Articles | Volume 19, issue 1
https://doi.org/10.5194/hess-19-507-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-507-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Spatial evapotranspiration, rainfall and land use data in water accounting – Part 1: Review of the accuracy of the remote sensing data
UNESCO-IHE Institute for Water Education, Delft, the Netherlands
W. G. M. Bastiaanssen
Faculty of Civil Engineering and Geosciences, Water Management Department, Delft University of Technology, Delft, the Netherlands
UNESCO-IHE Institute for Water Education, Delft, the Netherlands
International Water Management Institute, Battaramulla, Sri Lanka
Related authors
Alexander Kaune, Micha Werner, Patricia López López, Erasmo Rodríguez, Poolad Karimi, and Charlotte de Fraiture
Hydrol. Earth Syst. Sci., 23, 2351–2368, https://doi.org/10.5194/hess-23-2351-2019, https://doi.org/10.5194/hess-23-2351-2019, 2019
Short summary
Short summary
The value of using longer periods of record of river discharge information from global precipitation datasets is assessed for irrigation area planning. Results show that for all river discharge simulations the benefit of choosing the irrigated area based on the 30 years of simulated data is higher compared to using only 5 years of observed discharge data. Hence, irrigated areas can be better planned using 30 years of river discharge information from global precipitation datasets.
This article is included in the Encyclopedia of Geosciences
P. Karimi, S. Pareeth, and C. D. Fraiture
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-5, 21–27, https://doi.org/10.5194/isprs-archives-XLII-5-21-2018, https://doi.org/10.5194/isprs-archives-XLII-5-21-2018, 2018
P. Karimi, W. G. M. Bastiaanssen, A. Sood, J. Hoogeveen, L. Peiser, E. Bastidas-Obando, and R. J. Dost
Hydrol. Earth Syst. Sci., 19, 533–550, https://doi.org/10.5194/hess-19-533-2015, https://doi.org/10.5194/hess-19-533-2015, 2015
Alexander Kaune, Micha Werner, Patricia López López, Erasmo Rodríguez, Poolad Karimi, and Charlotte de Fraiture
Hydrol. Earth Syst. Sci., 23, 2351–2368, https://doi.org/10.5194/hess-23-2351-2019, https://doi.org/10.5194/hess-23-2351-2019, 2019
Short summary
Short summary
The value of using longer periods of record of river discharge information from global precipitation datasets is assessed for irrigation area planning. Results show that for all river discharge simulations the benefit of choosing the irrigated area based on the 30 years of simulated data is higher compared to using only 5 years of observed discharge data. Hence, irrigated areas can be better planned using 30 years of river discharge information from global precipitation datasets.
This article is included in the Encyclopedia of Geosciences
P. Karimi, S. Pareeth, and C. D. Fraiture
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-5, 21–27, https://doi.org/10.5194/isprs-archives-XLII-5-21-2018, https://doi.org/10.5194/isprs-archives-XLII-5-21-2018, 2018
P. Karimi, W. G. M. Bastiaanssen, A. Sood, J. Hoogeveen, L. Peiser, E. Bastidas-Obando, and R. J. Dost
Hydrol. Earth Syst. Sci., 19, 533–550, https://doi.org/10.5194/hess-19-533-2015, https://doi.org/10.5194/hess-19-533-2015, 2015
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Remote Sensing and GIS
The development of an operational system for estimating irrigation water use reveals socio-political dynamics in Ukraine
An inter-comparison of approaches and frameworks to quantify irrigation from satellite data
The Wetland Intrinsic Potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators
Technical note: NASAaccess – a tool for access, reformatting, and visualization of remotely sensed earth observation and climate data
Monitoring the combined effects of drought and salinity stress on crops using remote sensing in the Netherlands
A framework for irrigation performance assessment using WaPOR data: the case of a sugarcane estate in Mozambique
Satellite observations reveal 13 years of reservoir filling strategies, operating rules, and hydrological alterations in the Upper Mekong River basin
Satellite soil moisture data assimilation for improved operational continental water balance prediction
Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach
Multi-constellation GNSS interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring
Can we trust remote sensing evapotranspiration products over Africa?
Influence of multi-decadal land use, irrigation practices and climate on riparian corridors across the Upper Missouri River headwaters basin, Montana
Developing GIS-based water poverty and rainwater harvesting suitability maps for domestic use in the Dead Sea region (West Bank, Palestine)
Estimating daily evapotranspiration based on a model of evaporative fraction (EF) for mixed pixels
Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data
A conceptual model of organochlorine fate from a combined analysis of spatial and mid- to long-term trends of surface and ground water contamination in tropical areas (FWI)
Spatio-temporal assessment of annual water balance models for upper Ganga Basin
Population growth, land use and land cover transformations, and water quality nexus in the Upper Ganga River basin
Wetlands inform how climate extremes influence surface water expansion and contraction
Participatory flood vulnerability assessment: a multi-criteria approach
Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas
Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images
The predictability of reported drought events and impacts in the Ebro Basin using six different remote sensing data sets
A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval
Effect of the revisit interval and temporal upscaling methods on the accuracy of remotely sensed evapotranspiration estimates
Downstream ecosystem responses to middle reach regulation of river discharge in the Heihe River Basin, China
Combining satellite observations to develop a global soil moisture product for near-real-time applications
Supplemental irrigation potential and impact on downstream flow of Karkheh River basin in Iran
Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes
Spatial evapotranspiration, rainfall and land use data in water accounting – Part 2: Reliability of water acounting results for policy decisions in the Awash Basin
Combining high-resolution satellite images and altimetry to estimate the volume of small lakes
Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications
A new stream and nested catchment framework for Australia
GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage
An original interpretation of the wet edge of the surface temperature–albedo space to estimate crop evapotranspiration (SEB-1S), and its validation over an irrigated area in northwestern Mexico
Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day–night MODIS observations
Regional effects of vegetation restoration on water yield across the Loess Plateau, China
Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks
Accounting for seasonality in a soil moisture change detection algorithm for ASAR Wide Swath time series
Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia
Extension of the Hapke bidirectional reflectance model to retrieve soil water content
Estimating river discharge from earth observation measurements of river surface hydraulic variables
Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops
Mapping surface soil moisture over the Gourma mesoscale site (Mali) by using ENVISAT ASAR data
Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation
Particular uncertainties encountered in using a pre-packaged SEBS model to derive evapotranspiration in a heterogeneous study area in South Africa
Effective roughness modelling as a tool for soil moisture retrieval from C- and L-band SAR
Combined use of FORMOSAT-2 images with a crop model for biomass and water monitoring of permanent grassland in Mediterranean region
Identification and mapping of soil erosion areas in the Blue Nile, Eastern Sudan using multispectral ASTER and MODIS satellite data and the SRTM elevation model
Jacopo Dari, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 28, 2651–2659, https://doi.org/10.5194/hess-28-2651-2024, https://doi.org/10.5194/hess-28-2651-2024, 2024
Short summary
Short summary
We have developed the first operational system (10 d latency) for estimating irrigation water use from accessible satellite and reanalysis data. As a proof of concept, the method has been implemented over an irrigated area fed by the Kakhovka Reservoir, in Ukraine, which collapsed on June 6, 2023. Estimates for the period 2015–2023 reveal that, as expected, the irrigation season of 2023 was characterized by the lowest amounts of irrigation.
This article is included in the Encyclopedia of Geosciences
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
This article is included in the Encyclopedia of Geosciences
Meghan Halabisky, Dan Miller, Anthony J. Stewart, Amy Yahnke, Daniel Lorigan, Tate Brasel, and Ludmila Monika Moskal
Hydrol. Earth Syst. Sci., 27, 3687–3699, https://doi.org/10.5194/hess-27-3687-2023, https://doi.org/10.5194/hess-27-3687-2023, 2023
Short summary
Short summary
Accurate wetland inventories are critical to monitor and protect wetlands. However, in many areas a large proportion of wetlands are unmapped because they are hard to detect in imagery. We developed a machine learning approach using spatially mapped variables of wetland indicators (i.e., vegetation, hydrology, soils), including novel multi-scale topographic indicators, to predict wetland probability. Our approach can be adapted to diverse landscapes to improve wetland detection.
This article is included in the Encyclopedia of Geosciences
Ibrahim Nourein Mohammed, Elkin Giovanni Romero Bustamante, John Dennis Bolten, and Everett James Nelson
Hydrol. Earth Syst. Sci., 27, 3621–3642, https://doi.org/10.5194/hess-27-3621-2023, https://doi.org/10.5194/hess-27-3621-2023, 2023
Short summary
Short summary
We present an open-source platform in response to the NASA Open-Source Science Initiative for accessing and presenting quantitative remote-sensing earth observation,and climate data. With our platform scientists, stakeholders and concerned citizens can engage in the exploration, modeling, and understanding of data. We envisioned this platform as lowering the technical barriers and simplifying the process of accessing and leveraging additional modeling frameworks for data.
This article is included in the Encyclopedia of Geosciences
Wen Wen, Joris Timmermans, Qi Chen, and Peter M. van Bodegom
Hydrol. Earth Syst. Sci., 26, 4537–4552, https://doi.org/10.5194/hess-26-4537-2022, https://doi.org/10.5194/hess-26-4537-2022, 2022
Short summary
Short summary
A novel approach for evaluating individual and combined impacts of drought and salinity in real-life settings is proposed using Sentinel-2. We found that crop responses to drought and salinity differ between growth stages. Compared to salinity, crop growth is most strongly affected by drought stress and is, in general, further exacerbated when co-occurring with salinity stress. Our approach facilitates a way to monitor crop health under multiple stresses with potential large-scale applications.
This article is included in the Encyclopedia of Geosciences
Abebe D. Chukalla, Marloes L. Mul, Pieter van der Zaag, Gerardo van Halsema, Evaristo Mubaya, Esperança Muchanga, Nadja den Besten, and Poolad Karimi
Hydrol. Earth Syst. Sci., 26, 2759–2778, https://doi.org/10.5194/hess-26-2759-2022, https://doi.org/10.5194/hess-26-2759-2022, 2022
Short summary
Short summary
New techniques to monitor the performance of irrigation schemes are vital to improve land and water productivity. We developed a framework and applied the remotely sensed FAO WaPOR dataset to assess uniformity, equity, adequacy, and land and water productivity at the Xinavane sugarcane estate, segmented by three irrigation methods. The developed performance assessment framework and the Python script in Jupyter Notebooks can aid in such irrigation performance analysis in other regions.
This article is included in the Encyclopedia of Geosciences
Dung Trung Vu, Thanh Duc Dang, Stefano Galelli, and Faisal Hossain
Hydrol. Earth Syst. Sci., 26, 2345–2364, https://doi.org/10.5194/hess-26-2345-2022, https://doi.org/10.5194/hess-26-2345-2022, 2022
Short summary
Short summary
The lack of data on how big dams are operated in the Upper Mekong, or Lancang, largely contributes to the ongoing controversy between China and the other Mekong countries. Here, we rely on satellite observations to reconstruct monthly storage time series for the 10 largest reservoirs in the Lancang. Our analysis shows how quickly reservoirs were filled in, what decisions were made during recent droughts, and how these decisions impacted downstream discharge.
