Articles | Volume 19, issue 9
https://doi.org/10.5194/hess-19-4001-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-4001-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Singularity-sensitive gauge-based radar rainfall adjustment methods for urban hydrological applications
Hydraulics Laboratory, Katholieke Universiteit Leuven, 3001 Heverlee (Leuven), Belgium
S. Ochoa-Rodríguez
Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK
Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK
P. Willems
Hydraulics Laboratory, Katholieke Universiteit Leuven, 3001 Heverlee (Leuven), Belgium
Related authors
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1918, https://doi.org/10.5194/egusphere-2024-1918, 2024
Short summary
Short summary
pyBL is an open-source package for generating realistic rainfall time series based on the Bartlett-Lewis (BL) model. It can preserve not only standard but also extreme rainfall statistics across various timescales. Notably, compared to traditional frequency analysis methods, the BL model requires only half the record length (or even shorter) to achieve similar consistency in estimating sub-hourly rainfall extremes. This makes it a valuable tool for modelling rainfall extremes with short records.
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
EGUsphere, https://doi.org/10.5194/egusphere-2024-1540, https://doi.org/10.5194/egusphere-2024-1540, 2024
Short summary
Short summary
This study presents a new algorithm to better model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and to reconstruct storm cell lifecycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential model for realistic rainfall patterns, enhancing its hydrological applicability.
Y. K. Chen, Y. T. Lin, H. Y. Yen, N. H. Chang, H. M. Lin, K. H. Yang, C. S. Chen, L. P. Wang, H. K. Cheng, H. H. Wu, and J. Y. Han
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1091–1096, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1091-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1091-2022, 2022
Christian Onof and Li-Pen Wang
Hydrol. Earth Syst. Sci., 24, 2791–2815, https://doi.org/10.5194/hess-24-2791-2020, https://doi.org/10.5194/hess-24-2791-2020, 2020
Short summary
Short summary
The randomised Bartlett–Lewis (RBL) model is widely used to synthesise rainfall time series with realistic statistical features. However, it tended to underestimate rainfall extremes at sub-hourly and hourly timescales. In this paper, we revisit the derivation of equations that represent rainfall properties and compare statistical estimation methods that impact model calibration. These changes effectively improved the RBL model's capacity to reproduce sub-hourly and hourly rainfall extremes.
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Susana Ochoa-Rodriguez, Patrick Willems, Abdellah Ichiba, Li-Pen Wang, Rui Pina, Johan Van Assel, Guendalina Bruni, Damian Murla Tuyls, and Marie-Claire ten Veldhuis
Hydrol. Earth Syst. Sci., 21, 2361–2375, https://doi.org/10.5194/hess-21-2361-2017, https://doi.org/10.5194/hess-21-2361-2017, 2017
Short summary
Short summary
Data from 10 urban or peri-urban catchments located in five EU countries are used to analyze the imperviousness distribution and sewer network geometry. Consistent scale invariant features are retrieved for both (fractal dimensions can be defined), which enables to define a level of urbanization. Imperviousness representation in operational model is also found to exhibit scale-invariant features (even multifractality). The research was carried out as part of the UE INTERREG IV RainGain project.
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1918, https://doi.org/10.5194/egusphere-2024-1918, 2024
Short summary
Short summary
pyBL is an open-source package for generating realistic rainfall time series based on the Bartlett-Lewis (BL) model. It can preserve not only standard but also extreme rainfall statistics across various timescales. Notably, compared to traditional frequency analysis methods, the BL model requires only half the record length (or even shorter) to achieve similar consistency in estimating sub-hourly rainfall extremes. This makes it a valuable tool for modelling rainfall extremes with short records.
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
EGUsphere, https://doi.org/10.5194/egusphere-2024-1540, https://doi.org/10.5194/egusphere-2024-1540, 2024
Short summary
Short summary
This study presents a new algorithm to better model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and to reconstruct storm cell lifecycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential model for realistic rainfall patterns, enhancing its hydrological applicability.
