23)

with,

P Xn|Xn—1,60,¥0:1) X p (YnlXn) p XnlXp—1,0), 24

which, in turn, arises from the fact that ¢, and »,,_ are
independent of (x,,—1, #) and yo.,—1 (see smoothing step
above). We note here that only the (marginal) analysis
pdf of x,,, p(X,|y0:n), is of interest since the analysis pdf
of 0 has already been computed in the smoothing step.

From Eq. 24), p(Xu|Xn—1, 0, Yo:n) = p(Xn|Xn—1, 0, ¥n).
Thereby, there is a similarity between Eq. (23) and the
forecast step (Eq. 17) in the sense that Eq. (23) can be
seen as a forecast step once the observation y, is known;
i.e., Eq. (23) coincides with “Eq. (17) given the obser-
vation y,”. Accordingly, and without abuse of language,
we refer to Egs. (23)—(24) as the forecast step.

3.2 Ensemble formulation

Since it is not possible to derive the analytical solution of
Egs. (21)-(24) because of the nonlinear character of the
model, M(.), we use Properties 1 and 2 (see Appendix A)
to propose an EnKF-like formulation, assuming that p(y,,
Zn—1|yo:n—1) is Gaussian for all n. This assumption im-
plies that p(z,—1|yo:n—1), P(Zn—1|y0:n), and p(yn|yo:n—1) are
Gaussian.

3.2.1 Smoothing step

Starting at time #,_;, from an analysis ensemble, {Xfl’i"]’),
e(m)

‘nl

}m {» one can use Property 1 in Eq. (22) to sample the

observation forecast ensemble, {yf (m)}ge 1> as
X0 = Mo (x5 00, )+, (25)
yhom = H, x4 ) (26)

with n(m) ~N(0,Q,_1) and ™ ~ N(0, R,,). Property 2 is
then used in Eq. (21) to compute the smoothing ensemble,
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0 0

X0 x| p . ’yEPy—gl (yn yE (m)) 27)
v

O = O+ Py, i (8)

The (cross-) covariances in Egs. (27) and (28) are defined and
evaluated similarly to Egs. (9)—(11).

3.2.2 Forecast step

a, (m)}

The analysis ensemble, {x) can be obtained from

s,(m) 0 (m)}
n m=

m=1>
{x, - ; using Property 1 in Eq. (23), once the a
posteriori transition pdf, p(x,|X,—1, 6, yn), is computed via
Eq. (24). Furthermore, one can verify that Eq. (24) leads to a
Gaussian pdf:

P (XnlXn—-1,0,¥n) :an Mu—1 (X4=1,0)
+Ky (yn = HyoMy—1 (X4-1,0)) , anl) ) (29)

with K, =Q,—1H[H,Q,— 1 H] +R,]! and
Qu-1=Qn-1 — K, H, Q,—1. However, when the state
dimellsion, N, is very large, the computational cost of K,
and Q,—; (which may be a non-diagonal matrix even when
Q,—1 is diagonal) may become prohibitive. One way to
avoid this problem is to directly sample from p(x,|x,—1, 0,
y») without explicitly computing this pdf in Eq. (29). Let
{x(m) Xn—1, 9)}Ne denotes an ensemble of samples drawn
from p(x,|X,—1, 0, ¥»). The notation x,, )(xn 1, 0) refers
to a function Xg ™ of (X;,—1, 0); similar notations hold for
g™ () and 3™ (.) in Egs. (30) and (31), respectively. Using
Properties 1 and 2, an explicit form of such samples can be
obtained as (see Appendix B)

E™ (Xn-1,0) = M v

n—l(xn—179)+nn 1 M

~N(©0,Qu-1), (30)
(m) (Xp—1,0) = ngygm) (Xp-1,0) +<9,(1m); E,Em)
~N(,R,), (€2))

(m) (Xn—1,6) %.(m) (Xp— 1,0)+P§ )nP_
I:YH - yn 1) (Xﬂ—lv 9):| ’ (32)

where the (cross)-covariances, Pg 5 and Py, , are evaluated

from the ensembles {Snm)(xn 1 0)}

0)}m |» similarly to Egs. (9)—(11). Now, using Property 1 in
a,(m)yN.
} 71’

=1 and {Yn(m)(xn 1>

Eq. (23), one can compute an analysis ensemble, {x5
from the smoothing ensemble, {x ("f), Gl(m)}m |» using
the functional form Eq. (32). More precisely, we ob-

tain, x> =3 (x Z(”l’), GIE:”)) which is equivalent to set

Xy = X,,’Enll) and 0 = Gl(nm) in Egs. (30)—(32).
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3.2.3 Summary of the dual EnKFgga algorithm
Starting from an analysis ensemble, {x' ("11), Q(m)l}m L a
time f,_1, the updated ensemble of both state and parame-
ters at time #,, is obtained with the following two steps:

- Smoothing step: the state forecast ensemble,
{x, (m)}Ne |» is first computed by Eq. (25), and then
used to compute the observation forecast ensemble,
{ n(m)}m > as in Eq. (26). The observation forecast
ensemble is then used to compute the one- step -ahead

smoothing ensemble of the state, {xS IV Jeq» and

parameters, {0('") }meq» based on the Ka]man—like
updates (Eqgs. 27 and 28), respectively.