This article is included in the Encyclopedia of Geosciences
Siyuan Tian, Luigi J. Renzullo, Robert C. Pipunic, Julien Lerat, Wendy Sharples, and Chantal Donnelly
Hydrol. Earth Syst. Sci., 25, 4567–4584, https://doi.org/10.5194/hess-25-4567-2021, https://doi.org/10.5194/hess-25-4567-2021, 2021
Short summary
Short summary
Accurate daily continental water balance predictions are valuable in monitoring and forecasting water availability and land surface conditions. A simple and robust method was developed for an operational water balance model to constrain model predictions temporally and spatially with satellite soil moisture observations. The improved soil water storage prediction can provide constraints in model forecasts that persist for several weeks.
This article is included in the Encyclopedia of Geosciences
Oliver Miguel López Valencia, Kasper Johansen, Bruno José Luis Aragón Solorio, Ting Li, Rasmus Houborg, Yoann Malbeteau, Samer AlMashharawi, Muhammad Umer Altaf, Essam Mohammed Fallatah, Hari Prasad Dasari, Ibrahim Hoteit, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 24, 5251–5277, https://doi.org/10.5194/hess-24-5251-2020, https://doi.org/10.5194/hess-24-5251-2020, 2020
Short summary
Short summary
The agricultural sector in Saudi Arabia has expanded rapidly over the last few decades, supported by non-renewable groundwater abstraction. This study describes a novel data–model fusion approach to compile national-scale groundwater abstractions and demonstrates its use over 5000 individual center-pivot fields. This method will allow both farmers and water management agencies to make informed water accounting decisions across multiple spatial and temporal scales.
This article is included in the Encyclopedia of Geosciences
Angel Martín, Sara Ibáñez, Carlos Baixauli, Sara Blanc, and Ana Belén Anquela
Hydrol. Earth Syst. Sci., 24, 3573–3582, https://doi.org/10.5194/hess-24-3573-2020, https://doi.org/10.5194/hess-24-3573-2020, 2020
Short summary
Short summary
In the case study presented in this paper, the GNSS-IR technique was used to monitor soil moisture during 66 d, from 3 December 2018 to 6 February 2019, in the installations of the Cajamar Centre of Experiences, Paiporta, Valencia, Spain. Two main objectives were pursued. The first was the extension of the technique to a multi-constellation solution using GPS, GLONASS, and GALILEO satellites, and the second was to test whether mass-market sensors could be used for this technique.
This article is included in the Encyclopedia of Geosciences
Imeshi Weerasinghe, Wim Bastiaanssen, Marloes Mul, Li Jia, and Ann van Griensven
Hydrol. Earth Syst. Sci., 24, 1565–1586, https://doi.org/10.5194/hess-24-1565-2020, https://doi.org/10.5194/hess-24-1565-2020, 2020
Short summary
Short summary
Water resource allocation to various sectors requires an understanding of the hydrological cycle, where evapotranspiration (ET) is a key component. Satellite-derived products estimate ET but are hard to evaluate at large scales. This work presents an alternate evaluation methodology to point-scale observations in Africa. The paper enables users to select an ET product based on their performance regarding selected criteria using a ranking system. The highest ranked products are WaPOR and CMRSET.
This article is included in the Encyclopedia of Geosciences
Melanie K. Vanderhoof, Jay R. Christensen, and Laurie C. Alexander
Hydrol. Earth Syst. Sci., 23, 4269–4292, https://doi.org/10.5194/hess-23-4269-2019, https://doi.org/10.5194/hess-23-4269-2019, 2019
Short summary
Short summary
We evaluated trends (1984–2016) in riparian wetness across the Upper Missouri River headwaters basin during peak irrigation months (June, July and August). We found that 8 of the 19 riparian reaches across the basin showed a significant drying trend from 1984 to 2016. The temporal drying trends persisted after removing variability attributable to climate. Instead, the drying trends co-occurred with a shift towards center-pivot irrigation across the basin.
This article is included in the Encyclopedia of Geosciences
Sameer M. Shadeed, Tariq G. Judeh, and Mohammad N. Almasri
Hydrol. Earth Syst. Sci., 23, 1581–1592, https://doi.org/10.5194/hess-23-1581-2019, https://doi.org/10.5194/hess-23-1581-2019, 2019
Short summary
Short summary
The paper aimed to develop DWP and DRWHS maps in the West Bank (Palestine) using an integrated GIS-based MCDA approach. The obtained maps will assist the decision makers to formulate proper strategies including the development of efficient and comprehensive water resource management strategies in trying to bridge the increasing water supply–demand gap for domestic purposes in the West Bank as a recognized area in the Dead Sea region which is facing a series water resource shortage challenges.
This article is included in the Encyclopedia of Geosciences
Fugen Li, Xiaozhou Xin, Zhiqing Peng, and Qinhuo Liu
Hydrol. Earth Syst. Sci., 23, 949–969, https://doi.org/10.5194/hess-23-949-2019, https://doi.org/10.5194/hess-23-949-2019, 2019
Short summary
Short summary
This study proposes a simple but efficient model for estimating daily evapotranspiration considering heterogeneity of mixed pixels. In order to do so, an equation to calculate evapotranspiration fraction (EF) of mixed pixels was derived based on two key hypotheses. The model is easy to apply and is independent and easy to be embedded in the traditional remote sensing algorithms of heat fluxes to get daily ET.
This article is included in the Encyclopedia of Geosciences
Felix Zaussinger, Wouter Dorigo, Alexander Gruber, Angelica Tarpanelli, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 897–923, https://doi.org/10.5194/hess-23-897-2019, https://doi.org/10.5194/hess-23-897-2019, 2019
Short summary
Short summary
About 70 % of global freshwater is consumed by irrigation. Yet, policy-relevant estimates of irrigation water use (IWU) are virtually lacking at regional to global scales. To bridge this gap, we develop a method for quantifying IWU from a combination of state-of-the-art remotely sensed and modeled soil moisture products and apply it over the United States for the period 2013–2016. Overall, our estimates agree well with reference data on irrigated area and irrigation water withdrawals.
This article is included in the Encyclopedia of Geosciences
Philippe Cattan, Jean-Baptiste Charlier, Florence Clostre, Philippe Letourmy, Luc Arnaud, Julie Gresser, and Magalie Jannoyer
Hydrol. Earth Syst. Sci., 23, 691–709, https://doi.org/10.5194/hess-23-691-2019, https://doi.org/10.5194/hess-23-691-2019, 2019
Short summary
Short summary
We investigated the management of long-term environmental pollution by organochlorine pesticides. We selected the case of chlordecone on the island of Martinique. We propose a conceptual model of organochlorine fate accounting for physical conditions relative to soils and geology. This model explains pollution variability in water but also the dynamics of pollution trends. It helps to identify risky areas where pollution will last for a long time and where more attention is needed.
This article is included in the Encyclopedia of Geosciences
Anoop Kumar Shukla, Shray Pathak, Lalit Pal, Chandra Shekhar Prasad Ojha, Ana Mijic, and Rahul Dev Garg
Hydrol. Earth Syst. Sci., 22, 5357–5371, https://doi.org/10.5194/hess-22-5357-2018, https://doi.org/10.5194/hess-22-5357-2018, 2018
Short summary
Short summary
In this study, we carried out a comparative evaluation of water yield using two approaches, the Lumped Zhang model and the pixel-based approach. Even in pixel-level computations, experiments are made with existing models of some of the involved parameters. The study indicates not only the suitability of pixel-based computations but also clarifies the suitable model of some of the parameters to be used with pixel-based computations to obtain better results.
This article is included in the Encyclopedia of Geosciences
Anoop Kumar Shukla, Chandra Shekhar Prasad Ojha, Ana Mijic, Wouter Buytaert, Shray Pathak, Rahul Dev Garg, and Satyavati Shukla
Hydrol. Earth Syst. Sci., 22, 4745–4770, https://doi.org/10.5194/hess-22-4745-2018, https://doi.org/10.5194/hess-22-4745-2018, 2018
Short summary
Short summary
Geospatial technologies and OIP are promising tools to study the effect of demographic changes and LULC transformations on the spatiotemporal variations in the water quality (WQ) across a large river basin. Therefore, this study could help to assess and solve local and regional WQ-related problems over a river basin. It may help the policy makers and planners to understand the status of water pollution so that suitable strategies could be planned for sustainable development in a river basin.
This article is included in the Encyclopedia of Geosciences
Melanie K. Vanderhoof, Charles R. Lane, Michael G. McManus, Laurie C. Alexander, and Jay R. Christensen
Hydrol. Earth Syst. Sci., 22, 1851–1873, https://doi.org/10.5194/hess-22-1851-2018, https://doi.org/10.5194/hess-22-1851-2018, 2018
Short summary
Short summary
Effective monitoring and prediction of flood and drought events requires an improved understanding of surface water dynamics. We examined how the relationship between surface water extent, as mapped using Landsat imagery, and climate, is a function of landscape characteristics, using the Prairie Pothole Region and adjacent Northern Prairie in the United States as our study area. We found that at a landscape scale wetlands play a key role in informing how climate extremes influence surface water.
This article is included in the Encyclopedia of Geosciences
Mariana Madruga de Brito, Mariele Evers, and Adrian Delos Santos Almoradie
Hydrol. Earth Syst. Sci., 22, 373–390, https://doi.org/10.5194/hess-22-373-2018, https://doi.org/10.5194/hess-22-373-2018, 2018
Short summary
Short summary
This paper sheds light on the integration of interdisciplinary knowledge in the assessment of flood vulnerability in Taquari-Antas river basin, Brazil. It shows how stakeholder participation is crucial for increasing not only the acceptance of model results but also its quality.
This article is included in the Encyclopedia of Geosciences
Nicolas Avisse, Amaury Tilmant, Marc François Müller, and Hua Zhang
Hydrol. Earth Syst. Sci., 21, 6445–6459, https://doi.org/10.5194/hess-21-6445-2017, https://doi.org/10.5194/hess-21-6445-2017, 2017
Short summary
Short summary
Information on small reservoir storage is crucial for water management in a river basin. However, it is most of the time not freely available in remote, ungauged, or conflict-torn areas. We propose a novel approach using satellite imagery information only to quantitatively estimate storage variations in such inaccessible areas. We apply the method to southern Syria, where ground monitoring is impeded by the ongoing civil war, and validate it against in situ measurements in neighbouring Jordan.
This article is included in the Encyclopedia of Geosciences
Rangaswamy Madugundu, Khalid A. Al-Gaadi, ElKamil Tola, Abdalhaleem A. Hassaballa, and Virupakshagouda C. Patil
Hydrol. Earth Syst. Sci., 21, 6135–6151, https://doi.org/10.5194/hess-21-6135-2017, https://doi.org/10.5194/hess-21-6135-2017, 2017
Short summary
Short summary
In view of the pressing need to assess the productivity of agricultural fields in Saudi Arabia, this study was undertaken in an attempt to apply the METRIC model with Landsat-8 imagery for the determination of spatial and temporal variability in ET aiming at optimizing the quantification of crop water requirement and the formulation of efficient irrigation schedules. This paper will be of great interest to readers in the areas of agriculture (in general), water management and remote sensing.