Abrar Habib, Athanasios Paschalis, Adrian P. Butler, Christian Onof, John P. Bloomfield, and James P. R. Sorensen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-27, https://doi.org/10.5194/hess-2023-27, 2023
Preprint withdrawn
Short summary
Short summary
Components of the hydrological cycle exhibit a “memory” in their behaviour which quantifies how long a variable would stay at high/low values. Being able to model and understand what affects it is vital for an accurate representation of the hydrological elements. In the current work, it is found that rainfall affects the fractal behaviour of groundwater levels, which implies that changes to rainfall due to climate change will change the periods of flood and drought in groundwater-fed catchments.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Y. K. Chen, Y. T. Lin, H. Y. Yen, N. H. Chang, H. M. Lin, K. H. Yang, C. S. Chen, L. P. Wang, H. K. Cheng, H. H. Wu, and J. Y. Han
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1091–1096, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1091-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1091-2022, 2022
Karen Gabriels, Patrick Willems, and Jos Van Orshoven
Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, https://doi.org/10.5194/nhess-22-395-2022, 2022
Short summary
Short summary
As land use influences hydrological processes (e.g., forests have a high water retention and infiltration capacity), it also impacts floods downstream in the river system. This paper demonstrates an approach quantifying the impact of land use changes on economic flood damages: damages in an initial situation are quantified and compared to damages of simulated floods associated with a land use change scenario. This approach can be used as an explorative tool in sustainable flood risk management.
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Bertold Mariën, Inge Dox, Hans J. De Boeck, Patrick Willems, Sebastien Leys, Dimitri Papadimitriou, and Matteo Campioli
Biogeosciences, 18, 3309–3330, https://doi.org/10.5194/bg-18-3309-2021, https://doi.org/10.5194/bg-18-3309-2021, 2021
Short summary
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Benjamin Campforts, Veerle Vanacker, Frédéric Herman, Matthias Vanmaercke, Wolfgang Schwanghart, Gustavo E. Tenorio, Patrick Willems, and Gerard Govers
Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020, https://doi.org/10.5194/esurf-8-447-2020, 2020
Short summary
Short summary
In this contribution, we explore the spatial determinants of bedrock river incision in the tropical Andes. The model results illustrate the problem of confounding between climatic and lithological variables, such as rock strength. Incorporating rock strength explicitly into river incision models strongly improves the explanatory power of all tested models and enables us to clarify the role of rainfall variability in controlling river incision rates.
Christian Onof and Li-Pen Wang
Hydrol. Earth Syst. Sci., 24, 2791–2815, https://doi.org/10.5194/hess-24-2791-2020, https://doi.org/10.5194/hess-24-2791-2020, 2020
Short summary
Short summary
The randomised Bartlett–Lewis (RBL) model is widely used to synthesise rainfall time series with realistic statistical features. However, it tended to underestimate rainfall extremes at sub-hourly and hourly timescales. In this paper, we revisit the derivation of equations that represent rainfall properties and compare statistical estimation methods that impact model calibration. These changes effectively improved the RBL model's capacity to reproduce sub-hourly and hourly rainfall extremes.
Els Van Uytven, Jan De Niel, and Patrick Willems
Hydrol. Earth Syst. Sci., 24, 2671–2686, https://doi.org/10.5194/hess-24-2671-2020, https://doi.org/10.5194/hess-24-2671-2020, 2020
Short summary
Short summary
In recent years many methods have been developed for the statistical downscaling of climate model outputs. Each statistical downscaling method has strengths and limitations, but those are rarely evaluated. This paper illustrates an approach to evaluating the skill of statistical downscaling methods for the specific purpose of impact analysis in hydrology.
Syed M. Touhidul Mustafa, M. Moudud Hasan, Ajoy Kumar Saha, Rahena Parvin Rannu, Els Van Uytven, Patrick Willems, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 23, 2279–2303, https://doi.org/10.5194/hess-23-2279-2019, https://doi.org/10.5194/hess-23-2279-2019, 2019
Short summary
Short summary
This study evaluates the effect of conceptual hydro(geo)logical model (CHM) structure, climate change and groundwater abstraction on future groundwater-level prediction uncertainty. If the current groundwater abstraction trend continues, groundwater level is predicted to decline quickly. Groundwater abstraction in NW Bangladesh should decrease by 60 % to ensure sustainable use. Abstraction scenarios are the dominant uncertainty source, followed by CHM uncertainty and climate model uncertainty.
Jeongha Park, Christian Onof, and Dongkyun Kim
Hydrol. Earth Syst. Sci., 23, 989–1014, https://doi.org/10.5194/hess-23-989-2019, https://doi.org/10.5194/hess-23-989-2019, 2019
Short summary
Short summary
Rainfall data are often unavailable for the analysis of water-related problems such as floods and droughts. In such cases, researchers use rainfall generators to produce synthetic rainfall data. However, data from most rainfall generators can serve only one specific purpose; i.e. one rainfall generator cannot be applied to analyse both floods and droughts. To overcome this issue, we invented a multipurpose rainfall generator that can be applied to analyse most water-related problems.