— Forecast step:
a,(m) }Ne

the analysis ensemble of the state

{xy | is obtained as

£ = M, ( 2(7)79(’"))“75,’")1’ ™

~N©0,Q,-1), (33)
Y, =HEM 46" 6™ ~ N (O,Ry), (34)
Xy = " + Py P! (v 5. (35)
with Py, 51 =(Ne —1)~' S¢, 8, and Pyr = (Ne — )7
S;,rl ST

The proposed dual EnKFpga is an ensemble implementa-
tion, under the common Gaussian assumption, of the generic
Bayesian filtering algorithm presented in Sect. 3.1. This jus-
tifies its Bayesian consistency in contrast with the stan-
dard dual EnKF, which, as discussed in Sect. 2.2.3, lacks
a Bayesian interpretation. In contrast with the dual EnKF,

which uses 9|(nm) and xz’y;’) to compute xi’(m) (see Eq. 14),

the proposed dual EnKFpga uses 0 ™) and the smoothed state

members, X s, (m ) , which are the x 1 ) after an update with the

current observatlon Yo followmg Eq. (27). Therefore, when
including the Kalman-like correction term as well, the obser-
vation, y,, is used 3 times in the dual EnKFpga in a fully
consistent Bayesian formulation, compared to only twice in
the dual EnKF. This means that the dual EnKFpga exploits
the observations more efficiently than the dual EnKF, which
should provide more information for improved and more
consistent state and parameters estimates. Note that the dual
EnKFpgsa reduces to the dual EnKF in the particular case of
a perfect model and x' ("11) =x (’;’)

The joint EnKFOSA of Gharamtl et al. (2015) has been
derived following the same approach under the assump-
tion of independence between the state, x,, and its obser-
vation, y,, given the previous state, X,,_1, and parameters,
0 (assumption (16) in Gharamti et al., 2015). This assump-
tion has been adopted to avoid evaluating the computation-
ally demanding term p(xX,|X,—1, 0, ¥,) by replacing it with
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the more easily sampled state transition pdf, p(x,|X,—1,
0) =Ny, (My—1(X,—1, 0), Qu—1), to draw the state analy-
sis ensemble. Here, we propose a more efficient approach
to directly sample the analysis ensemble without explicitly
computing p(X,|X,—1, 8, ¥,) and without the need of any
additional assumption. The joint EnKFpg4 is therefore a par-
ticular case of the dual EnKFopga, involving two Kalman-like
updates only (those of the smoothing step), since in the fore-
cast step, the state analysis members, xn( " are computed
from the smoothed members, (X’ (rﬁl), 9('")) by integrating
them with the model and without any update with the current
observation. More specifically, Egs. (33)-(35) above reduce
in Gharamti et al. (2015) to Eq. (33) (i.e., x> =&{™).
Despite the smoothing formulation of the dual EnKFopga,
this algorithm obviously addresses the state forecast problem
as well. As discussed in the smoothing step above, the (one-
step-ahead) forecast members are inherently computed. The

Jj-step-ahead forecast member, denoted by X;(;i)/m for j > 2,
can be computed following a recursive procedure where, for

£=2,3,---, j, one has

(m) (m) (m) (m)
X tin = Mo 1( Xpte—1jn> O )+’7n+e e
~N@©,Qute-1)- (36)

3.3 Complexity of the joint EnKF, dual EnKF, and
dual EnKFoga

The computational complexity of the different state-
parameter EnKF schemes can be split between the forecast
(time-update) step and the analysis (measurement-update)
step. The joint EnKF requires N. model runs (for forecasting
the state ensemble) and N, Kalman corrections (for updating
the forecast ensemble). This is practically doubled when us-
ing the dual EnKF, since the latter requires 2N, model runs
and 2N, Kalman corrections: N, corrections for each of the
forecast state ensemble and the forecast parameter ensem-
ble. As presented in the previous section, the dual EnKFoga
smoothes the state estimate at the previous time step before
updating the parameters and the state at the current time.
Thus, the dual EnKFpga requires as many model runs (2Ne)
as the dual EnKF, and an additional N, correction steps to
apply smoothing. In large-scale geophysical applications, the
correction step of the ensemble members is often computa-
tionally not significant compared to the cost of integrating
the model in the forecast step. The approximate computa-
tional complexity and memory storage for each algorithm are
summarized in Table 1. The tabulated complexities for each
method are valid under the assumption that Ny < N,; i.e.,
the number of state variables is much larger than the number
of observations. This is generally the case for subsurface flow
applications due to budget constraints given the consequent
costs needed for drilling and maintaining subsurface wells.
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Table 1. Approximate computational complexities of the joint EnKF, the dual EnKF, and the dual EnKFpga algorithms. Notations are as
follows. Ny : number of state variables, Ng: number of parameter variables, Ny: number of observations, N: number of assimilation cycles,

Ne: ensemble size, Cy: state model cost (i.e., N 3 is the linear KF), Cg: parameter model cost (usually free = identity), Cy: observation
operator cost (i.e., Ny Ny in the linear KF), Sy: storage volume for one state vector, and Sp: storage volume for one parameter vector.

