Articles | Volume 19, issue 9
https://doi.org/10.5194/hess-19-3925-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-3925-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Definition of efficient scarcity-based water pricing policies through stochastic programming
Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Valencia, Spain
M. Pulido-Velazquez
Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Valencia, Spain
A. Tilmant
Department of Civil and Water Engineering, Université Laval, Québec City, Québec, Canada
Related authors
Ferdinand L. M. Diermanse, Marjolein J. P. Mens, Hector Macian-Sorribes, and Femke Schasfoort
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-45, https://doi.org/10.5194/hess-2018-45, 2018
Preprint withdrawn
Thibaut Lachaut and Amaury Tilmant
Hydrol. Earth Syst. Sci., 25, 6421–6435, https://doi.org/10.5194/hess-25-6421-2021, https://doi.org/10.5194/hess-25-6421-2021, 2021
Short summary
Short summary
Response surfaces are increasingly used to identify the hydroclimatic conditions leading to a water resources system's failure. Partitioning the surface usually requires performance thresholds that are not necessarily crisp. We propose a methodology that combines the inherent uncertainty of response surfaces with the ambiguity of performance thresholds. The proposed methodology is illustrated with a multireservoir system in Canada for which some performance thresholds are imprecise.
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629, https://doi.org/10.5194/hess-25-4611-2021, https://doi.org/10.5194/hess-25-4611-2021, 2021
Short summary
Short summary
The stationary assumption in hydrology has become obsolete because of climate changes. In that context, it is crucial to assess the performance of a hydrologic model over a wide range of climates and their corresponding hydrologic conditions. In this paper, numerous, contrasted, climate sequences identified by a hidden Markov model (HMM) are used in a differential split-sample testing framework to assess the robustness of a hydrologic model. We illustrate the method on the Senegal River.
Thibaut Lachaut and Amaury Tilmant
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-214, https://doi.org/10.5194/hess-2020-214, 2020
Manuscript not accepted for further review
Short summary
Short summary
Response surfaces are increasingly used to identify the hydro-climatic conditions leading to water resources system's failure. Partitioning the surface usually requires performance thresholds that are not necessarily crisp. We propose a methodology that combines the inherent uncertainty of response surfaces with the ambiguity of performance thresholds. The proposed methodology is illustrated with a multireservoir system in Canada for which some performance thresholds are imprecise.
Ferdinand L. M. Diermanse, Marjolein J. P. Mens, Hector Macian-Sorribes, and Femke Schasfoort
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-45, https://doi.org/10.5194/hess-2018-45, 2018
Preprint withdrawn
Nicolas Avisse, Amaury Tilmant, Marc François Müller, and Hua Zhang
Hydrol. Earth Syst. Sci., 21, 6445–6459, https://doi.org/10.5194/hess-21-6445-2017, https://doi.org/10.5194/hess-21-6445-2017, 2017
Short summary
Short summary
Information on small reservoir storage is crucial for water management in a river basin. However, it is most of the time not freely available in remote, ungauged, or conflict-torn areas. We propose a novel approach using satellite imagery information only to quantitatively estimate storage variations in such inaccessible areas. We apply the method to southern Syria, where ground monitoring is impeded by the ongoing civil war, and validate it against in situ measurements in neighbouring Jordan.
Diane Arjoon, Amaury Tilmant, and Markus Herrmann
Hydrol. Earth Syst. Sci., 20, 2135–2150, https://doi.org/10.5194/hess-20-2135-2016, https://doi.org/10.5194/hess-20-2135-2016, 2016
Short summary
Short summary
An institutional arrangement that distributes welfare in a transboundary river basin is described. A hydro-economic model is used to allocate water resources, water users pay for water and the totals of these water charges are equitably redistributed through a sharing rule developed using an axiomatic approach. The technique may ensure economic efficiency and lead to more equitable solutions in the sharing of benefits in transboundary river basins.