Jan De Niel and Patrick Willems
Hydrol. Earth Syst. Sci., 23, 871–882, https://doi.org/10.5194/hess-23-871-2019, https://doi.org/10.5194/hess-23-871-2019, 2019
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Elena Cristiano, Marie-Claire ten Veldhuis, Santiago Gaitan, Susana Ochoa Rodriguez, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018, https://doi.org/10.5194/hess-22-2425-2018, 2018
Short summary
Short summary
In this work we investigate the influence rainfall and catchment scales have on hydrological response. This problem is quite relevant in urban areas, where the response is fast due to the high degree of imperviousness. We presented a new approach to classify rainfall variability in space and time and use this classification to investigate rainfall aggregation effects on urban hydrological response. This classification allows the spatial extension of the main core of the storm to be identified.
David Cross, Christian Onof, Hugo Winter, and Pietro Bernardara
Hydrol. Earth Syst. Sci., 22, 727–756, https://doi.org/10.5194/hess-22-727-2018, https://doi.org/10.5194/hess-22-727-2018, 2018
Short summary
Short summary
Extreme rainfall is one of the most significant natural hazards. However, estimating very large events is highly uncertain. We present a new approach to construct intense rainfall using the structure of rainfall generation in clouds. The method is particularly effective at estimating short-duration extremes, which can be the most damaging. This is expected to have immediate impact for the estimation of very rare downpours, with the potential to improve climate resilience and hazard preparedness.
Edouard Goudenhoofdt, Laurent Delobbe, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 5385–5399, https://doi.org/10.5194/hess-21-5385-2017, https://doi.org/10.5194/hess-21-5385-2017, 2017
Short summary
Short summary
Knowing the characteristics of extreme precipitation is useful for flood management applications like sewer system design. The potential of a 12-year high-quality weather radar precipitation dataset is investigated by comparison with rain gauges. Despite known limitations, a good agreement is found between the radar and the rain gauges. Using the radar data allow us to reduce the uncertainty of the extreme value analysis, especially for short duration extremes related to thunderstorms.
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Susana Ochoa-Rodriguez, Patrick Willems, Abdellah Ichiba, Li-Pen Wang, Rui Pina, Johan Van Assel, Guendalina Bruni, Damian Murla Tuyls, and Marie-Claire ten Veldhuis
Hydrol. Earth Syst. Sci., 21, 2361–2375, https://doi.org/10.5194/hess-21-2361-2017, https://doi.org/10.5194/hess-21-2361-2017, 2017
Short summary
Short summary
Data from 10 urban or peri-urban catchments located in five EU countries are used to analyze the imperviousness distribution and sewer network geometry. Consistent scale invariant features are retrieved for both (fractal dimensions can be defined), which enables to define a level of urbanization. Imperviousness representation in operational model is also found to exhibit scale-invariant features (even multifractality). The research was carried out as part of the UE INTERREG IV RainGain project.
Tanja de Boer-Euser, Laurène Bouaziz, Jan De Niel, Claudia Brauer, Benjamin Dewals, Gilles Drogue, Fabrizio Fenicia, Benjamin Grelier, Jiri Nossent, Fernando Pereira, Hubert Savenije, Guillaume Thirel, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 423–440, https://doi.org/10.5194/hess-21-423-2017, https://doi.org/10.5194/hess-21-423-2017, 2017
Short summary
Short summary
In this study, the rainfall–runoff models of eight international research groups were compared for a set of subcatchments of the Meuse basin to investigate the influence of certain model components on the modelled discharge. Although the models showed similar performances based on general metrics, clear differences could be observed for specific events. The differences during drier conditions could indeed be linked to differences in model structures.
Hossein Tabari, Rozemien De Troch, Olivier Giot, Rafiq Hamdi, Piet Termonia, Sajjad Saeed, Erwan Brisson, Nicole Van Lipzig, and Patrick Willems
Hydrol. Earth Syst. Sci., 20, 3843–3857, https://doi.org/10.5194/hess-20-3843-2016, https://doi.org/10.5194/hess-20-3843-2016, 2016
Vincent Wolfs, Quan Tran Quoc, and Patrick Willems
Proc. IAHS, 373, 1–6, https://doi.org/10.5194/piahs-373-1-2016, https://doi.org/10.5194/piahs-373-1-2016, 2016
Short summary
Short summary
Water management is constantly evolving. Trends, such as population growth, urbanization and climate change, pose new challenges to water management. We developed a new and flexible modelling approach to generate very fast models of catchment hydrology, rivers and sewer systems that can be tailored to numerous applications in water management. To illustrate the developed framework, a case study of integrated hydrological-hydraulic modelling for the Grote Nete catchment in Belgium is elaborated.