Algorithm Time update Measurement update Storage

joint EnKF NNe(Cx +Cy) NNe(Cy+ Ny N9)+NN62(NX + Ng) 2NNe(Sx + Sp)
dual EnKF NNe(2Cx +Cg)  2NNeCy + NNZ(Ny + Ng) 2N Ne(Sy +Sp)
dual EnKFoga  NNe(2Cx +Cg)  2NNeCy +NN62(2NX + Np) 2N Ne(Sx +Sp)

4 Numerical experiments
4.1 Transient groundwater flow problem

We adopt in this study the subsurface flow problem of Bai-
ley and Baud (2010). The system consists of a 2-D transient
flow with an areal aquifer area of 0.5km? (Fig. 1). Con-
stant head boundaries of 20 and 15 m are placed on the west
and east ends of the aquifer, respectively, with an average
saturated thickness, b, of 25 m. The height of the imperme-
able aquifer bottom, zpo, is assumed constant (i.e., horizontal
aquifer bottom). The north and south boundaries are assumed
to be impermeable (Fig. 1). The mesh is discretized using a
cell-centered finite difference scheme with 10 m x 20 m rect-
angles, resulting in 2500 elements. The following 2-D satu-
rated groundwater flow system is solved:

0 (p ORY D (g 0hY_ (oh an
ax \ox ) T\ ey ) T T

where T is the transmissivity [LZT~!], which is related to
the conductivity, K, through T =K b, h is the hydraulic
head [L], ¢ is time [T], S is storativity [-], and ¢ de-
notes the sources as recharge or sinks due to pumping
wells [L T~!]. Unconfined aquifer conditions are simulated
by setting S =0.20 to represent the specific yield. A log-
conductivity field is generated using the sequential Gaus-
sian simulation toolbox, GCOSIM3D (Goémez-Hernandez
and Journel, 1993), with a geometric mean of 10”3 ms™!,
a variance of ¥ =log K equal to 1.5, and a Gaussian var-
iogram with a range equal to 250 m in the x direction and
500 m in the y direction (Fig. 1).

We consider a dynamically complex experimental set-
ting involving various time-dependent external forcings. The
recharge is assumed spatially heterogenous and sampled us-
ing the GCOSIM3D toolbox (Gémez-Hernandez and Jour-
nel, 1993) with statistical parameters shown in Table 2.
Three different pumping wells (PW) are inserted within the
aquifer domain and can be seen in Fig. 1 (square symbols).
From these wells, transient pumping of groundwater takes
place with different daily values as plotted in the left panel
of Fig. 2. The highest pumping rates are associated with
PW2 with an average daily rate of 0.0513 mday~!. Smaller
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Figure 1. Plan view of the conceptual model for the 2-D transient
groundwater flow problem. East and west boundaries (x direction)
are Dirichlet with a given prescribed hydraulic heads. North and
south boundaries (y direction) are impermeable (no flow bound-
aries). The reference log-conductivity field was obtained using the
sequential Gaussian simulation code (Gémez-Herndandez and Jour-
nel, 1993). A Gaussian variogram model is considered with a geo-
metric mean of 10~ 13 ms_l, a variance of ¥ =log K equal to 1.5,
and range equal to 250 and 500m in the x and y directions, re-
spectively. The black squares represent the pumping wells, whereas
the black circles denote the position of three monitoring wells. The
black diamond is a control well. The two black crosses correspond
to the locations where the conductivity values were used to condi-
tion the geostatistical simulation.
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Table 2. Parameters of the random functions for modeling the spatial distributions of the reference and perturbed recharge fields. The ranges
in x and y directions for the variogram model are given by Ay and Ay, respectively. T denotes the rotation angle of one clockwise rotation

around the positive y axis.

Recharge Mean

Variance

Variogram Ay Ay T

Reference field
Perturbed field

—20ms~! 1.03
—20ms~! 1.21

Gaussian  50m  100m  45°
Gaussian ~ 50m 50m 45°

=
B

log q, for q in m

Well pumping rates (m §?

Z

0.25
Distance (km)

Time (months)

Figure 2. Left panel: daily transient reference pumping rates from
wells PW1, PW2, and PW3. Negative values indicate pumping or
groundwater that is being removed from the aquifer. Right panel:
reference heterogenous spatial recharge values obtained using the
sequential Gaussian simulation code (Gémez-Herndndez and Jour-
nel, 1993) with parameters given in Table 2.

temporal variations in water pumping rates are assigned to
PWI1 and PW3. Three other monitoring wells (MW1, MW2,
MW?3) are also placed within the aquifer domain to evaluate
the groundwater flow filters estimates. We further assess the
prediction skill of the model after data assimilation using a
control well (CW) placed in the middle of the aquifer (indi-
cated by a diamond symbol). The assigned values for the hy-
draulic conductivity and recharge rates might be smaller than
what is generally used in real-world applications. This, how-
ever, should not affect the performance of the tested schemes.

Prior to assimilation, a reference run is first conducted
for each experimental setup using the prescribed parame-
ters above, and is considered as the truth. We simulate the
groundwater flow system over a year-and-a-half period using
the classical fourth-order Runge—Kutta method with a time
step of 12 h. The initial hydraulic head configuration is ob-
tained after a 2-years model spin-up starting from a uniform
15 m head. Reference heterogenous recharge rates are used in
the setup as explained before. The water head changes (in m)
after 18 months are displayed with contour lines in the left
panel of Fig. 3. One can notice larger variations in the wa-
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Figure 3. Groundwater flow contour maps obtained using the refer-
ence run (left panel) and the perturbed forecast model (right panel)
after 18 months of simulation. The well locations from which head
data are extracted are shown by black asterisks. In the left panel, we
show the first network consisting of nine wells. In the right panel,
the other network with 25 wells is displayed.

ter head in the lower left corner of the aquifer domain, con-
sistent with the high conductivity values in that region. The
effects of transient pumping in addition to the heterogenous
recharge rates are also well observed in the vicinity of the
pumping wells.