This article is included in the Encyclopedia of Geosciences
Clara Linés, Micha Werner, and Wim Bastiaanssen
Hydrol. Earth Syst. Sci., 21, 4747–4765, https://doi.org/10.5194/hess-21-4747-2017, https://doi.org/10.5194/hess-21-4747-2017, 2017
Short summary
Short summary
This paper aims at identifying Earth observation data sets that can help river basin managers detect drought conditions that may lead to impacts early enough to take mitigation actions. Six remote sensing products were assessed using two types of impact data as a benchmark: media records from a regional newspaper and crop yields. Precipitation, vegetation condition and evapotranspiration products showed the best results, offering early signs of impacts up to 6 months before the reported damages.
This article is included in the Encyclopedia of Geosciences
Zeinab Takbiri, Ardeshir M. Ebtehaj, and Efi Foufoula-Georgiou
Hydrol. Earth Syst. Sci., 21, 2685–2700, https://doi.org/10.5194/hess-21-2685-2017, https://doi.org/10.5194/hess-21-2685-2017, 2017
Short summary
Short summary
We present a multi-sensor retrieval algorithm for flood extent mapping at high spatial and temporal resolution. While visible bands provide flood mapping at fine spatial resolution, their capability is very limited in a cloudy sky. Passive microwaves can penetrate through clouds but cannot detect small-scale flooded surfaces due to their coarse resolution. The proposed method takes advantage of these two observations to retrieve sub-pixel flooded surfaces in all-sky conditions.
This article is included in the Encyclopedia of Geosciences
Joseph G. Alfieri, Martha C. Anderson, William P. Kustas, and Carmelo Cammalleri
Hydrol. Earth Syst. Sci., 21, 83–98, https://doi.org/10.5194/hess-21-83-2017, https://doi.org/10.5194/hess-21-83-2017, 2017
Yan Zhao, Yongping Wei, Shoubo Li, and Bingfang Wu
Hydrol. Earth Syst. Sci., 20, 4469–4481, https://doi.org/10.5194/hess-20-4469-2016, https://doi.org/10.5194/hess-20-4469-2016, 2016
Short summary
Short summary
The paper finds that combined inflow from both current and previous years' discharge determines water availability in downstream regions. Temperature determines broad vegetation distribution while hydrological variables show significant effects only in near-river-channel regions. Agricultural development curtailed further vegetation recovery in the studied area. Enhancing current water allocation schemes and regulating regional agricultural activities are required for future restoration.
This article is included in the Encyclopedia of Geosciences
Markus Enenkel, Christoph Reimer, Wouter Dorigo, Wolfgang Wagner, Isabella Pfeil, Robert Parinussa, and Richard De Jeu
Hydrol. Earth Syst. Sci., 20, 4191–4208, https://doi.org/10.5194/hess-20-4191-2016, https://doi.org/10.5194/hess-20-4191-2016, 2016
Short summary
Short summary
Soil moisture is a crucial variable for a variety of applications, ranging from weather forecasting and agricultural production to the monitoring of floods and droughts. Satellite observations are particularly important in regions where no in situ measurements are available. Our study presents a method to integrate global near-real-time satellite observations from different sensors into one harmonized, daily data set. A first validation shows good results on a global scale.
This article is included in the Encyclopedia of Geosciences
Behzad Hessari, Adriana Bruggeman, Ali Mohammad Akhoond-Ali, Theib Oweis, and Fariborz Abbasi
Hydrol. Earth Syst. Sci., 20, 1903–1910, https://doi.org/10.5194/hess-20-1903-2016, https://doi.org/10.5194/hess-20-1903-2016, 2016
Short summary
Short summary
Yields of rainfed winter crops such as wheat can be substantially improved with limited supplemental irrigation. The upper Karkheh River basin in Iran has 15 840 km2 of rainfed crops. A GIS method was designed to identify suitable areas for irrigation and a routine was developed to allocate water uses and route the flows downstream. A maximum of 13 % of the rainfed cropland could be irrigated under normal flow, 9 % if environmental flow requirements are considered and 6 % under drought conditions.
This article is included in the Encyclopedia of Geosciences
Ting Xia, William P. Kustas, Martha C. Anderson, Joseph G. Alfieri, Feng Gao, Lynn McKee, John H. Prueger, Hatim M. E. Geli, Christopher M. U. Neale, Luis Sanchez, Maria Mar Alsina, and Zhongjing Wang
Hydrol. Earth Syst. Sci., 20, 1523–1545, https://doi.org/10.5194/hess-20-1523-2016, https://doi.org/10.5194/hess-20-1523-2016, 2016
Short summary
Short summary
This paper describes a model inter-comparison and validation study conducted using sub-meter resolution thermal data from an aircraft. The model inter-comparison is between a physically based model and a very simple empirical model. The strengths and weaknesses of both modeling approaches for high-resolution mapping of water use in vineyards is described. The findings provide significant insight into the utility of complex versus simple models for precise water resources management.
This article is included in the Encyclopedia of Geosciences
P. Karimi, W. G. M. Bastiaanssen, A. Sood, J. Hoogeveen, L. Peiser, E. Bastidas-Obando, and R. J. Dost
Hydrol. Earth Syst. Sci., 19, 533–550, https://doi.org/10.5194/hess-19-533-2015, https://doi.org/10.5194/hess-19-533-2015, 2015
F. Baup, F. Frappart, and J. Maubant
Hydrol. Earth Syst. Sci., 18, 2007–2020, https://doi.org/10.5194/hess-18-2007-2014, https://doi.org/10.5194/hess-18-2007-2014, 2014
C. Cammalleri, M. C. Anderson, and W. P. Kustas
Hydrol. Earth Syst. Sci., 18, 1885–1894, https://doi.org/10.5194/hess-18-1885-2014, https://doi.org/10.5194/hess-18-1885-2014, 2014
J. L. Stein, M. F. Hutchinson, and J. A. Stein
Hydrol. Earth Syst. Sci., 18, 1917–1933, https://doi.org/10.5194/hess-18-1917-2014, https://doi.org/10.5194/hess-18-1917-2014, 2014
L. Longuevergne, C. R. Wilson, B. R. Scanlon, and J. F. Crétaux
Hydrol. Earth Syst. Sci., 17, 4817–4830, https://doi.org/10.5194/hess-17-4817-2013, https://doi.org/10.5194/hess-17-4817-2013, 2013
O. Merlin
Hydrol. Earth Syst. Sci., 17, 3623–3637, https://doi.org/10.5194/hess-17-3623-2013, https://doi.org/10.5194/hess-17-3623-2013, 2013
R. Guzinski, M. C. Anderson, W. P. Kustas, H. Nieto, and I. Sandholt
Hydrol. Earth Syst. Sci., 17, 2809–2825, https://doi.org/10.5194/hess-17-2809-2013, https://doi.org/10.5194/hess-17-2809-2013, 2013
X. M. Feng, G. Sun, B. J. Fu, C. H. Su, Y. Liu, and H. Lamparski
Hydrol. Earth Syst. Sci., 16, 2617–2628, https://doi.org/10.5194/hess-16-2617-2012, https://doi.org/10.5194/hess-16-2617-2012, 2012
N. Baghdadi, R. Cresson, M. El Hajj, R. Ludwig, and I. La Jeunesse
Hydrol. Earth Syst. Sci., 16, 1607–1621, https://doi.org/10.5194/hess-16-1607-2012, https://doi.org/10.5194/hess-16-1607-2012, 2012
J. Van doninck, J. Peters, H. Lievens, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 16, 773–786, https://doi.org/10.5194/hess-16-773-2012, https://doi.org/10.5194/hess-16-773-2012, 2012
R. R. E. Vernimmen, A. Hooijer, Mamenun, E. Aldrian, and A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 16, 133–146, https://doi.org/10.5194/hess-16-133-2012, https://doi.org/10.5194/hess-16-133-2012, 2012
G.-J. Yang, C.-J. Zhao, W.-J. Huang, and J.-H. Wang
Hydrol. Earth Syst. Sci., 15, 2317–2326, https://doi.org/10.5194/hess-15-2317-2011, https://doi.org/10.5194/hess-15-2317-2011, 2011
J. Negrel, P. Kosuth, and N. Bercher
Hydrol. Earth Syst. Sci., 15, 2049–2058, https://doi.org/10.5194/hess-15-2049-2011, https://doi.org/10.5194/hess-15-2049-2011, 2011
R. Fieuzal, B. Duchemin, L. Jarlan, M. Zribi, F. Baup, O. Merlin, O. Hagolle, and J. Garatuza-Payan
Hydrol. Earth Syst. Sci., 15, 1117–1129, https://doi.org/10.5194/hess-15-1117-2011, https://doi.org/10.5194/hess-15-1117-2011, 2011
F. Baup, E. Mougin, P. de Rosnay, P. Hiernaux, F. Frappart, P. L. Frison, M. Zribi, and J. Viarre
Hydrol. Earth Syst. Sci., 15, 603–616, https://doi.org/10.5194/hess-15-603-2011, https://doi.org/10.5194/hess-15-603-2011, 2011
M. Zribi, A. Chahbi, M. Shabou, Z. Lili-Chabaane, B. Duchemin, N. Baghdadi, R. Amri, and A. Chehbouni
Hydrol. Earth Syst. Sci., 15, 345–358, https://doi.org/10.5194/hess-15-345-2011, https://doi.org/10.5194/hess-15-345-2011, 2011
L. A. Gibson, Z. Münch, and J. Engelbrecht
Hydrol. Earth Syst. Sci., 15, 295–310, https://doi.org/10.5194/hess-15-295-2011, https://doi.org/10.5194/hess-15-295-2011, 2011
H. Lievens, N. E. C. Verhoest, E. De Keyser, H. Vernieuwe, P. Matgen, J. Álvarez-Mozos, and B. De Baets
Hydrol. Earth Syst. Sci., 15, 151–162, https://doi.org/10.5194/hess-15-151-2011, https://doi.org/10.5194/hess-15-151-2011, 2011
D. Courault, R. Hadria, F. Ruget, A. Olioso, B. Duchemin, O. Hagolle, and G. Dedieu
Hydrol. Earth Syst. Sci., 14, 1731–1744, https://doi.org/10.5194/hess-14-1731-2010, https://doi.org/10.5194/hess-14-1731-2010, 2010
M. El Haj Tahir, A. Kääb, and C.-Y. Xu
Hydrol. Earth Syst. Sci., 14, 1167–1178, https://doi.org/10.5194/hess-14-1167-2010, https://doi.org/10.5194/hess-14-1167-2010, 2010
Cited articles
ABS – Australian Bureau of Statistics: Water Account, Australia – 2000–01, Canberra, 2004.