C. Onyutha and P. Willems
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-12167-2015, https://doi.org/10.5194/hessd-12-12167-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
To investigate the possible change in catchment behavior, which may interfere with the flow-rainfall relationship, three rainfall-runoff models were applied to the main catchments of the Nile Basin in Africa based on inputs covering the period from 1940 to 2003. There was close agreement between the changes in the observed and simulated overland flow from all the models. Thus, change in catchment behavior due to anthropogenic influence in the Nile basin over the selected time period was minimal.
C. Onyutha and P. Willems
Hydrol. Earth Syst. Sci., 19, 2227–2246, https://doi.org/10.5194/hess-19-2227-2015, https://doi.org/10.5194/hess-19-2227-2015, 2015
Short summary
Short summary
Variability of rainfall in the Nile Basin was found linked to the large-scale atmosphere-ocean interactions. This finding is vital for a number of water management and planning aspects. To give just one example, it may help in obtaining improved quantiles for flood or drought/water scarcity risk management. This is especially important under conditions of (1) questionable data quality, and (2) data scarcity. These conditions are typical of the Nile Basin and inevitably need to be addressed.
M. A. Sunyer, Y. Hundecha, D. Lawrence, H. Madsen, P. Willems, M. Martinkova, K. Vormoor, G. Bürger, M. Hanel, J. Kriaučiūnienė, A. Loukas, M. Osuch, and I. Yücel
Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, https://doi.org/10.5194/hess-19-1827-2015, 2015
A. Ochoa, L. Pineda, P. Crespo, and P. Willems
Hydrol. Earth Syst. Sci., 18, 3179–3193, https://doi.org/10.5194/hess-18-3179-2014, https://doi.org/10.5194/hess-18-3179-2014, 2014
D. Vrebos, T. Vansteenkiste, J. Staes, P. Willems, and P. Meire
Hydrol. Earth Syst. Sci., 18, 1119–1136, https://doi.org/10.5194/hess-18-1119-2014, https://doi.org/10.5194/hess-18-1119-2014, 2014
D. E. Mora, L. Campozano, F. Cisneros, G. Wyseure, and P. Willems
Hydrol. Earth Syst. Sci., 18, 631–648, https://doi.org/10.5194/hess-18-631-2014, https://doi.org/10.5194/hess-18-631-2014, 2014
M. T. Taye and P. Willems
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-7857-2013, https://doi.org/10.5194/hessd-10-7857-2013, 2013
Revised manuscript not accepted
Z. Zulkafli, W. Buytaert, C. Onof, W. Lavado, and J. L. Guyot
Hydrol. Earth Syst. Sci., 17, 1113–1132, https://doi.org/10.5194/hess-17-1113-2013, https://doi.org/10.5194/hess-17-1113-2013, 2013
Related subject area
Subject: Urban Hydrology | Techniques and Approaches: Mathematical applications
Advanced sensitivity analysis of the impact of the temporal distribution and intensity of rainfall on hydrograph parameters in urban catchments
Application of logistic regression to simulate the influence of rainfall genesis on storm overflow operations: a probabilistic approach
Francesco Fatone, Bartosz Szeląg, Adam Kiczko, Dariusz Majerek, Monika Majewska, Jakub Drewnowski, and Grzegorz Łagód
Hydrol. Earth Syst. Sci., 25, 5493–5516, https://doi.org/10.5194/hess-25-5493-2021, https://doi.org/10.5194/hess-25-5493-2021, 2021
Short summary
Short summary
A sensitivity analysis based on a simulator of hydrograph parameters (volume, maximum flow) is shown. The method allows us to analyze the impact of calibrated hydrodynamic model parameters, including rainfall distribution and intensity, on the hydrograph. A sensitivity coefficient and the effect of the simulator uncertainty on calculation results are presented. This approach can be used to select hydrographs for calibration and validation of models, which has not been taken into account so far.
Bartosz Szeląg, Roman Suligowski, Jan Studziński, and Francesco De Paola
Hydrol. Earth Syst. Sci., 24, 595–614, https://doi.org/10.5194/hess-24-595-2020, https://doi.org/10.5194/hess-24-595-2020, 2020
Short summary
Short summary
A method for linking releases of a storm overflow with the precipitation-forming mechanism, depending on air circulation, was presented. The logit model was used to simulate overflow releases, and a rainfall generator accounting for a forming mechanism was used for forecasting. It was found that the logit model is universal and can be applied to a catchment with diverse geographical characteristics and that the precipitation-forming mechanism has an impact on the operation of the storm overflow.