4.2 Assimilation experiments

To imitate a realistic setting, we impose various perturbations
on the reference model and set our goal to estimate the wa-
ter head and the hydraulic conductivity fields using an im-
perfect forecast model and perturbed data extracted from the
reference (true) run. This experimental framework is known
as “twin-experiments”. In the forecast model, we perturb
both transient pumping and spatial recharge rates. The per-
turbed recharge field, as compared to the reference recharge
in Fig. 2, is sampled with different variogram parameters as
shown in Table 2. Pumping rates from PW1, PW2, and PW3
are perturbed by adding a Gaussian noise with mean zero and
standard deviation equal to 20 % of the reference transient
rates. The flow field simulated by the forecast (perturbed)
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model after 18 months is shown in the right panel of Fig. 3.
Compared to the reference field, there are clear spatial differ-
ences in the hydraulic head, especially around the first and
second pumping wells.

To demonstrate the effectiveness of the proposed dual
EnKFopsa, we evaluate its performances against the standard
joint and dual EnKFs under different experimental scenar-
ios. We further conduct a number of sensitivity experiments,
changing (1) the ensemble size, (2) the temporal frequency of
available observations, (3) the number of observation wells in
the domain, and (4) the measurement error. For the frequency
of the observations, we consider six scenarios in which hy-
draulic head measurements are extracted from the reference
run every 1, 3, 5, 10, 15, and 30 days. Of course, X
is equal to xf,’(m) when no observation is assimilated. We
also test four different observational networks assuming 9,
15, 25, and 81 wells uniformly distributed throughout the
aquifer domain (Fig. 3 displays two of these networks; with
9 and 25 wells). We evaluate the algorithms under 10 differ-
ent scenarios in which the observations were perturbed with
Gaussian noise of zero mean and a standard deviation equal
to 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50, 1, 2, and 3 m. Such
measurement errors, which can be due to instruments errors,
conversion of pressure to water head, or piezometer well de-
fects, are typical values (order of centimeters to meters) ob-
served at real hydrologic sites (Post and von Asmuth, 2013).

To initialize the filters, we follow Gharamti et al. (2014a)
and perform a 5-year (spin-up) run using the perturbed fore-
cast model starting from the mean hydraulic head, hREF, of
the reference run solution. Argr is calculated as the tempo-
ral mean at every grid cell of the reference run snapshots (a
total of 1095, retained every 12h). After 5 years, a set of
3650 head maps are obtained. From these, we randomly se-
lect N. head maps and use it as the initial hydraulic head
ensemble. By doing so, the dynamic head changes that may
occur in the aquifer are well represented by the initial ensem-
ble. The corresponding parameters’ realizations are sampled
with the geostatistical software, GCOSIM3D, using the same
variogram parameters of the reference conductivity field but
conditioned on two hard measurements as indicated by black
crosses in Fig. 1. The two data points capture some parts of
the high conductivity regions in the domain, and thus one
should expect a poor representation of the low conductivity
areas in the initial log(K) ensemble. This is a challenging
case for the filters especially when a sparse observational
network is considered. To ensure consistency between the
hydraulic heads and the conductivities at the beginning of
the assimilation, we conduct a spin-up of the whole state-
parameters ensemble for a 6-months period using perturbed
recharge time series for each ensemble member.

The filter estimates resulting from the different filters
are evaluated based on their average absolute forecast er-
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rors (AAE) and their average ensemble spread (AESP):

NN

_ ar—lar—1 € t

AAE=N'NSTS S | -2
i=1i=1

Ne N

_ ar—1lar—1 f.e afe

AESP= NN |al — 3]
j=li=1

(38)

, (39)

where z} is the reference “true” value of the variable (state or
parameter) at cell 7, ziel is the forecast ensemble value of the

variable, and ilf’e is the forecast ensemble mean at location i.
AAE measures the estimate-truth misfit and AESP measures
the ensemble spread, or the confidence in the estimated val-
ues (Hendricks Franssen and Kinzelbach, 2008). N is the to-
tal number of variables in the domain and equal to Ny or Np.
We further assess the accuracy of the estimates by plotting
the resulting field and variance maps of both hydraulic head
and conductivities.

5 Results and discussion
5.1 Sensitivity to the ensemble size

We first study the sensitivity of the three algorithms to the
ensemble size, Ne. In realistic groundwater applications, we
would be restricted to small ensembles due to computa-
tional limitations. Obtaining accurate state and parameter es-
timations with small ensembles is thus desirable. We carry
the experiments using three ensemble sizes, N. =50, 100,
and 300, and we fix the period of the observations to half
a day, the number of wells to nine (Fig. 3, left observation
network), and the measurement error standard deviation to
0.50m. We plot the resulting AAE time series of the state
and parameters in Fig. 4. As shown, the performance of the
joint EnKEF, dual EnKEF, joint EnKFgga, and dual EnKFoga
improves as the ensemble size increases, reaching a mean
AAE of 0.161, 0.160, and 0.156 m for N. =300, respec-
tively. The joint EnKF and the dual EnKF exhibit similar
behaviors, with a slight advantage for the dual EnKF. As
argued by Gharamti et al. (2014a), the dual EnKF is gen-
erally expected to produce more accurate results only when
large enough ensembles are used. We have tested the joint
and the dual EnKFs using 1000 members and found that the
dual EnKF is around 9% more accurate in terms of AAE.
The proposed dual EnKFpga provides the best estimates in
all tested scenarios. The joint EnKFpga outperforms the joint
and dual EnKFs, but is about 5 % less accurate than the dual
EnKFosa, especially after the first year of assimilation. On
average, with changing ensemble size, the dual EnKFoga
leads to about 7 % improvement compared with the stan-
dard joint and dual schemes. In terms of the conductivity
estimates, the proposed scheme produces more accurate esti-
mates for all three ensemble sizes. At the early assimilation
stage, the four schemes seem to provide similar results, but
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Table 3. Mean average ensemble spread (AESP) of the water head and the hydraulic conductivity for three different ensemble sizes. The
reported values are given for the joint EnKF, dual EnKEF, joint EnKFpga , and the proposed dual EnKFqga -