Abd El-Kawy, O. R., Rød, J. K., Ismail, H. A., and Suliman, A. S.: Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data, Appl. Geogr., 31, 483–494, https://doi.org/10.1016/j.apgeog.2010.10.012, 2011.
Aguirre-Gutiérrez, J., Seijmonsbergen, A. C., and Duivenvoorden, J. F.: Optimizing land cover classification accuracy for change detection, a combined pixel-based and object-based approach in a mountainous area in Mexico, Appl. Geogr., 34, 29–37, https://doi.org/10.1016/j.apgeog.2011.10.010, 2012.
Allen, R. G., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, Issues 56–57, Food and Agriculture Organization of the United Nations, Rome, Italy, 1998.
Allen, R. G., Tasumi, M., Morse, A., and Trezza, R.: A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning, Irrig. Drain. Syst., 19, 251–268, https://doi.org/10.1007/s10795-005-5187-z, 2005.
Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I., and Robison, C. W.: Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) – Applications, J. Irrig. Drain. Eng., 133, 395–406, 2007.
Allen, R. G., Irmak, A., Trezza, R., Hendrickx, J. M. H., Bastiaanssen, W. and Kjaersgaard, J.: Satellite-based ET estimation in agriculture using SEBAL and METRIC, Hydrol. Process., 25, 4011–4027, https://doi.org/10.1002/hyp.8408, 2011.
Almazroui, M.: Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009, Atmos. Res., 99, 400–414, 2011.
Almazroui, M., Islam, M. N., Jones, P. D., Athar, H., and Rahman, M. A.: Recent climate change in the Arabian Peninsula: Seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009, Atmos. Res., 111, 29–45, https://doi.org/10.1016/j.atmosres.2012.02.013, 2012.
Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski, J. R.: A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing, Remote Sens. Environ., 60, 195–216, https://doi.org/10.1016/S0034-4257(96)00215-5, 1997.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
Anderson, M. C., Kustas, W. P., Alfieri, J. G., Gao, F., Hain, C., Prueger, J. H., Evett, S., Colaizzi, P., Howell, T., and Chávez, J. L.: Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign, Adv. Water Resour., 50, 162–177, https://doi.org/10.1016/j.advwatres.2012.06.005, 2012.
Andre, J. C., Goutorbe, J. P., and Penier, A.: HAPEX-MOBILHY, a hydrologic atmospheric pilot experiment for the study of water budget and evaporation flux at the climatic scales, B. Am. Meteorol. Soc., 67, 138–144, 1986.
Asadullah, A., McIntyre, N. E. I. L., and Kigobe, M.: Evaluation of five satellite products for estimation of rainfall over Uganda, Hydrolog. Sci. J., 53, 1137–1150, 2008.
Asadullah, A., Mcintyre, N., and Kigobe, M. A. X.: Evaluation of five satellite products for estimation of rainfall over Uganda/Evaluation de cinq produits satellitaires pour l'estimation des précipitations en Ouganda Evaluation of five satellite products for estimation of rainfall over Uganda, Hydrolog. Sci. J., 53, 1137–1150, 2010.
Austin, P. M.: Relation between measured radar reflectivity and surface rainfall, Mon. Weather Rev., 115, 1053–1070, 1987.
Awulachew, S. B., Molden, D., Smakhtin, V., and Peden, D.: The Nile River Basin: Water, Agriculture, Governance and Livelihoods, Routledge, Oxon, UK, 2013.
Bach, M., Breuer, L., Frede, H. G., Huisman, J. A., Otte, A., and Waldhardt, R.: Accuracy and congruency of three different digital land-use maps, Landsc. Urban Plan., 78, 289–299, https://doi.org/10.1016/j.landurbplan.2005.09.004, 2006.
Barrett, E. C.: Precipitation monitoring by satellites. Remote sensing for studies of global environmental changes, ISPRA Courses, RS/88/10, Commission of European communities, Joint Research Center, Ispra Establishment, Ispra, Italy, 1988.
Barrett, E. C. and Beaumont, M. J.: Satellite rainfall monitoring: An overview, Remote Sens. Rev., 11, 23–48, https://doi.org/10.1080/02757259409532257, 1994.
Bastiaanssen, W. G. M.: Remote sensing in water resources management: the state of the art, International Water Management Institute (IWMI), Colombo, Sri Lanka, 1998.
Bastiaanssen, W. G. M. and Chandrapala, L.: Water balance variability across Sri Lanka for assessing agricultural and environmental water use, Agric. Water Manage., 58, 171–192, 2003.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., Holtslag, A. A. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., and van der Wal, T.: A remote sensing surface energy balance algorithm for land (SEBAL), 1. Formulation, J. Hydrol., 212–213, 198–212, 1998.
Bastiaanssen, W. G. M., Molden, D. J., and Makin, I. W.: Remote sensing for irrigated agriculture: examples from research and possible applications, Agric. Water Manage., 46, 137–155, https://doi.org/10.1016/S0378-3774(00)00080-9, 2000.
Bastiaanssen, W. G. M., Ahmad, M.-D., and Chemin, Y.: Satellite surveillance of evaporative depletion across the Indus Basin, Water Resour. Res., 38, 9-1–9-9, https://doi.org/10.1029/2001WR000386, 2002.
Bastiaanssen, W. G. M., Miltenburg, I., Evans, R., Molloy, R., Bastiaanssen, F. J. M., and van der Pol, E.: An operational satellite-based irrigation monitoring and scheduling tool for saving water in irrigation, in Irrigation and Drainage Conference, Swan Hill, Vic, Australia, 2009.
Bastiaanssen, W. G. M., Cheema, M. J. M., Immerzeel, W. W., Miltenburg, I., and Pelgrum, H.: The surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model, Water Resour. Res., 48, W11512, https://doi.org/10.1029/2011WR010482, 2012.
Batra, N., Islam, S., Venturini, V., Bisht, G., and Jiang, L.: Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains, Remote Sens. Environ., 103, 1–15, https://doi.org/10.1016/j.rse.2006.02.019, 2006.
Bicheron, P., Defourny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M., Bontemps, S., Leroy, M., Achard, F., Herold, M., Ranera, F., and Arino, O.: GLOBCOVER Products Report Description and Products Description and Validation Report, MEDIAS, France, 2008.
Bitew, M. M. and Gebremichael, M.: Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model, Water Resour. Res., 47, W06526, https://doi.org/10.1029/2010WR009917, 2011.
Blanco, P. D., Colditz, R. R., López Saldaña, G., Hardtke, L. A., Llamas, R. M., Mari, N. A., Fischer, A., Caride, C., Aceñolaza, P. G., del Valle, H. F., Lillo-Saavedra, M., Coronato, F., Opazo, S. A., Morelli, F., Anaya, J. A., Sione, W. F., Zamboni, P., and Arroyo, V. B.: A land cover map of Latin America and the Caribbean in the framework of the SERENA project, Remote Sens. Environ., 132, 13–31, https://doi.org/10.1016/j.rse.2012.12.025, 2013.
Bolle, H. J., Eckardt, M., Koslowsky, D., Maselli, F., Melia-Miralles, J., Menenti, M., Olesen, F.-S., Petkov, L., Rasool, I., and van deGriend, A.: Mediterranean land-surface processes assessed from space, Series: Regional Climate Studies, XXVIII, Springer, Berlin, 760 pp., 2006.
Bosch, J. M. and Hewlett, J. D.: A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration, J. Hydrol., 55, 3–23, https://doi.org/10.1016/0022-1694(82)90117-2, 1982.
Brutsaert, W.: Evaporation into the Atmosphere, Theory, History and Applications, D. Reidel Publishing Company, Dordrecht, the Netherlands, 302 pp., 1982.
Büttner, G., Feranec, J., and Jaffrain, G.: The thematic accuracy of Corine land cover 2000, European Environment Agency, Copenhagen, 2006.
Campbell, G. S. and Norman, J. M.: An introduction to environmental biophysics, Springer, New York, 1998.
Cassidy, L., Southworth, J., Gibbes, C., and Binford, M.: Beyond classifications: Combining continuous and discrete approaches to better understand land-cover change within the lower Mekong River region, Appl. Geogr., 39, 26–45, https://doi.org/10.1016/j.apgeog.2012.11.021, 2013.
Chartres, C. and Varma, S.: Out of Water: From Abundance to Scarcity and How to Solve the World's Water Problems, FT Press, New Jersey, 2010.
Chávez, J. L., Neale, C. M. U., Prueger, J. H., and Kustas, W. P.: Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values, Irrig. Sci., 27, 67–81, https://doi.org/10.1007/s00271-008-0122-3, 2008.
Cheema, M. J. M. and Bastiaanssen, W. G. M.: Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis, Agric. Water Manage., 97, 1541–1552, 2010.
Cheema, M. J. M. and Bastiaanssen, W. G. M.: Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin, Int. J. Remote Sens., 33, 2603–2627, 2012.
Chehbouni, A., Kerr, Y. H., Watts, C., Hartogensis, O., Goodrich, D., Scott, R., Schieldge, J., Lee, K., Shuttleworth, W. J., Dedieu, G., and De Bruin, H. A. R.: Estimation of area-average sensible heat flux using a large-aperture scintillometer during the Semi-Arid Land-Surface-Atmosphere (SALSA) Experiment, Water Resour. Res., 35, 2505–2511, https://doi.org/10.1029/1999WR900111, 1999.
Chen, C., Yu, Z., Li, L., and Yang, C.: Adaptability Evaluation of TRMM Satellite Rainfall and Its Application in the Dongjiang River Basin, Proced. Environ. Sci., 10, 396–402, https://doi.org/10.1016/j.proenv.2011.09.065, 2011.
Choudhury, B. J.: Synergism of optical and microwave observations for land surface studies, in: Passive microwave remote sensing of land–atmosphere interactions, microwave remote sensing of land-atmosphere interactions, edited by: Choudhury, B. J., Kerr, Y. H., Njoku, E. G., and Pampaloni, P., VSP BV, Utrecht, the Netherlands, 155–191, 1995.
Cihlar, J.: Land cover mapping of large areas from satellites?: Status and research priorities, Int. J. Remote Sens., 21, 1093–1114, 2000.
Cingolani, A.: Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land-cover units, Remote Sens. Environ., 92, 84–97, https://doi.org/10.1016/j.rse.2004.05.008, 2004.
Clark, M. L., Aide, T. M., Grau, H. R. and Riner, G.: A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America, Remote Sens. Environ., 114, 2816–2832, https://doi.org/10.1016/j.rse.2010.07.001, 2010.
Cleugh, H. A., Leuning, R., Mu, Q., and Running, S. W.: Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ., 106, 285–304, https://doi.org/10.1016/j.rse.2006.07.007, 2007.
Colditz, R. R., López Saldaña, G., Maeda, P., Espinoza, J. A., Tovar, C. M., Hernández, A. V., Benítez, C. Z., Cruz López, I., and Ressl, R.: Generation and analysis of the 2005 land cover map for Mexico using 250m MODIS data, Remote Sens. Environ., 123, 541–552, https://doi.org/10.1016/j.rse.2012.04.021, 2012.