A. Tilmant, G. Marques, and Y. Mohamed
Hydrol. Earth Syst. Sci., 19, 1457–1467, https://doi.org/10.5194/hess-19-1457-2015, https://doi.org/10.5194/hess-19-1457-2015, 2015
Short summary
Short summary
As water resources are increasingly used for various purposes, there is a need for a unified framework to describe, quantify and classify water use in a region, be it a catchment, a river basin or a country. This paper presents a novel water accounting framework whereby the contribution of traditional water uses but also storage services are properly considered.
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Stochastic approaches
Check dam impact on sediment loads: example of the Guerbe River in the Swiss Alps – a catchment scale experiment
Controls on flood managed aquifer recharge through a heterogeneous vadose zone: hydrologic modeling at a site characterized with surface geophysics
Spatiotemporal responses of the crop water footprint and its associated benchmarks under different irrigation regimes to climate change scenarios in China
Bridging the scale gap: obtaining high-resolution stochastic simulations of gridded daily precipitation in a future climate
3D multiple-point geostatistical simulation of joint subsurface redox and geological architectures
News media coverage of conflict and cooperation dynamics of water events in the Lancang–Mekong River basin
Analysis of the effects of biases in ensemble streamflow prediction (ESP) forecasts on electricity production in hydropower reservoir management
Using paleoclimate reconstructions to analyse hydrological epochs associated with Pacific decadal variability
Bias correction of simulated historical daily streamflow at ungauged locations by using independently estimated flow duration curves
Season-ahead forecasting of water storage and irrigation requirements – an application to the southwest monsoon in India
Hydrostratigraphic modeling using multiple-point statistics and airborne transient electromagnetic methods
A risk assessment methodology to evaluate the risk failure of managed aquifer recharge in the Mediterranean Basin
A coupled stochastic rainfall–evapotranspiration model for hydrological impact analysis
Real-time updating of the flood frequency distribution through data assimilation
Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors
The cost of ending groundwater overdraft on the North China Plain
A dual-inexact fuzzy stochastic model for water resources management and non-point source pollution mitigation under multiple uncertainties
Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology
Determining spatial variability of dry spells: a Markov-based method, applied to the Makanya catchment, Tanzania
Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns
Estimating the flood frequency distribution at seasonal and annual time scales
Domestic wells have high probability of pumping septic tank leachate
Record extension for short-gauged water quality parameters using a newly proposed robust version of the Line of Organic Correlation technique
Calibration of the modified Bartlett-Lewis model using global optimization techniques and alternative objective functions
Trend analysis of extreme precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre Markos
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024, https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be ca. 10 times larger in comparison with the current situation.
Zach Perzan, Gordon Osterman, and Kate Maher
Hydrol. Earth Syst. Sci., 27, 969–990, https://doi.org/10.5194/hess-27-969-2023, https://doi.org/10.5194/hess-27-969-2023, 2023
Short summary
Short summary
In this study, we simulate flood managed aquifer recharge – the process of intentionally inundating land to replenish depleted aquifers – at a site imaged with geophysical equipment. Results show that layers of clay and silt trap recharge water above the water table, where it is inaccessible to both plants and groundwater wells. Sensitivity analyses also identify the main sources of uncertainty when simulating managed aquifer recharge, helping to improve future forecasts of site performance.
Zhiwei Yue, Xiangxiang Ji, La Zhuo, Wei Wang, Zhibin Li, and Pute Wu
Hydrol. Earth Syst. Sci., 26, 4637–4656, https://doi.org/10.5194/hess-26-4637-2022, https://doi.org/10.5194/hess-26-4637-2022, 2022
Short summary
Short summary
Facing the increasing challenge of sustainable crop supply with limited water resources due to climate change, large-scale responses in the water footprint (WF) and WF benchmarks of crop production remain unclear. Here, we quantify the effects of future climate change scenarios on the WF and WF benchmarks of maize and wheat in time and space in China. Differences in crop growth between rain-fed and irrigated farms and among furrow-, sprinkler-, and micro-irrigated regimes are identified.