Cited articles
Agterberg, F. P.: Mixtures of multiplicative cascade models in geochemistry, Nonlin. Processes Geophys., 14, 201–209, https://doi.org/10.5194/npg-14-201-2007, 2007.
Agterberg, F. P.: Multifractals and geostatistics, J. Geochem. Explor., 122, 113–122, https://doi.org/10.1016/j.gexplo.2012.04.001, 2012a.
Agterberg, F. P.: Sampling and analysis of chemical element concentration distribution in rock units and orebodies, Nonlin. Processes Geophys., 19, 23–44, https://doi.org/10.5194/npg-19-23-2012, 2012b.
Anagnostou, E. N. and Krajewski, W. F.: Real-time radar rainfall estimation, Part I: Algorithm formulation, J. Atmos. Ocean. Tech., 16, 189–197, 1999.
Bell, F. C.: The Areal Reduction Factor in Rainfall Frequency Estimation, Centre for Ecology & Hydrology (CEH), Wallingford, 1976.
Bowler, N. E., Pierce, C. E., and Seed, A. W.: STEPS: a probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP, Q. J. Roy Meteorol. Soc., 132, 2127–2155, https://doi.org/10.1256/qj.04.100, 2006.
Brandes, E. A., Ryzhkov, A. V and Zrnić, D. S.: An evaluation of radar rainfall estimates from specific differential phase, J. Atmos. Ocean. Tech., 18, 363–375, https://doi.org/10.1175/1520-0426(2001)018<0363:AEORRE>2.0.CO;2, 2001.
Chen, Z., Cheng, Q., Chen, J., and Xie, S.: A novel iterative approach for mapping local singularities from geochemical data, Nonlin. Processes Geophys., 14, 317–324, https://doi.org/10.5194/npg-14-317-2007, 2007.
Cheng, Q.: Multifractality and spatial statistics, Comput. Geosci., 25, 949–961, https://doi.org/10.1016/S0098-3004(99)00060-6, 1999.
Cheng, Q. and Zhao, P.: Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposit prediction, Geosci. Front., 2, 67–79, https://doi.org/10.1016/j.gsf.2010.12.003, 2011.
Cheng, Q., Agterberg, F. P., and Ballantyne, S. B.: The separation of geochemical anomalies from background by fractal methods, J. Geochem. Explor., 51, 109–130, https://doi.org/10.1016/0375-6742(94)90013-2, 1994.
Ciach, G. J.: Local random errors in tipping-bucket rain gauge measurements, J. Atmos. Ocean. Tech., 20, 752–759, https://doi.org/10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2, 2003.
Collier, C. G.: Accuracy of rainfall estimates by radar, part I: Calibration by telemetering raingauges, J. Hydrol., 83, 207–223, https://doi.org/10.1016/0022-1694(86)90152-6, 1986.
Collier, C. G.: Applications of Weather Radar Systems, 2nd Edn., Wiley, Chichester, England, 1996.
Deletic, A., Dotto, C. B. S., McCarthy, D. T., Kleidorfer, M., Freni, G., Mannina, G., Uhl, M., Henrichs, M., Fletcher, T. D., Rauch, W., Bertrand-Krajewski, J. L., and Tait, S.: Assessing uncertainties in urban drainage models, Phys. Chem. Earth Pt. A/B/C, 42–44, 3–10, https://doi.org/10.1016/j.pce.2011.04.007, 2012.
Einfalt, T. and Michaelides, S.: Quality control of precipitation data, in: Precipitation: Advances in Measurement, Estimation and Prediction SE-5, edited by: Michaelides, S., Springer, Berlin, Heidelberg, 101–126, 2008.
Einfalt, T., Arnbjerg-Nielsen, K., Golz, C., Jensen, N.-E., Quirmbach, M., Vaes, G., and Vieux, B.: Towards a roadmap for use of radar rainfall data in urban drainage, J. Hydrol., 299, 186–202, https://doi.org/10.1016/j.jhydrol.2004.08.004, 2004.
Einfalt, T., Jessen, M., and Mehlig, B.: Comparison of radar and raingauge measurements during heavy rainfall, Water Sci. Technol., 51, 195–201, 2005.
Evertsz, C. J. G. and Mandelbrot, B. B.: Multifractal measures, in: Chaos and Fractals, edited by: Peitgen, H.-O., Jurgens, H., and Saupe, D., Springer, New York, 922–953, 1992.
Fulton, R. A., Breidenbach, J. P., Dong-Jun, S., and Miller, D. A.: The WSR-88D rainfall algorithm, Weather Forecast., 13, 377–395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2, 1998.