Collischonn, B., Collischonn, W., and Tucci, C. E. M.: Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates, J. Hydrol., 360, 207–216, https://doi.org/10.1016/j.jhydrol.2008.07.032, 2008.
Congalton, R. G.: A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data, Remote Sens. Environ., 46, 35–46, 1991.
Courault, D., Seguin, B., and Olioso, A.: Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches, Irrig. Drain. Syst., 19, 223–249, https://doi.org/10.1007/s10795-005-5186-0, 2005.
Cracknell, A. P. and Hayes, L.: Introduction to remote sensing, Taylor & Francis, London, 1991.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S. J., and Ropelewski, C. F.: Validation of satellite rainfall products over East Africa's complex topography, Int. J. Remote Sens., 28, 1503–1526, https://doi.org/10.1080/01431160600954688, 2007.
Dinku, T., Connor, S., and Ceccato, P.: Nile River Basin, in: Nile River Basin, edited by: Melesse, A. M., Springer Netherlands, Dordrecht, 109–127, 2011.
Duan, Z. and Bastiaanssen, W. G. M.: First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure, Remote Sens. Environ., 131, 1–13, https://doi.org/10.1016/j.rse.2012.12.002, 2013.
Dugdale, G. and Milford, J. R.: Rainfall estimation over the Sahel using Meteosat thermal infrared data, in: ISLSCP Parameterization of Land-Surface Characteristics: use of Satellite Data in Climate Studies, edited by: Rolfe, E. and Battrick, B., ESA, Paris, 315–319, 1986.
Dunne, S. C., Entekhabi, D., and Njoku, E.: Impact of multiresolution active and passive microwave measurements on soil moisture estimation using the Ensemble Kalman Smoother, IEEE T. Geosci. Remote, 45, 1016–1028, 2007.
Engman, E. T. and Gurney, R. J.: Remote sensing in hydrology, Chapman and Hall Ltd., London, 1991.
Estes, A. B., Kuemmerle, T., Kushnir, H., Radeloff, V. C., and Shugart, H. H.: Land-cover change and human population trends in the greater Serengeti ecosystem from 1984–2003, Biol. Conserv., 147, 255–263, https://doi.org/10.1016/j.biocon.2012.01.010, 2012.
Euser, T., Luxemburg, W. M. J., Everson, C. S., Mengistu, M. G., Clulow, A. D., and Bastiaanssen, W. G. M.: A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles, Hydrol. Earth Syst. Sci., 18, 2021–2032, https://doi.org/10.5194/hess-18-2021-2014, 2014.
Evans, R., Bastiaanssen, W., Molloy, R., Hulbert, S., and Miltenburg, I.: Improving the picture for irrigation using SEBAL in Australia to measure evapotranspiration (ET), in: Irrigation and Drainage Conference 2009, Swan Hill, Vic, Australia, 2009.
Feidas, H.: Validation of satellite rainfall products over Greece, Theor. Appl. Climatol., 99, 193–216, https://doi.org/10.1007/s00704-009-0135-8, 2009.
Fernandes, K., Fu, R., and Betts, A. K.: How well does the ERA40 surface water budget compare to observations in the Amazon River basin?, J. Geophys. Res., 113, D11117, https://doi.org/10.1029/2007JD009220, 2008.
Foody, G. M.: Status of land cover classification accuracy assessment, Remote Sens. Environ., 80, 185–201, https://doi.org/10.1016/S0034-4257(01)00295-4, 2002.
Franklin, S. E. and Wulder, M. A.: Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas, Prog. Phys. Geogr., 26, 173–205, https://doi.org/10.1191/0309133302pp332ra, 2002.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114(, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Fu, Q., Ruan, R., and Liu, Y.: Accuracy Assessment of Global Satellite Mapping of Precipitation (GSMaP) Product over Poyang Lake Basin, China, Proced. Environ. Sci., 10, 2265–2271, https://doi.org/10.1016/j.proenv.2011.09.354, 2011.
Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak, G. J., Michaelsen, J. C., and Verdin, A. P.: A Quasi-Global Precipitation Time Series for Drought Monitoring, US Geological Survey Data Series 832, US Geological Survey, p. 4, https://doi.org/10.3133/ds832, 2013.
Gamanya, R., De Maeyer, P., and De Dapper, M.: An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization, Expert Syst. Appl., 32, 616–624, https://doi.org/10.1016/j.eswa.2006.01.055, 2007.
García-Mora, T. J., Mas, J.-F., and Hinkley, E. A.: Land cover mapping applications with MODIS: a literature review, Int. J. Digit. Earth, 5, 63–87, https://doi.org/10.1080/17538947.2011.565080, 2012.
Getirana, A. C. V., Espinoza, J. C. V., Ronchail, J., and Rotunno Filho, O. C.: Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin, J. Hydrol., 404, 304–322, https://doi.org/10.1016/j.jhydrol.2011.04.037, 2011.
Glenn, E. P., Huete, A. R., Nagler, P. L., Hirschboeck, K. K., and Brown, P.: Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration, CRC, Crit. Rev. Plant Sci., 26, 139–168, https://doi.org/10.1080/07352680701402503, 2007.
Glenn, E. P., Doody, T. M., Guerschman, J. P., Huete, A. R., King, E. A., McVicar, T. R., Van Dijk, A. I. J. M., Van Niel, T. G., Yebra, M., and Zhang, Y.: Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience, Hydrol. Process., 25, 4103–4116, https://doi.org/10.1002/hyp.8391, 2011.
Gong, P., Wang, J., Yu, L., Zhao, Y. C., Zhao, Y. Y., Liang, L., Niu, Z. G., Huang, X. M., Fu, H. H., Liu, S., Li, C. C., Li, X. Y., Fu, W., Liu, C. X., Xu, Y., Wang, X. Y., Cheng, Q., Hu, L. Y., Yao, W. B., Zhang, H., Zhu, P., Zhao, Z. Y., Zhang, H. Y., Zheng, Y. M., Ji, L. Y., Zhang, Y. W., Chen, H., Yan, A., Guo, J. H., Yu, L., Wang, L., Liu, X. J., Shi, T. T., Zhu, M. H., Chen, Y. L., Yang, G. W., Tang, P., Xu, B., Ciri, C., Clinton, N., Zhu, Z. L., Chen, J., and Chen, J.: Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data, Int. J. Remote Sens., 34, 2607–2654, 2013.
Gonzalez-Dugo, M. P., Neale, C. M. U., Mateos, L., Kustas, W. P., Prueger, J. H., Anderson, M. C., and Li, F.: A comparison of operational remote sensing-based models for estimating crop evapotranspiration, Agr. Forest Meteorol., 149, 1843–1853, https://doi.org/10.1016/j.agrformet.2009.06.012, 2009.
Goutorbe, J. P., Lebel, T., Dolman, A. J., Gash, J. H. C., Kabat, P., Kerr, Y. H., Monteny, B., Prince, S. D., Stricker, J. N. M., Tinga, A., and Wallace, J. S.: An overview of HAPEX-Sahel: a study in climate and desertification, J. Hydrol., 188–189, 4–17, https://doi.org/10.1016/S0022-1694(96)03308-2, 1997.
Gowda, P. H., Colaizzi, P. D., Evett, S. R., Howell, T. A., and Tolk, J. A.: Remote sensing based energy balance algorithms for mapping ET: current status and future challenges, T. ASABE, 50, 1639–1644, 2007.
Groeneveld, D. P., Baugh, W. M., Sanderson, J. S., and Cooper, D. J.: Annual groundwater evapotranspiration mapped from single satellite scenes, J. Hydrol., 344, 146–156, https://doi.org/10.1016/j.jhydrol.2007.07.002, 2007.
Guerschman, J. P., Van Dijk, A. I. J. M., Mattersdorf, G., Beringer, J., Hutley, L. B., Leuning, R., Pipunic, R. C., and Sherman, B. S.: Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia, J. Hydrol., 369, 107–119, https://doi.org/10.1016/j.jhydrol.2009.02.013, 2009.
Hafeez, M. M., Chemin, Y., Van De Giesen, N., and Bouman, B. A. M.: Estimation of crop water deficit through remote sensing in Central Luzon, Philippines, in: vol. 5, IEEE International Geoscience and Remote Sensing Symposium, 24–28 June, Torento, Canada, 2778–2780, 2002.
Hartogensis, O. K., Weisensee, U., Evans, J., van Kesteren, A. J. H., and Beyrich, F.: First Results of two Optical Millimeter-wave Scintillometer Systems during LITFASS2009, 10th EMS Annu. Meet. 10th Eur. Conf. Appl. Meteorol. Abstr., held: 13–17 September 2010, Zürich, Switzerland, http://meetings.copernicus.org/ems2010/ (last access: 5 October 2013), 2010.
Hemakumara, H. M. and Chandrapala, L.: Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer, Agr. Water Manage., 58, 109–122, 2003.
Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., and Goodrich, D. C.: Integration of soil moisture remote sensing and hydrologic modeling using data assimilation, Water Resour. Res., 34, 3405–3420, 1998.
Hubert-Moy, L., Cotonnec, A., Le Du, L., Chardin, A., and Perez, P.: A comparison of parametric classification procedures of remotely sensed data applied on different landscape units, Remote Sens. Environ., 75, 174–187, 2001.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
Hunink, J. E., Immerzeel, W. W., and Droogers, P.: A High-resolution Precipitation 2-step mapping Procedure (HiP2P): Development and application to a tropical mountainous area, Remote Sens. Environ., 140, 179–188, https://doi.org/10.1016/j.rse.2013.08.036, 2014.
Immerzeel, W. W. and Droogers, P.: Calibration of a distributed hydrological model based on satellite evapotranspiration, J. Hydrol., 349, 411–424, https://doi.org/10.1016/j.jhydrol.2007.11.017, 2008.
Irmak, A. (Ed.): Evapotranspiration Remote Sensing and Modeling, InTech, Rijeka, Croatia, 2012.
Irmak, A., Ratcliffe, I., and Hubbard, K.: Estimation of Land Surface Evapotranspiration with a Satellite Remote Sensing Procedure, Great Plains Research 21, University of Nebraska, Lincoln, 73–88, 2011.
Jackson, T. J., Le Vine, D. M., Griffis, A. J., Goodrich, D. C., Schmugge, T. J., Swift, C. T., and O'Neill, P. E.: Soil moisture and rainfall estimation over a semiarid environment with the ESTAR microwave radiometer, IEEE T. Geosci. Remote, 31, 836–841, https://doi.org/10.1109/36.239906, 1993.
Jarmain, C., Klaasse, A., Bastiaanssen, W. G. M., and Roux, A. S.: Remote sensing tools for water use efficiency of grapes in the Winelands region, Western Cape, in: 13th Sanciahs symposium, Cape Town, 2007.
Jarmain, C., Everson, C., Savage, M., Mengisto, M., Clulow, A., Walker, S., and Gush, M.: Refining tools for evaporation monitoring in support of water resources management, Water Research Commission, Pretoria, South Africa, 2009.