Hydraulic head Conductivity
Ne=50 Ne=100 N=300 Ne=50 Ne=100 N=300
Joint EnKF 0.123 0.144 0.200 1.076 1.014 0.951
Dual EnKF 0.126 0.145 0.201 1.075 1.016 0.951
Joint EnKFpga 0.125 0.145 0.201 1.026 0.977 0.908
Dual EnKFpga 0.117 0.141 0.183 1.039 0.907 0.879

Table 4. Filter inbreeding indicator: Ratio of the mean average absolute error (AAE) and mean average ensemble spread (AESP) of the water
head and the hydraulic conductivity for three different ensemble sizes. The reported values are given for the joint EnKF, dual EnKF, and the

proposed dual EnKFpga .
Hydraulic head Conductivity
Ne=50 N.=100 N=300 Ne=50 Ne=100 N=300
Joint EnKF 1.734 1.680 1.619 1.539 1.507 1.134
Dual EnKF 1.449 1.443 1.360 1.123 1.123 0.834
Dual EnKFpga 0.805 0.802 0.854 0.793 0.792 0.801
this eventually changes after 6 months beyond which the dual AAE, N. =50 AAE, N, =100 AAE, N, = 300

EnKFpga clearly outperforms the other schemes.

Furthermore, we examined the estimated uncertainties
about the forecast estimates by computing the average spread
of both the hydraulic head and conductivity ensembles. To
do this, we evaluated the time-averaged AESP of both vari-
ables and tabulated the results for the three ensemble sizes
in Table 3. For all schemes, increasing the ensemble would
increase the spread of the hydraulic head ensemble due to
the natural variability of the considered subsurface system.
In contrast, the AESP conductivity decreases as N, increases,
probably because of the persistence nature of its prescribed
dynamics. The dual EnKFpga has the smallest mean AESP
for all cases, suggesting more confidence in the head and
conductivity estimates.

One could also exploit the computed AAE and AESP to
assess whether the filters suffer from the inbreeding prob-
lem. Filter inbreeding occurs when the variance of the state
and parameters ensemble is increasingly reduced over time.
This may not only deteriorate the quality of the estimated fil-
ter error covariance matrices, but also wrongly suggests more
confidence in the forecast and strongly limits the filter update
by the incoming observation. One standard test for exam-
ining inbreeding is to compute the ratio of the AAE to the
AESP (Hendricks Franssen and Kinzelbach, 2008). In a well
designed assimilation system (that does not suffer from in-
breeding) such a ratio should be close to one; in other words,
the AAE and AESP are almost of the same order. Examin-
ing Fig. 4 and Table 4, the ratio of the AAE to the AESP for
the different tested ensemble sizes is, on-average, very close
to 1 for all three schemes, as reported in Table 4. This clearly
suggests that no filtering inbreeding issues are encountered in
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Figure 4. AAE time series of the hydraulic head and conductiv-
ity using the joint EnKF, dual EnKF, joint EnKFpga, and dual
EnKFqpga - Results are shown for three scenarios in which assim-
ilation of hydraulic head data are obtained from nine wells every
0.5 days. The three experimental scenarios use 50, 100, and 300 en-
semble members with 0.50m as the measurement error standard
deviation.

the present setup. This could be due to the imposed stochas-
tic model errors (as described in Sect. 4), which seems to
maintain enough spread in the hydraulic head and conduc-
tivity ensembles. Another method for tackling the inbreeding
problem is to combine the EnKF with the so-called stochastic
moments equations that govern the time evolution of condi-
tional expectations of the state and parameters as well as the
associated covariances, as suggested by Panzeri et al. (2013,
2015).
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In terms of computational cost, we note that our assimila-
tion results were obtained using a 2.30 GHz workstation and
four cores for parallel looping while integrating the ensem-
ble members. The joint EnKF is the least intensive requiring
70.61 s to perform a year-and-a-half assimilation run using
50 members. The dual EnKF and dual EnKFqpga, on the other
hand, require 75.37 and 77.04 s, respectively. The dual EnKF
is computationally more demanding than the joint EnKF be-
cause it includes an additional propagation step of the en-
semble members as discussed in Sect. 3.3. Likewise, the pro-
posed dual EnKFpga requires both an additional propagation
step and an update step of the state members. Its computa-
tional complexity is thus greater than the joint scheme and
roughly equivalent to that of the dual EnKF. Note that in the
current setup the cost of integrating the groundwater model
is not very significant as compared to the cost of the update
step. This is due to the simplified structure of the utilized hy-
drological model. This, however, should not hold for large-
scale hydrological applications.

5.2 Sensitivity to the frequency of observations

In the second set of experiments, we test the filters’ behavior
with different temporal frequency of observations; i.e., the
times at which head observations are assimilated. We imple-
ment the three filters with 100 members and use data from
nine observation wells perturbed with 0.10 m noise.