Germann, U., Galli, G., Boscacci, M., and Bolliger, M.: Radar precipitation measurement in a mountainous region, Q. J. Roy Meteorol. Soc., 132, 1669–1692, https://doi.org/10.1256/qj.05.190, 2006.
Gires, A., Onof, C., Maksimović, C., Schertzer, D., Tchiguirinskaia, I., and Simões, N.: Quantifying the impact of small scale unmeasured rainfall variability on urban runoff through multifractal downscaling: a case study, J. Hydrol., 442–443, 117–128, https://doi.org/10.1016/j.jhydrol.2012.04.005, 2012.
Golding, B. W.: Nimrod: a system for generating automated very short range forecasts, Meteorol. Appl., 5, 1–16, https://doi.org/10.1017/S1350482798000577, 1998.
Gonzalez-Audicana, M., Saleta, J. L., Catalan, R. G., Garcia, R.: Fusion of multispectral and panchromatic images using improved \-I\-H\-S and \-P\-C\-A mergers based on wavelet decomposition, IEEE T. Geosci. Remote, 42, 1291–1299, https://doi.org/10.1109/TGRS.2004.825593, 2004.
Gooch, M. N.: Use of rainfall data from flow surveys, WaPUG User Note No. 6, Chartered Institute of Water and Environmental Management (CIWEM), London, 2009.
Goudenhoofdt, E. and Delobbe, L.: Evaluation of radar-gauge merging methods for quantitative precipitation estimates, Hydrol. Earth Syst. Sci., 13, 195–203, https://doi.org/10.5194/hess-13-195-2009, 2009.
Guo, Y. and Adams, B. J.: Hydrologic analysis of urban catchments with event-based probabilistic models: 1. Runoff volume, Water Resour. Res., 34, 3421–3431, https://doi.org/10.1029/98WR02449, 1998.
Habib, E., Meselhe, E. and Aduvala, A.: Effect of local errors of tipping-bucket rain gauges on rainfall–runoff simulations, J. Hydrol. Eng., 13, 488–496, https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(488), 2008.
Harrison, D. L., Driscoll, S. J., and Kitchen, M.: Improving precipitation estimates from weather radar using quality control and correction techniques, Meteorol. Appl., 7, 135–144, https://doi.org/10.1017/S1350482700001468, 2000.
Harrison, D. L., Scovell, R. W., and Kitchen, M.: High-resolution precipitation estimates for hydrological uses, P. I. Civil Eng-Wat. M., 162, 125–135, https://doi.org/10.1680/wama.2009.162.2.125, 2009.
HR Wallingford: Wallingford Procedure for Design and Analysis of Urban Storm Drainage, Wallingford, UK, 1983.
Kalman, R. E.: A new approach to linear filtering and prediction problems, J. Basic Eng.-T. ASME, 82, 35–45, https://doi.org/10.1115/1.3662552, 1960.
Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, https://doi.org/10.1029/2005WR004368, 2006.
Krajewski, W. F.: Cokriging radar-rainfall and rain gage data, J. Geophys. Res., 92, 9571–9580, https://doi.org/10.1029/JD092iD08p09571, 1987.
Krajewski, W. F. and Smith, J. A.: Radar hydrology: rainfall estimation, Adv. Water Resour., 25, 1387–1394, https://doi.org/10.1016/S0309-1708(02)00062-3, 2002.
Krämer, S., Fuchs, L., and Verworn, H.: Aspects of radar rainfall forecasts and their effectiveness for real time control-the example of the sewer system of the City of Vienna, Water Pract. Technol., 2, 42–49, 2007.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Kumar, P. and Foufoula-Georgiou, E.: A multicomponent decomposition of spatial rainfall fields: 1. Segregation of large- and small-scale features using wavelet transforms, Water Resour. Res., 29, 2515–2532, https://doi.org/10.1029/93WR00548, 1993.
La Barbera, P., Lanza, L. G., and Stagi, L.: Tipping bucket mechanical errors and their influence on rainfall statistics and extremes, Water Sci. Technol., 45, 1–9, 2002.
Liguori, S., Rico-Ramirez, M. A., Schellart, A. N. A., and Saul, A. J.: Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments, Atmos. Res., 103, 80–95, https://doi.org/10.1016/j.atmosres.2011.05.004, 2011.
Lovejoy, S. and Mandelbrot, B. B.: Fractal properties of rain, and a fractal model, Tellus A, 37, 209–232, https://doi.org/10.1111/j.1600-0870.1985.tb00423.x1985.
Luyckx, G. and Berlamont, J.: Simplified method to correct rainfall measurements from tipping bucket rain gauges, in: Urban Drainage Modeling: Proceedings of the Speciality Symposium of the World Water and Environmental Resource Congress, edited by: Brashear, R. W. and Maksimović, Č., American Society of Civil Engineers, Washington, D.C., 767–776, 2001.