Jhorar, R. K., Smit, A. A. M. F. R., Bastiaanssen, W. G. M., and Roest, C. W. J.: Calibration of a distributed irrigation water management model using remotely sensed evapotranspiration rates and groundwater heads, Irrig. Drain., 60, 57–69, https://doi.org/10.1002/ird.541, 2011.
Jia, L., Su, B., van den Hurk, B., Menenti, M., Moene, A., and de Bruin, H. A. R.: Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements, Phys. Chem. Earth, 28, 75–88, 2003.
Jia, Z., Liu, S., Xu, Z., Chen, Y., and Zhu, M.: Validation of remotely sensed evapotranspiration over the Hai River Basin, China, J. Geophys. Res., 117, D13113, https://doi.org/10.1029/2011JD017037, 2012.
Jiang, L., Islam, S., Guo, W., Singh Jutla, A., Senarath, S. U. S., Ramsay, B. H., and Eltahir, E.: A satellite-based Daily Actual Evapotranspiration estimation algorithm over South Florida, Global Planet. Change, 67, 62–77, https://doi.org/10.1016/j.gloplacha.2008.12.008, 2009.
Jiang, S., Ren, L., Hong, Y., Yong, B., Yang, X., Yuan, F., and Ma, M.: Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method, J. Hydrol., 452–453, 213–225, https://doi.org/10.1016/j.jhydrol.2012.05.055, 2012.
Kalma, J. D., McVicar, T. R., and McCabe, M. F.: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surv. Geophys., 29, 421–469, 2008.
Kandrika, S. and Roy, P. S.: Land use land cover classification of Orissa using multi-temporal IRS-P6 awifs data: A decision tree approach, Int. J. Appl. Earth Obs. Geoinf., 10, 186–193, https://doi.org/10.1016/j.jag.2007.10.003, 2008.
Karimi, P., Bastiaanssen, W. G. M., and Molden, D.: Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements, Hydrol. Earth Syst. Sci., 17, 2459–2472, https://doi.org/10.5194/hess-17-2459-2013, 2013a.
Karimi, P., Bastiaanssen, W. G. M., Molden, D., and Cheema, M. J. M.: Basin-wide water accounting based on remote sensing data: an application for the Indus Basin, Hydrol. Earth Syst. Sci., 17, 2473–2486, https://doi.org/10.5194/hess-17-2473-2013, 2013b.
Karimi, P., Bastiaanssen, W. G. M., Sood, A., Hoogeveen, J., Peiser, L., Bastidas-Obando, E., and Dost, R.: Spatial evapotranspiration, rainfall and land use data in water accounting – Part 2: Reliability of water accounting results for policy decisions in the Awash basin, Hydrol. Earth Syst. Sci., 19, 533–551, https://doi.org/10.5194/hess-19-533-2015, 2015.
Kavzoglu, T. and Colkesen, I.: A kernel functions analysis for support vector machines for land cover classification, Int. J. Appl. Earth Obs. Geoinf., 11, 352–359, https://doi.org/10.1016/j.jag.2009.06.002, 2009.
Kaya, S., Pultz, T. J., Mbogo, C. M., Beier, J. C., and Mushinzimana, E.: The Use of Radar Remote Sensing for Identifying Environmental Factors Associated with Malaria Risk in Coastal Kenya, International Geoscience and Remote Sensing Symposium (IGARSS '02), 24–28 June, Toronto, 2002.
Keuchel, J., Naumann, S., Heiler, M., and Siegmund, A.: Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data, Remote Sens. Environ., 86, 530–541, https://doi.org/10.1016/S0034-4257(03)00130-5, 2003.
Kidd, C.: Satellite rainfall climatology: a review, Int. J. Climatol., 21, 1041–1066, https://doi.org/10.1002/joc.635, 2001.
King, E. A., Van Niel, T. G., Van Dijk, A. I. J. M., Wang, Z., Paget, M. J., Raupach, T., Guerschman, J., Haverd, V., Mcvicar, T. R., Miltenburg, I., Raupach, M. R., and Zhang, Y.: Actual Evapotranspiration Estimates for Australia Inter-comparison and Evaluation, CSIRO: Water for a Healthy Country National Research Flagship Copyright, Canberra, 2011.
Kiptala, J., Mohamed, Y., Mul, M., Cheema, M. J. M., and van der Zaag, P.: Land use and land cover classification using phenological variability from MODIS vegetation in the Upper Pangani River Basin, Eastern Africa, Phys. Chem. Earth A/B/C, 66, 112–122, 2013.
Kite, G. and Droogers, P.: Comparing evapotranspiration estimates from satellites, hydrological models and field data, J. Hydrol., 229, 1–2, https://doi.org/10.1016/S0022-1694(99)00193-6, 2000.
Kizza, M., Westerberg, I., Rodhe, A., and Ntale, H. K.: Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data, J. Hydrol., 464–465, 401–411, https://doi.org/10.1016/j.jhydrol.2012.07.024, 2012.
Klein, I., Gessner, U., and Kuenzer, C.: Regional land cover mapping and change detection in Central Asia using MODIS time-series, Appl. Geogr., 35, 219–234, https://doi.org/10.1016/j.apgeog.2012.06.016, 2012.
Kolios, S. and Stylios, C. D.: Identification of land cover/land use changes in the greater area of the Preveza peninsula in Greece using Landsat satellite data, Appl. Geogr., 40, 150–160, https://doi.org/10.1016/j.apgeog.2013.02.005, 2013.
Kummerow, C., Olson, W. S., and Giglio, L.: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors, IEEE T. Geosci. Remote, 34, 1213–1232, https://doi.org/10.1109/36.536538, 1996.
Kustas, W. P. and Norman, J. M.: Use of remote sensing for evapotranspiration monitoring over land surfaces, Hydrolog. Sci. J., 41, 495–516, https://doi.org/10.1080/02626669609491522, 1996.
Kustas, W. P., Anderson, M. C., French, A. N., and Vickers, D.: Using a remote sensing field experiment to investigate flux-footprint relations and flux sampling distributions for tower and aircraft-based observations, Adv. Water Resour., 29, 355–368, https://doi.org/10.1016/j.advwatres.2005.05.003, 2006.
Lal, D., Clark, B., Bettner, T., Thoreson, B., and Snyder, R.: Rice evapotranspiration estimates and crop coefficients in Glenn-Colusa Irrigation District, Sacramento Valley, California, in: USCID Water Management Conference, Austin, 2012.
Li, H., Wang, H., Kong, Y., and Li, L.: Estimation of evapotranspiration in Yellow River Delta wetland based on two-source energy balance (TSEB) model, Remote Sensing Technol. Appl., 27, 58–67, 2012.
Liu, T. and Yang, X.: Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis, Remote Sens. Environ., 133, 251–264, https://doi.org/10.1016/j.rse.2013.02.020, 2013.
Liu, X.-H., Skidmore, A. K., and Van Oosten, H.: Integration of classification methods for improvement of land-cover map accuracy, ISPRS J. Photogramm. Remote Sens., 56, 257–268, https://doi.org/10.1016/S0924-2716(02)00061-8, 2002.
Ma, W., Hafeez, M., Rabbani, U., Ishikawa, H., and Ma, Y.: Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia, Atmos. Environ., 59, 408–414, https://doi.org/10.1016/j.atmosenv.2012.05.040, 2012.
Maes, W. H., Heuvelmans, G., and Muys, B.: Assessment of Land Use Impact on Water-Related Ecosystem Services Capturing the Integrated Terrestrial-Aquatic System, Environ. Sci. Technol., 43, 7324–7330, https://doi.org/10.1021/es900613w, 2009.
Mallick, K., Bhattacharya, B. K., Chaurasia, S., Dutta, S., Nigam, R., Mukherjee, J., Banerjee, S., Kar, G., Rao, V. U. M., Gadgil, A. S., and Parihar, J. S.: Evapotranspiration using MODIS data and limited ground observations over selected agroecosystems in India, Int. J. Remote Sens., 28, 2091–2110, 2007.
Mayaux, P., Eva, H., Gallego, J., Strahler, A. H. A. H., Herold, M., Agrawal, S., Naumov, S., De Miranda, E. E., Di Bella, C. M., Ordoyne, C., Kopin, Y., Roy, P. S. S., Member, S., De Miranda, E. E., and Di Bella, C. M.: Validation of the global land cover 2000 map, IEEE T. Geosci. Remote, 44, 1728–1739, https://doi.org/10.1109/TGRS.2006.864370, 2006.
Mcvicar, T. R. and Jupp, D. L. B.: Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models, Agr. Forest Meteorol., 96, 219–238, 1999.
Mcvicar, T. R. and Jupp, D. L. B.: Using covariates to spatially interpolate moisture availability in the Murray – Darling Basin A novel use of remotely sensed data, Remote Sens. Environ., 79, 199–212, 2002.
Meijninger, W. M. L. and de Bruin, H. A. R.: The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer, J. Hydrol., 229, 42–49, https://doi.org/10.1016/S0022-1694(99)00197-3, 2000.
Milewski, A., Sultan, M., Jayaprakash, S. M., Balekai, R., and Becker, R.: RESDEM, a tool for integrating temporal remote sensing data for use in hydrogeologic investigations, Comput. Geosci., 35, 2001–2010, https://doi.org/10.1016/j.cageo.2009.02.010, 2009.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land–surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Moffitt, C. B., Hossain, F., Adler, R. F., Yilmaz, K. K., and Pierce, H. F.: Validation of a TRMM-based global Flood Detection System in Bangladesh, Int. J. Appl. Earth Obs. Geoinf., 13, 165–177, https://doi.org/10.1016/j.jag.2010.11.003, 2011.
Mohamed, Y. A., Bastiaanssen, W. G. M., and Savenije, H. H. G.: Spatial variability of evaporation and moisture storage in the swamps of the upper Nile studied by remote sensing techniques, J. Hydrol., 289, 145–164, https://doi.org/10.1016/j.jhydrol.2003.11.038, 2004.
Molden, D.: Water for food, water for life: A comprehensive assessment of water management in agriculture, Earthscan, London, 2007.
Molden, D., Dong, B., Loeve, R., Barker, R., and Tuong, T. P.: Agricultural water productivity and savings: policy lessons from two diverse sites in China, Water Policy, 9, 29–44, 2007.
Moon, B., Hong, J., Lee, B., Yun, J. I., Park, E. W., and Kim, J.: CO2 and energy exchange in a rice paddy for the growing season of 2002 in Hari, Korea Byung-Kwan, Korean J. Agric. For. Meteorol., 5, 51–60, 2003.
Moran, M. S. and Jackson, R. D.: Assessing the spatial distribution of evapotranspiration using remotely sensed inputs, J. Environ. Qual., 20, 725–737, 1991.
Moran, M. S., Clarke, T. R., Inoue, Y., and Vidal, A.: Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index, Remote Sens. Environ., 49, 246–263, https://doi.org/10.1016/0034-4257(94)90020-5, 1994.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519–536, 2007.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Mucher, C. A., Steinnocher, K. T., Kressler, F. P., and Heunks, C.: Land cover characterization and change detection for environmental monitoring of pan-Europe, Int. J. Remote Sens., 21, 1159–1181, https://doi.org/10.1080/014311600210128, 2000.
Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I.: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.
Munthali, K. G. and Murayama, Y.: Land use/cover change detection and analysis for Dzalanyama forest reserve, Lilongwe, Malawi, Procedia – Social and Behavioral Sciences, 21, 203–211, https://doi.org/10.1016/j.sbspro.2011.07.035, 2011.
Neale, C. M. U. and Cosh, M. H.: Remote sensing and hydrology, IAHS Red Book Series, Publ. 352, IAHS Wallingford, UK, 482 pp., 2012.
Nemani, R. R. and Running, S. W.: Estimation of Regional Surface Resistance to Evapotranspiration from NDVI and Thermal-IR AVHRR Data, J. Appl. Meteorol., 28, 276–284, https://doi.org/10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2, 1989.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. Forest Meteorol., 77, 263–293, https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Oldeland, J., Dorigo, W., Lieckfeld, L., Lucieer, A., and Jürgens, N.: Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery, Remote Sens. Environ., 114, 1155–1166, https://doi.org/10.1016/j.rse.2010.01.003, 2010.
Otter, L. B., Guenther, A., and Greenberg, J.: Seasonal and spatial variations in biogenic hydrocarbon emissions from southern African savannas and woodlands, Atmos. Environ., 36, 4265–4275, 2002.
Otukei, J. R. and Blaschke, T.: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms, Int. J. Appl. Earth Obs. Geoinf., 12, S27–S31, https://doi.org/10.1016/j.jag.2009.11.002, 2010.
Pan, X., Zhang, S., Zhang, H., Na, X., and Li, X.: A variable precision rough set approach to the remote sensing land use/cover classification, Comput. Geosci., 36, 1466–1473, https://doi.org/10.1016/j.cageo.2009.11.010, 2010.
Peña-Barragán, J. M., Ngugi, M. K., Plant, R. E., and Six, J.: Object-based crop identification using multiple vegetation indices, textural features and crop phenology, Remote Sens. Environ., 115, 1301–1316, https://doi.org/10.1016/j.rse.2011.01.009, 2011.
Pérez-Hoyos, A., García-Haro, F. J., and San-Miguel-Ayanz, J.: A methodology to generate a synergetic land-cover map by fusion of different land-cover products, Int. J. Appl. Earth Obs. Geoinf., 19, 72–87, https://doi.org/10.1016/j.jag.2012.04.011, 2012.
Petropoulos, G. P., Kalaitzidis, C., and Prasad Vadrevu, K.: Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery, Comput. Geosci., 41, 99–107, https://doi.org/10.1016/j.cageo.2011.08.019, 2012.
Petty, G. W.: The status of satellite-based rainfall estimation over land, Remote Sens. Environ., 51, 125–137, https://doi.org/10.1016/0034-4257(94)00070-4, 1995.
Petty, G. W. and Krajewski, W. F. W. F.: Satellite estimation of precipitation over land, Hydrolog. Sci. J., 41, 433–452, https://doi.org/10.1080/02626669609491519, 1996.
Pierre, C., Bergametti, G., Marticorena, B., Mougin, E., Lebel, T., and Ali, A.: Pluriannual comparisons of satellite-based rainfall products over the Sahelian belt for seasonal vegetation modeling, J. Geophys. Res., 116, D18201, https://doi.org/10.1029/2011JD016115, 2011.
Qi, Z., Yeh, A. G.-O., Li, X., and Lin, Z.: A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data, Remote Sens. Environ., 118, 21–39, https://doi.org/10.1016/j.rse.2011.11.001, 2012.
Rana, G. and Katerji, N.: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review, Eur. J. Agron., 13, 125–153, https://doi.org/10.1016/S1161-0301(00)00070-8, 2000.
Rango, A., Ritchie, J. C., Kustas, W. P., Schmugge, T. J., Humes, K. S., Hipps, L. E., Prueger, J. H., and HavstadRango, K. M.: JORNEX: A multidisciplinary remote sensing campaign to quantify plant community/atmospheric interactions in the northern Chihuahuan desert of New Mexico, in: Hydrology in a Changing Environment, edited by: Wheater, H. and Kirby, C., John Wiley, London, UK, 585–590, 1998.
Ren, G., Zhu, A.-X., Wang, W., Xiao, W., Huang, Y., Li, G., Li, D., and Zhu, J.: A hierarchical approach coupled with coarse DEM information for improving the efficiency and accuracy of forest mapping over very rugged terrains, Forest Ecol. Manage., 258, 26–34, https://doi.org/10.1016/j.foreco.2009.03.043, 2009.
Renó, V. F., Novo, E. M. L. M., Suemitsu, C., Rennó, C. D., and Silva, T. S. F.: Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery, Remote Sens. Environ., 115, 3446–3456, https://doi.org/10.1016/j.rse.2011.08.008, 2011.
Rientjes, T. H. M., Muthuwatta, L. P., Bos, M. G., Booij, M. J., and Bhatti, H. A.: Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration, J. Hydrol., 505, 276–290, 2013.
Rodriguez-Galiano, V. and Chica-Olmo, M.: Land cover change analysis of a Mediterranean area in Spain using different sources of data: Multi-seasonal Landsat images, land surface temperature, digital terrain models and texture, Appl. Geogr., 35, 208–218, https://doi.org/10.1016/j.apgeog.2012.06.014, 2012.
Roerink, G. J., Su, Z., and Menenti, M.: S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance, Phys. Chem. Earth B, 25, 147–157, https://doi.org/10.1016/S1464-1909(99)00128-8, 2000.
Roerink, G. J., Menenti, M., Soepboer, W., and Su, Z.: Assessment of climate impact on vegetation dynamics by using remote sensing, Phys. Chem. Earth, A/B/C, 28, 103–109, https://doi.org/10.1016/S1474-7065(03)00011-1, 2003.
Rosema, A.: Comparison of Meteosat-based rainfall and evapotranspiration mapping in the Sahel region, Int. J. Remote Sens., 11, 2299–2309, https://doi.org/10.1080/01431169008955176, 1990.
Rozenstein, O. and Karnieli, A.: Comparison of methods for land-use classification incorporating remote sensing and GIS inputs, Appl. Geogr., 31, 533–544, https://doi.org/10.1016/j.apgeog.2010.11.006, 2011.
Schuurmans, J. M., Troch, P. A., Veldhuizen, A. A., Bastiaanssen, W. G. M., and Bierkens, M. F. P.: Assimilation of remotely sensed latent heat flux in a distributed hydrological model, Adv. Water Resour., 26, 151–159, 2003.
Scott, C. A., Bastiaanssen, W. G. M., and Ahmad, M.-D.: Mapping Root Zone Soil Moisture Using Remotely Sensed Optical Imagery, J. Irrig. Drain. Eng., 129, 326–335, https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(326), 2003.
Semire, F. A., Mohd-Mokhtar, R., Ismail, W., Mohamad, N., and Mandeep, J. S. S.: Ground validation of space-borne satellite rainfall products in Malaysia, Adv. Space Res., 50, 1241–1249, https://doi.org/10.1016/j.asr.2012.06.031, 2012.
Setiawan, H., Mathieu, R., and Thompson-Fawcett, M.: Assessing the applicability of the V-I-S model to map urban land use in the developing world: Case study of Yogyakarta, Indonesia, Comput. Environ. Urban Syst., 30, 503–522, https://doi.org/10.1016/j.compenvurbsys.2005.04.003, 2006.
Shao, Y. and Lunetta, R. S.: Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points, ISPRS J. Photogramm. Remote Sens., 70, 78–87, https://doi.org/10.1016/j.isprsjprs.2012.04.001, 2012.
Shimoni, M., Borghys, D., Heremans, R., Perneel, C., and Acheroy, M.: Fusion of PolSAR and PolInSAR data for land cover classification, Int. J. Appl. Earth Obs. Geoinf., 11, 169–180, https://doi.org/10.1016/j.jag.2009.01.004, 2009.
Shrestha, D. P. and Zinck, J. A.: Land use classification in mountainous areas: integration of image processing, digital elevation data and field knowledge (application to Nepal), Int. J. Appl. Earth Obs. Geoinf., 3, 78–85, https://doi.org/10.1016/S0303-2434(01)85024-8, 2001.
Singh, R. K., Irmak, A., Irmak, S., and Martin, D. L.: Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska, J. Irrig. Drain. Eng., 134, 273–285, https://doi.org/10.1061/(ASCE)0733-9437(2008)134:3(273), 2008.
Singh, R. K., Liu, S., Tieszen, L. L., Suyker, A. E., and Verma, S. B.: Estimating seasonal evapotranspiration from temporal satellite images, Irrig. Sci., 30, 303–313, https://doi.org/10.1007/s00271-011-0287-z, 2011.
Smith, D. M., Kniveton, D. R., and Barrett, E. C.: A Statistical Modeling Approach to Passive Microwave Rainfall Retrieval, J. Appl. Meteorol., 37, 135–154, 1998.
Smith, E. A., Cooper, H. J., Xiang, X., Mugnai, A., and Tripoli, G. J.: Foundations for Statistical-Physical Precipitation Retrieval from Passive Microwave Satellite Measurements. Part I: Brightness-Temperature Properties of a Time-dependent Cloud-Radiation Model, J. Appl. Meteorol., 31, 506–531, https://doi.org/10.1175/1520-0450(1992)031<0506:FFSPPR>2.0.CO;2, 1992.
Smits, P. C., Dellepiane, S. G., and Schowengerdt, R. a.: Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach, Int. J. Remote Sens., 20, 1461–1486, https://doi.org/10.1080/014311699212560, 1999.
Song, M., Civco, D. L., and Hurd, J. D.: A competitive pixel-object approach for land cover classification, Int. J. Remote Sens., 26, 4981–4997, https://doi.org/10.1080/01431160500213912, 2005.
Soppe, R. W., Bastiaanssen, W., Keller, A., Clark, B., Thoreson, B., Eckhardt, J. and Davids, G.: Use of High Resolution Thermal Landsat Data to Estimate Evapotranspiration Within the Imperial Irrigation District in Southern California, Am. Geophys. Union, 2006.
Stavrakoudis, D. G., Theocharis, J. B., and Zalidis, G. C.: A Boosted Genetic Fuzzy Classifier for land cover classification of remote sensing imagery, ISPRS J. Photogramm. Remote Sens., 66, 529–544, https://doi.org/10.1016/j.isprsjprs.2011.01.010, 2011.
Stefanov, W. L., Ramsey, M. S., and Christensen, P. R.: Monitoring urban land cover change?: An expert system approach to land cover classification of semiarid to arid urban centers, Remote Sens. Environ., 77, 173–185, 2001.
Stephens, G. L. and Kummerow, C. D.: The Remote Sensing of Clouds and Precipitation from Space: A Review, J. Atmos. Sci., 64, 3742–3765, https://doi.org/10.1175/2006JAS2375.1, 2007.
Stisen, S. and Sandholt, I.: Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling, Hydrol. Process., 24, 879–891, https://doi.org/10.1002/hyp.7529, 2010.