Figure 5 plots the mean AAE of the hydraulic conductivity
estimated using the three filters for the six different observa-
tions sampling frequencies. The dual and joint EnKFs lead
to comparable performances, but the latter performs slightly
better when data are assimilated more frequently, i.e., every 5
and 3 days. The performance of the proposed dual EnKFopgsa,
as seen from the plot, is rather good and its estimates are
more consistent with the data than those computed by the
other two filters. The best dual EnKFgga results are obtained
when assimilating data every 1, 3, and 5 days. The improve-
ments over the joint and the dual schemes decrease as obser-
vations are sampled less frequently in time. The reason for
this is related to the nature of the dual EnKFpgp algorithm,
which adds a one-step-ahead smoothing to the analyzed head
ensemble members before updating the forecast parameters
and the state samples. Therefore, the more data are available,
the greater the number of applied smoothing steps, and hence
the better the characterization of the state and parameters.
To illustrate, the smoothing step of the state ensemble en-
hances its statistics and eventually provides more consistent
state-parameters cross-correlations to better predict the data.
When assimilating hydraulic head data on a daily basis, the
proposed dual EnKFpga leads to about 24 % more accurate
conductivity estimates than the joint and dual EnKFs.

We have also compared the hydraulic head estimates for
different sampling frequencies of observations. Similar to the
parameters, the improvements of the dual EnKFosa algo-
rithm over the other schemes become significant when more
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Figure 5. Mean average absolute errors (AAE) of log-hydraulic
conductivity, log(K), obtained using the joint EnKF, dual EnKF,
and dual EnKFpga schemes. Results are shown for six different
scenarios in which assimilation of hydraulic head data are obtained
from nine wells every 1, 3, 5, 10, 15, and 30 days. All six experi-
mental scenarios use 100 ensemble members and 0.10 m as the mea-
surement error standard deviation.

data are assimilated over time. Overall, the benefits of the
proposed scheme seem to be more pronounced for the esti-
mation of the parameters, probably because the conductivity
values at all aquifer cells are indirectly updated using hy-
draulic head data, requiring more observations for efficient
estimation.

One effective way to evaluate the estimates of the state
is to examine the evolution of the reference heads and the
forecast ensemble members at various aquifer locations. For
this, we plot in Fig. 6 the true and the estimated time-series
change in hydraulic head at the assigned monitoring wells
as they result from the joint EnKF, dual EnKF, and the dual
EnKFgpga. We use 100 ensemble members and assume the
nine data points are available every 5 days. At MW 1, the per-
formance of the three filters is quite similar and they all suc-
cessfully reduce the uncertainties and recover the true evo-
lution of the hydraulic head at that location. We note that
between the 5th and the 9th month, the dual EnKF seems to
underestimate the reference values of the hydraulic head as
compared to the other two schemes. At MW?2 and MW3, the
ensemble spread of all three filters shrinks shortly after the
start of assimilation, but remains larger than those at MW 1.
The proposed dual EnKFpga well recovers the reference tra-
jectory at MW2 and MW3. The ensemble head values ob-
tained using the joint and the dual EnKFs at MW?2 are less
accurate. Furthermore, the joint and the dual EnKF ensemble
members tend to underestimate the reference hydraulic head
at MW3 over the first 6 months of assimilation. Beyond this,
there is a clear overestimation of the head values, especially
by the dual EnKF, up to the end of the first year.

5.3 Sensitivity to the number of observations

We further examine the robustness of the proposed dual
EnKFopsa against the joint and dual EnKFs to different num-
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Figure 6. Reference (dashed) and predicted (solid) hydraulic head evolution at monitoring wells MW1, MW2, and MW3. Results are
obtained using the joint EnKF and the dual EnKFpga schemes with 100 members, 5 days as sampling period, nine observation wells, and

0.10 m of measurement noise.
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Figure 7. Time series of AAE of hydraulic head (left panel) and conductivity (right panel) using the joint EnKF, dual EnKF, and dual
EnKFpga schemes. Results are shown for two scenarios in which assimilation of hydraulic head data are obtained from 15 and 25 wells
(uniformly distributed throughout the aquifer domain) every 5 days. The four experimental scenarios use 100 ensemble members and 0.10 m
as the measurement error standard deviation. The number of wells is denoted by p.

bers of observation wells inside the aquifer domain. We thus
compare our earlier estimates resulting from only nine wells,
5 days sampling period, and 0.10 m measurement error stan-
dard deviation with a new set of estimates resulting from
more dense observational networks with 15, 25, and 81 wells.
Figure 7 plots the time-series curves of the AAE as they re-
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sult from the four observational scenarios for hydraulic head
and conductivity. As shown, the behavior of the filters im-
proves as more data are assimilated. Clearly, the proposed
scheme provides the best estimates over the entire simulation
window. More precisely, and towards the end of assimilation,
the dual EnKFpga with only 9 data points exhibits fewer
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Figure 8. Spatial maps of the reference, initial and recovered en-
semble means of hydraulic conductivity using the joint EnKF, dual
EnKF, and dual EnKFpga schemes. Results are shown for a sce-
nario in which assimilation of hydraulic head data is obtained from
nine wells every 5 days. This experiment uses 100 ensemble mem-
bers and 0.10 m as the measurement error standard deviation.

forecast errors for conductivity than does the dual EnKF (and
joint EnKF) with 81 data points. Likewise when assimilating
head data from 15 and 25 wells, the proposed algorithm out-
performs the joint and dual EnKFs and yields more accurate
hydraulic head estimates by the end of the simulation win-
dow.