Mallat, S. and Hwang, W.-L.: Singularity detection and processing with wavelets, IEEE T. Inform. Theory, 38, 617–643, https://doi.org/10.1109/18.119727, 1992.
Marshall, J. and Palmer, W.: The distribution of raindrops with size, J. Meteorol., 5, 165–166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948.
Marshall, M. and McIntyre, N.: Field verification of bed-mounted ADV meters, Proc. ICE – Water Manage., 161, 199–206, https://doi.org/10.1680/wama.2008.161.4.199, 2008.
Mazzetti, C.: Data interpolation and multi-sensors Bayesian combinations, RainMusic User's Manual and References, PROGEA srl, Bologna, Italy, 2012.
Mazzetti, C. and Todini, E.: Combining raingauges and radar precipitation measurements using a Bayesian approach, in: geoENV IV – Geostatistics for Environmental Applications, edited by: Sanchez-Vila, X., Carrera, J., and Gómez-Hernández, J. J., Kluwer Academic Publishers, Springer, the Netherlands, 401–412, 2004.
Molini, A., Lanza, L. G., and La Barbera, P.: The impact of tipping-bucket raingauge measurement errors on design rainfall for urban-scale applications, Hydrol. Process., 19, 1073–1088, https://doi.org/10.1002/hyp.5646, 2005.
Nunes, J., Bouaoune, Y., Delechelle, E., Niang, O., and Bunel, P.: Image analysis by bidimensional empirical mode decomposition, Image Vis. Comput., 21, 1019–1026, https://doi.org/10.1016/S0262-8856(03)00094-5, 2003.
Nunes, J., Guyot, S., and Deléchelle, E.: Texture analysis based on local analysis of the bidimensional empirical mode decomposition, Mach. Vis. Appl., 16, 177–188, https://doi.org/10.1007/s00138-004-0170-5, 2005.
Ochoa-Rodríguez, S., Wang, L.-P., Grist, A., Allitt, R., Onof, C., and Maksimović, Č.: Improving the applicability of radar rainfall estimates for urban pluvial flood modelling and forecasting, in: Urban Drainage Group Autumn Conference and Exhibition 2013: Future Thinking and Challenges, 13–15 November 2013, Nottingham, UK, 19, 2013.
Osborne, M. P.: A New Runoff Volume Model, Wastewater Planning Users Group WaPUG, Chartered Institute of Water and Environmental Management (CIWEM), UK, 2001.
Robertson, A. N., Farrar, C. R., and Sohn, H.: Singularity detection for structural health monitoring using Hölder exponents, Mech. Syst. Signal Pr., 17, 1163–1184, https://doi.org/10.1006/mssp.2002.1569, 2003.
Schellart, A. N. A., Shepherd, W. J., and Saul, A. J.: Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale, Adv. Water Resour., 45, 65–75, https://doi.org/10.1016/j.advwatres.2011.10.012, 2012.
Schertzer, D. and Lovejoy, S.: Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes, J. Geophys. Res., 92, 9693–9714, https://doi.org/10.1029/JD092iD08p09693, 1987.
Schertzer, D., Tchiguirinskaia, I., and Lovejoy, S.: Multifractality: at least three moments!, Interactive comment on "Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrolog" by F. Lombardo et al., Hydrol. Earth Syst. Sci. Discuss., 10, C3103–C3109, 2013.
Seo, D. and Smith, J.: Rainfall estimation using raingages and radar – a Bayesian approach: 1. Derivation of estimators, Stoch. Hydrol. Hydraul., 5, 17–29, https://doi.org/10.1007/BF01544175, 1991.
Sevruk, B. and Nešpor, V.: Empirical and theoretical assessment of the wind induced error of rain measurement, Water Sci. Technol., 37, 171–178, https://doi.org/10.1016/S0273-1223(98)00330-8, 1998.
Sinclair, S. and Pegram, G.: Combining radar and rain gauge rainfall estimates using conditional merging, Atmos. Sci. Lett., 6, 19–22, https://doi.org/10.1002/asl.85, 2005.
Smith, J. A., Baeck, M. L., Meierdiercks, K. L., Miller, A. J., and Krajewski, W. F.: Radar rainfall estimation for flash flood forecasting in small urban watersheds, Adv. Water Resour., 30, 2087–2097, https://doi.org/10.1016/j.advwatres.2006.09.007, 2007.