Su, F., Hong, Y., and Lettenmaier, D. P.: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin, J. Hydrometeorol., 9, 622–640, https://doi.org/10.1175/2007JHM944.1, 2008.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Sulla-Menashe, D., Friedl, M. A., Krankina, O. N., Baccini, A., Woodcock, C. E., Sibley, A., Sun, G., Kharuk, V., and Elsakov, V.: Hierarchical mapping of Northern Eurasian land cover using MODIS data, Remote Sens. Environ., 115, 392–403, https://doi.org/10.1016/j.rse.2010.09.010, 2011.
Szuster, B. W., Chen, Q., and Borger, M.: A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones, Appl. Geogr., 31, 525–532, https://doi.org/10.1016/j.apgeog.2010.11.007, 2011.
Taşdemir, K., Milenov, P., and Tapsall, B.: A hybrid method combining SOM-based clustering and object-based analysis for identifying land in good agricultural condition, Comput. Electron. Agric., 83, 92–101, https://doi.org/10.1016/j.compag.2012.01.017, 2012.
Tasumi, M., Trezza, R., Allen, R. G., and Wright, J. L.: U.S. Validation Tests on the SEBAL Model for Evapotranspiration via Satellite, in: Vol. 17, 54th IEC meeting of the international commission on irrigation and drainage (ICID) Workshop remote sensing of ET for large regions, 17 September, Montpellier, France, 1–14, 2003.
Teixeira, A. H. D. C. and Bastiaanssen, W. G. M.: Five methods to interpret field measurements of energy fluxes over a micro-sprinkler-irrigated mango orchard, Irrigation Sci., 30, 13–28, https://doi.org/10.1007/s00271-010-0256-y, 2010.
Teixeira, A. H. D. C., Bastiaanssen, W. G. M., Moura, M. S. B., Soares, J. M., Ahmad, M. D., and Bos, M. G.: Energy and water balance measurements for water productivity analysis in irrigated mango trees, Northeast Brazil, Agr. Forest Meteorol., 148, 1524–1537, https://doi.org/10.1016/j.agrformet.2008.05.004, 2008.
Teixeira, A. H. D. C., Bastiaanssen, W. G. M., Ahmad, M. D., and Bos, M. G.: Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil, Agr. Forest Meteorol., 149, 462–476, 2009.
Thenkabail, P. S., Schull, M., and Turral, H.: Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data, Remote Sens. Environ., 95, 317–341, https://doi.org/10.1016/j.rse.2004.12.018, 2005.
Thenkabail, P. S., Biradar, C. M., Noojipady, P., Dheeravath, V., Li, Y., Velpuri, M., Gumma, M., Gangalakunta, O. R. P., Turral, H., Cai, X., Vithanage, J., Schull, M. A., and Dutta, R.: Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium, Int. J. Remote Sens., 30, 3679–3733, https://doi.org/10.1080/01431160802698919, 2009a.
Thenkabail, P. S., Turral, H., Biradar, C., and Lyon, J. G.: Remote sensing of global croplands for food security, CRC Press, Boca Raton, FL, 2009b.
Thoreson, B., Clark, B., Soppe, R., Keller, A., Bastiaanssen, W. G. M., and Eckhardt, J.: Comparison of evapotranspiration estimates from remote sensing (SEBAL), water balance, and crop coefficient approaches, in: ASCE World Environmental and Water Resources Congress 2009: Great Rivers, 17–21 May, Kansas City, 1–15, https://doi.org/10.1061/41036(342)437, 2009.
Tovar, C., Seijmonsbergen, A. C., and Duivenvoorden, J. F.: Monitoring land use and land cover change in mountain regions: An example in the Jalca grasslands of the Peruvian Andes, Landsc. Urban Plan., 112, 40–49, https://doi.org/10.1016/j.landurbplan.2012.12.003, 2013.
Trambauer, P., Dutra, E., Maskey, S., Werner, M., Pappenberger, F., van Beek, L. P. H., and Uhlenbrook, S.: Comparison of different evaporation estimates over the African continent, Hydrol. Earth Syst. Sci., 18, 193–212, https://doi.org/10.5194/hess-18-193-2014, 2014.
Tseng, M.-H., Chen, S.-J., Hwang, G.-H., and Shen, M.-Y.: A genetic algorithm rule-based approach for land-cover classification, ISPRS J. Photogramm. Remote Sens., 63, 202–212, https://doi.org/10.1016/j.isprsjprs.2007.09.001, 2008.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
UN: System of Environmental Economic Accounting for Water, Geneva, 2007.
Van der Walt, I. J., Struwig, A., and van Rensburg, J. R. J.: Forestry as a streamflow reduction activity in South Africa: Discussion and evaluation of the proposed procedure for the assessment of afforestation permit applications in terms of water sustainability, GeoJournal, 61, 173–181, https://doi.org/10.1007/s10708-004-2872-7, 2004.
Velpuri, N. M., Senay, G. B., Bohms, R. K., and Verdin, J. P.: A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET, Remote Sens. Environ., 139, 35–49, 2013.
Venturini, V., Islam, S., and Rodriguez, L.: Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model, Remote Sens. Environ., 112, 132–141, https://doi.org/10.1016/j.rse.2007.04.014, 2008.
Verstraeten, W. W., Veroustraete, F., and Feyen, J.: Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation, Sensors, 8, 70–117, https://doi.org/10.3390/s8010070, 2008.
Villarini, G., Krajewski, W. F., and Smith, J. A.: New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma, J. Geophys. Res., 114, D12106, https://doi.org/10.1029/2008JD011475, 2009.
Voisin, N., Wood, A. W., and Lettenmaier, D. P.: Evaluation of Precipitation Products for Global Hydrological Prediction, J. Hydrometeorol., 9, 388–407, https://doi.org/10.1175/2007JHM938.1, 2008.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global threats to human water security and river biodiversity, Nature, 467, 555–561, https://doi.org/10.1038/nature09440, 2010.
Wagner, W., Verhoest, N. E. C., Ludwig, R., and Tedesco, M.: Editorial "Remote sensing in hydrological sciences", Hydrol. Earth Syst. Sci., 13, 813–817, https://doi.org/10.5194/hess-13-813-2009, 2009.
Wang, J., Chen, Y., He, T., Lv, C., and Liu, A.: Application of geographic image cognition approach in land type classification using Hyperion image: A case study in China, Int. J. Appl. Earth Obs. Geoinf., 12, S212–S222, https://doi.org/10.1016/j.jag.2009.06.003, 2010.
Wang, J. R., Gogineni, S. P., and Ampe, J.: Active and passive microwave measurements of soil moisture in FIFE, J. Geophys. Res., 97, 18979, https://doi.org/10.1029/92JD00848, 1992.
Wang, K., Wang, P., Li, Z., Cribb, M., and Sparrow, M.: A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, J. Geophys. Res., 112, D15107, https://doi.org/10.1029/2006JD008351, 2007.
Wang, Y. and Sun, D.: The ET estimation from ASTER image based on SEBAL and TSEB method, Proceedings of SPIE 6045, MIPPR 2005: Geospatial Information, Data Mining, and Applications, 604532, https://doi.org/10.1117/12.651845, 2005.
Waske, B. and Braun, M.: Classifier ensembles for land cover mapping using multitemporal SAR imagery, ISPRS J. Photogramm. Remote Sens., 64, 450–457, https://doi.org/10.1016/j.isprsjprs.2009.01.003, 2009.
Weiers, S., Groom, G., and Wissen, M.: Comparability and subjectivity of land cover maps pro- duced with digital image classification techniques?: some recent experiences from Denmark and northern Germany, Geogr. Tidsskr. Danish J. Geogr., 102, 59–77, 2002.
Whiteside, T. G., Boggs, G. S., and Maier, S. W.: Comparing object-based and pixel-based classifications for mapping savannas, Int. J. Appl. Earth Obs. Geoinf., 13, 884–893, https://doi.org/10.1016/j.jag.2011.06.008, 2011.
Wickham, J. D., Stehman, S. V., Gass, L., Dewitz, J., Fry, J. A., and Wade, T. G.: Accuracy assessment of NLCD 2006 land cover and impervious surface, Remote Sens. Environ., 130, 294–304, https://doi.org/10.1016/j.rse.2012.12.001, 2013.
Wilk, J., Kniveton, D., Andersson, L., Layberry, R., Todd, M. C., Hughes, D., Ringrose, S., and Vanderpost, C.: Estimating rainfall and water balance over the Okavango River Basin for hydrological applications, J. Hydrol., 331, 18–29, https://doi.org/10.1016/j.jhydrol.2006.04.049, 2006.
Winsemius, H. C., Savenije, H. H. G., and Bastiaanssen, W. G. M.: Constraining model parameters on remotely sensed evaporation: justification for distribution in ungauged basins?, Hydrol. Earth Syst. Sci., 12, 1403–1413, https://doi.org/10.5194/hess-12-1403-2008, 2008.
Wu, B., Yan, N., Xiong, J., Bastiaanssen, W. G. M., Zhu, W., and Stein, A.: Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China, J. Hydrol., 436–437, 67–80, 2012.
Wu, C., Cheng, C., Lo, H., and Chen, Y.: Study on estimating the evapotranspiration cover coefficient for stream flow simulation through remote sensing techniques, Int. J. Appl. Earth Obs. Geoinf., 12, 225–232, https://doi.org/10.1016/j.jag.2010.03.001, 2010.
Yalew, S., Teferi, E., and Van Griensven, A.: Land Use Change and Suitability Assessment in the Upper Blue Nile Basin Under Water Resources and Socio-economic Constraints: A Drive Towards a Decision Support System, in: International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, edited by: Seppelt, R., Voinov, A. A., Lange, S., and Bankamp, D., 1–5 July, Leipzig, Germany, 2124–2131, 2012.
Yang, Y., Shang, S., and Jiang, L.: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China, Agr. Forest Meteorol., 164, 112–122, https://doi.org/10.1016/j.agrformet.2012.05.011, 2012.
Zhang, J., Hu, Y., Xiao, X., Chen, P., Han, S., Song, G., and Yu, G.: Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest, Agr. Forest Meteorol., 149, 976–984, https://doi.org/10.1016/j.agrformet.2008.12.002, 2009.
Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006, Water Resour. Res., 46, W09522, https://doi.org/10.1029/2009WR008800, 2010.
Zhang, X., Sun, R., Zhang, B., and Tong, Q.: Land cover classification of the North China Plain using MODIS_EVI time series, ISPRS J. Photogramm. Remote Sens., 63, 476–484, https://doi.org/10.1016/j.isprsjprs.2008.02.005, 2008.
Zhang, Y., Leuning, R., Hutley, L. B., Beringer, J., McHugh, I., and Walker, J. P.: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution, Water Resour. Res., 46, W05512, https://doi.org/10.1029/2009WR008716, 2010.
Zhu, Z., Woodcock, C. E., Rogan, J., and Kellndorfer, J.: Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data, Remote Sens. Environ., 117, 72–82, https://doi.org/10.1016/j.rse.2011.07.020, 2012.