To further assess the performance of the filters we analyze
the spatial patterns of the estimated fields. To do so, we plot
and interpret the ensemble mean of the conductivity as it re-
sults from the three filters using nine observation wells. We
compare the estimated fields after 18 months (Fig. 8) with
the reference conductivity. As can be seen, the joint and the
dual EnKFs exhibit some overshooting in the southern (low
conductivity) and central regions of the domain. In contrast,
the dual EnKFpgp better delineates these regions and further
provides reasonable estimates of the low conductivity area in
the northwest part of the aquifer. In general and for all tested
schemes, the estimated conductivity field does not capture
very well the spatial variability of the reference field. This is
due to the large model errors imposed on the recharge and
pumping rates during the forecasts. This limits the efficiency
of the assimilation system, especially with the recovery of
small-scale conductivity structures, but also allows for more
straightforward assessment of the different techniques.
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Figure 9. Mean AAE of the hydraulic conductivity using the joint
EnKeF, dual EnKF, and dual EnKFpgp schemes. Results are shown
for 10 different scenarios in which assimilation of hydraulic head
data is performed using nine wells with measurement error standard
deviations of 0.05, 0.10, 0.15, 0.20, 0.25, 0.3, 0.5, 1, 2, and 3 m. The
four experimental scenarios use 100 ensemble members and 5 days
as sampling period. The x axis is displayed in log scale.

5.4 Sensitivity to measurement errors

In the last set of sensitivity experiments, we fix the number
of wells to nine, the sampling period to 5 days, and test with
different standard deviations of measurement error to perturb
the observations. We plot the results of 10 different obser-
vational error scenarios in Fig. 9 and compare the conduc-
tivity estimates obtained using the joint EnKF, dual EnKF,
and the dual EnKFpga. In general, the performance of the
filters appears to degrade as the observations are perturbed
with a larger degree of noise. All three filters exhibit similar
performances with large observational error; i.e., 1, 2, and
3m. This can be expected because larger observational er-
rors decrease the impact of data assimilation, and may reduce
the estimation process to a model prediction only. The plot
also suggests that the estimates of the dual EnKFpga with
0.30 m measurement error standard deviation are better than
those of the joint and the dual EnKFs with 0.10 m error. With
0.10 m measurement error standard deviation, the estimate of
the dual EnKFos4 is also approximately 12 % better.
Finally, we investigated the time evolution of the ensem-
ble variance of the conductivity estimates as they result from
the dual EnKF and the dual EnKFgga with 0.10 m measure-
ment noise. Spatially, the ensemble variance maps provide
insight about the uncertainty reduction due to data assimila-
tion. The initial map (Fig. 10, left panel) exhibits zero vari-
ance at the sampled two locations and increasing variance
away from these locations. The ensemble spread of conduc-
tivity field from the two filters (Fig. 10, right panels) after
6 and 18 months is quite small and comparable. The dual
EnKFopsa, however, tends to maintain a larger variance to-
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Figure 10. Left panel: ensemble variance map of the initial conduc-
tivity field. Right sub-panels: ensemble variance maps of estimated
conductivity after 6 and 18 month assimilation periods using the
dual EnKF and the proposed dual EnKFpga schemes. These re-
sults are obtained with 100 members, 5 days of sampling period,
nine observation wells, and 0.10 m as measurement noise.

wards the north edges than the dual EnKF, which in turn
helps increase the weight of the observations in this area.

5.5 Prediction capability assessment

To further assess the system performance in terms of pa-
rameters retrieval, we have integrated the model in predic-
tion mode (without assimilation) for an additional period of
18 months starting from the end of the assimilation period.
We plot in Fig. 11, using the final estimates of the conduc-
tivity as they result from the three filters (after 18 months),
the time evolution of the hydraulic head at the CW. The en-
semble size is set to 100, sampling period is 1 day, number of
data wells is 25, and measurement noise is 0.5 m. The refer-
ence head trajectory at the CW decreases from 17.5 to 16.9 m
in the first 2 years, and then slightly increases to 17.2 m in the
rest of the years. The forecast ensemble members of the joint
EnKEF at this CW fail to capture to reference trajectory of the
model. This is due to the large measurement noise imposed
on the head data. The dual EnKF performs slightly better and
predicts hydraulic head values that are closer to the reference
solution. The performance of the dual EnKFpga, as shown,
is the closest to the reference head trajectory and, moreover,
one of the forecast ensemble members successfully captures
the true head evolution. We further plot the absolute bias
of the hydraulic head during the prediction phase, i.e., after
1.5 years, using the three filtering schemes. As shown, the
bias in the joint EnKF reaches about 0.6 m after 3 years. On
the other hand, the dual EnKFqpga and, to a lesser extent, the
dual EnKEF, clearly lead to more accurate long-term forecasts
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Figure 11. Reference (dashed) and predicted (solid) hydraulic head
evolution at the control well: CW. Results are obtained using the
joint EnKF, dual EnKF, and the dual EnKFpgp schemes with
100 members, 1 day as sampling period, 25 observation wells, and
0.50 m of measurement noise. The last 18 months are purely based
on the forecast model prediction with no assimilation of data. In the
bottom-right subplot, the absolute bias of hydraulic head is eval-
uated for all schemes during the prediction phase only (i.e., after
1.5 years).

with smaller bias in the resulting hydraulic head estimates.
A similar tests was also conducted at other locations in the
aquifer, all resulting in similar conclusions.

Finally, in order to demonstrate that our results are sta-
tistically robust, 10 other test cases with different reference
conductivity and heterogeneous recharge maps were investi-
gated. In each of these cases, we sampled the reference fields
by varying the variogram parameters, such as variance, x and
y ranges, etc. The pumping rates and the initial head con-
figuration among the cases were also altered. For all 10 test
cases, we fixed the ensemble size to 100 and used data from
nine observation wells every 3 days. We set the measurement
error standard deviation to 0.10 m. We plot the resulting con-
ductivity estimates (mean AAE) from each case in Fig. 12.
As shown in the plot, the estimates of the three filters give
a statistical evidence that the proposed scheme always pro-
vides more accurate estimates than the joint/dual EnKF and
is more robust to changing dynamics and experimental se-
tups. Similar results were obtained for the hydraulic head es-
timates. Averaging over all test cases, the proposed scheme
provides about 17 % more accurate estimates in term of AAE
than the standard joint and dual EnKFs.
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Figure 12. Performance of the joint/dual EnKF and the proposed
dual EnKFpga schemes in 10 different test cases (TC1, TC2, etc.).
Mean AAE of the conductivity estimates are displayed. These re-
sults are obtained with 100 members, 3 days of sampling period,
nine observation wells, and 0.10 m as measurement noise.