Smith, J. A., Hui, E., Steiner, M., Baeck, M. L., Krajewski, W. F., and Ntelekos, A. A.: Variability of rainfall rate and raindrop size distributions in heavy rain, Water Resour. Res., 45, W04430, https://doi.org/10.1029/2008WR006840, 2009.
Struzik, Z. R.: Local effective Hölder exponent estimation on the wavelet transform maxima tree, in: Fractals: Theory and Applications in Engineering, edited by: Dekking, M., Véhel, J. L., Lutton, E., and Tricot, C., Springer, London, UK, 93–112, 1999.
Tchiguirinskaia, I., Schertzer, D., Hoang, C. T., and Lovejoy, S.: Multifractal study of three storms with different dynamics over the Paris region, in: Weather Radar and Hydrology, edited by: Moore, R. J., Cole, S. J., and Illingworth, A. J., IAHS, International Association of Hydrological Sciences (IAHS), Exeter, UK, 421–426, 2011.
Thorndahl, S., Nielsen, J. E., and Rasmussen, M. R.: Bias adjustment and advection interpolation of long-term high resolution radar rainfall series, J. Hydrol., 508, 214–226, https://doi.org/10.1016/j.jhydrol.2013.10.056, 2014.
Todini, E.: A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements, Hydrol. Earth Syst. Sci., 5, 187–199, https://doi.org/10.5194/hess-5-187-2001, 2001.
Ulbrich, C. W.: Natural variations in the analytical form of the raindrop size distribution, J. Clim. Appl. Meteorol., 22, 1764–1775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2, 1983.
Velasco-Forero, C. A., Sempere-Torres, D., Cassiraga, E. F., and Gómez-Hernández, J.: A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data, Adv. Water Resour., 32, 986–1002, https://doi.org/10.1016/j.advwatres.2008.10.004, 2009.
Vieux, B. E. and Bedient, P. B.: Assessing urban hydrologic prediction accuracy through event reconstruction, J. Hydrol., 299, 217–236, https://doi.org/10.1016/j.jhydrol.2004.08.005, 2004.
Villarini, G., Smith, J. A., Lynn Baeck, M., Sturdevant-Rees, P., and Krajewski, W. F.: Radar analyses of extreme rainfall and flooding in urban drainage basins, J. Hydrol., 381, 266–286, https://doi.org/10.1016/j.jhydrol.2009.11.048, 2010.
Wackernagel, H.: Multivariate Geostatistics, An Introduction with Applications, Springer, Berlin, 2003.
Wang, L.-P. and Onof, C.: High-resolution rainfall field re-construction based upon Kriging and local singularity analysis, in: Hydrofractals '13, HF-10, 17–19 October 2013, Kos Island, Greece, 2013.
Wang, L.-P., Onof, C., Ochoa-Rodríguez, S., and Simões, N.: Analysis of kriged rainfields using multifractals, in: 9th International Workshop on Precipitation in Urban Areas: Urban Challenges in Rainfall Analysis, 6–9 December 2012, St. Moritz, Switzerland, 138–142, 2012.
Wang, L.-P., Ochoa-Rodríguez, S., Simões, N. E., Onof, C., and Maksimović, Č.: Radar-raingauge data combination techniques: a revision and analysis of their suitability for urban hydrology, Water Sci. Technol., 68, 737–747, https://doi.org/10.2166/wst.2013.300, 2013.
Wang, L.-P., Ochoa-Rodríguez, S., Willems, P., and Onof, C.: Improving the applicability of gauge-based radar rainfall adjustment methods to urban pluvial flood modelling and forecasting using local singularity analysis, in: International Symposium on Weather Radar and Hydrology (WRaH), 7–9April 2014, Washington, D.C., 10 pp., 2014.
WaPUG: Code of Practice for the Hydraulic Modelling of Sewer Systems, Wastewater Planning Users Group WaPUG, Chartered Institute of Water and Environmental Management (CIWEM), UK, 2002.
Zheng, Y., Hou, X., Bian, T., and Qin, Z.: Effective image fusion rules Of multi-scale image decomposition. in: 5th International Symposium on Image and Signal Processing and Analysis, 27–29 September 2007, Istanbul, Turkey, 362–366, https://doi.org/10.1109/ISPA.2007.4383720, 2007.
Short summary
A new methodology is proposed in this paper, focusing on improving the applicability of the operational weather radar data to urban hydrology with rain gauge data. The proposed methodology employed a simple yet effective technique to extract additional information (called local singularity structure) from radar data, which was generally ignored in related works. The associated improvement can be particularly seen in capturing storm peak magnitudes, which is critical for urban applications.
A new methodology is proposed in this paper, focusing on improving the applicability of the...