6 Conclusions

We presented a one-step-ahead smoothing-based dual en-
semble Kalman filter (dual EnKFpgp ) for state-parameter es-
timation of subsurface groundwater flow models. The dual
EnKFog4 is derived using a Bayesian probabilistic formula-
tion combined with two classical stochastic sampling prop-
erties. It differs from the standard joint EnKF and dual EnKF
in the fact that the order of the time-update step of the state
(forecast by the model) and the measurement-update step
(correction by the incoming observations) is inverted. Com-
pared with the dual EnKeF, this introduces a smoothing step
to the state by future observations, which seems to provide
the model, at the time of forecasting, with better and rather
physically consistent state and parameters ensembles.

We tested the proposed dual EnKFpsa on a conceptual
groundwater flow model in which we estimated the hydraulic
head and spatially variable conductivity parameters. We con-
ducted a number of sensitivity experiments to evaluate the
accuracy and the robustness of the proposed scheme and
to compare its performance against those of the standard
joint and dual EnKFs. The experimental results suggest that
the dual EnKFpsa is more robust, successfully estimating
the hydraulic head and the conductivity field under differ-
ent modeling scenarios. Sensitivity analyses demonstrate that
when more observations are assimilated, the dual EnKFgga
becomes more effective and significantly outperforms the
standard joint and dual EnKF schemes. In addition, when
using a sparse observation network in the aquifer domain,
the accuracy of the dual EnKFpga estimates is better pre-
served, unlike the dual EnKF, which seems to be more sen-
sitive to the number of hydraulic wells. Moreover, the dual
EnKFpga results are shown to be more robust against obser-
vation noise. On average, the dual EnKFpga scheme leads
to around 10 % more accurate state and parameter solutions
than those resulting from the standard joint and dual EnKFs.

The proposed scheme is easy to implement and only re-
quires minimal modifications to a standard EnKF code. It is
further computationally feasible, requiring only a marginal
increase in the computational cost compared to the dual
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EnKF. This scheme should therefore be beneficial to the hy-
drology community given its consistency, high accuracy, and
robustness to changing modeling conditions. It could serve
as an efficient estimation tool for real-world problems, such
as groundwater, contaminant transport, and reservoir moni-
toring, in which the available data are often sparse and noisy.
Potential future research includes testing the dual EnKFpga
with realistic large-scale groundwater, contaminant transport
and reservoir monitoring problems. Furthermore, combining
the proposed state-parameter estimation scheme with other
iterative and hybrid ensemble approaches may be a promis-
ing direction for further improvements.

7 Data availability

Only simulated data were used in this study. Please contact
the corresponding or first author for the details about the al-
gorithms and the codes.
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Appendix A: Some useful properties of random
sampling

The following classical results of random sampling are ex-
tensively used in the derivation of the ensemble-based filter-
ing algorithms presented in this paper.

Property 1 (Hierarchical sampling; Robert, 2007). Assum-
ing that one can sample from p(x;) and p(x2|x1), then a
sample, Xz from p(x,) can be drawn as follows:

L. x}~ p(x1),
2. x5~ p(x2|x]).

Property 2 (conditional sampling; Hoffman and Ribak,
1991). Consider a Gaussian pdf, p(x, y), with Py, and P,
denoting the cross-covariance of x and y and the covariance
of y, respectively. Then a sample, x*, from p(x|y), can be
drawn as follows:

L. X, y)~pXy),
2. x*=X+P, Pl [y—7l.
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Appendix B: Sampling of the posterior transition pdf

We show here that the samples, iflm)(xn,], 0), given in
Eq. (32), are drawn from the a posteriori transition pdf,
p(Xp|Xy—1, 0, yn). Lets start by showing how Egs. (30)-
(31) are obtained. According to Eq. (15), on can show that
the members, §,Em>(x,,,1, 0), given by Eq. (30), are samples
from the transition pdf, p(X,|X,—1, 8) =Ny, (M,_1(Xn—1,
0), Qu—1). Furthermore, one may use Property 1 in Eq. (22),
which is recalled here,

p(Yn|Xn—179)=/ P (YnlXn) P XnlXp—1,0) dxy, (BD)

, ~ N,
Ny (ann,Rn)%{ér(lm)(x%I ‘9)}”;1

to obtain the members, ?S,m) (Xn—1,0), given by Eq. (31); such
members are, indeed, samples from p(y, |x,—1, 0).

Now, using the samples & (Xy_1, 6) of p(Xn|Xu_1,
0) = p(Xn|Xn—1, 0, Yo:n—1) and the samples ’y‘,ﬂ”’)(xn_l, 0) of
P(YnlXn—1,0) = p(¥ulXu—1, 0, Yo.u—1), One can apply Prop-
erty 2 to the joint pdf, p(X,, ¥n|Xn—1, 6, Yo.n—1), assuming
it is Gaussian, to show that the samples if,m) (X,—1, 0), given
in Eq. (32), are drawn from the a posteriori transition pdf,

P(Xn|Xn—1, 0, Yon) = p(Xn|Xn—1, 0, ¥n).
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