Qifen Yuan, Thordis L. Thorarinsdottir, Stein Beldring, Wai Kwok Wong, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 25, 5259–5275, https://doi.org/10.5194/hess-25-5259-2021, https://doi.org/10.5194/hess-25-5259-2021, 2021
Short summary
Short summary
Localized impacts of changing precipitation patterns on surface hydrology are often assessed at a high spatial resolution. Here we introduce a stochastic method that efficiently generates gridded daily precipitation in a future climate. The method works out a stochastic model that can describe a high-resolution data product in a reference period and form a realistic precipitation generator under a projected future climate. A case study of nine catchments in Norway shows that it works well.
Rasmus Bødker Madsen, Hyojin Kim, Anders Juhl Kallesøe, Peter B. E. Sandersen, Troels Norvin Vilhelmsen, Thomas Mejer Hansen, Anders Vest Christiansen, Ingelise Møller, and Birgitte Hansen
Hydrol. Earth Syst. Sci., 25, 2759–2787, https://doi.org/10.5194/hess-25-2759-2021, https://doi.org/10.5194/hess-25-2759-2021, 2021
Short summary
Short summary
The protection of subsurface aquifers from contamination is an ongoing environmental challenge. Some areas of the underground have a natural capacity for reducing contaminants. In this research these areas are mapped in 3D along with information about, e.g., sand and clay, which indicates whether contaminated water from the surface will travel through these areas. This mapping technique will be fundamental for more reliable risk assessment in water quality protection.
Jing Wei, Yongping Wei, Fuqiang Tian, Natalie Nott, Claire de Wit, Liying Guo, and You Lu
Hydrol. Earth Syst. Sci., 25, 1603–1615, https://doi.org/10.5194/hess-25-1603-2021, https://doi.org/10.5194/hess-25-1603-2021, 2021
Richard Arsenault and Pascal Côté
Hydrol. Earth Syst. Sci., 23, 2735–2750, https://doi.org/10.5194/hess-23-2735-2019, https://doi.org/10.5194/hess-23-2735-2019, 2019
Short summary
Short summary
Hydrological forecasting allows hydropower system operators to make the most efficient use of the available water as possible. Accordingly, hydrologists have been aiming at improving the quality of these forecasts. This work looks at the impacts of improving systematic errors in a forecasting scheme on the hydropower generation using a few decision-aiding tools that are used operationally by hydropower utilities. We find that the impacts differ according to the hydropower system characteristics.
Lanying Zhang, George Kuczera, Anthony S. Kiem, and Garry Willgoose
Hydrol. Earth Syst. Sci., 22, 6399–6414, https://doi.org/10.5194/hess-22-6399-2018, https://doi.org/10.5194/hess-22-6399-2018, 2018
Short summary
Short summary
Analyses of run lengths of Pacific decadal variability (PDV) suggest that there is no significant difference between run lengths in positive and negative phases of PDV and that it is more likely than not that the PDV run length has been non-stationary in the past millennium. This raises concerns about whether variability seen in the instrumental record (the last ~100 years), or even in the shorter 300–400 year paleoclimate reconstructions, is representative of the full range of variability.
William H. Farmer, Thomas M. Over, and Julie E. Kiang
Hydrol. Earth Syst. Sci., 22, 5741–5758, https://doi.org/10.5194/hess-22-5741-2018, https://doi.org/10.5194/hess-22-5741-2018, 2018
Short summary
Short summary
This work observes that the result of streamflow simulation is often biased, especially with regards to extreme events, and proposes a novel technique to reduce this bias. By using parallel simulations of relative streamflow timing (sequencing) and the distribution of streamflow (magnitude), severe biases can be mitigated. Reducing this bias allows for improved utility of streamflow simulation for water resources management.
Arun Ravindranath, Naresh Devineni, Upmanu Lall, and Paulina Concha Larrauri
Hydrol. Earth Syst. Sci., 22, 5125–5141, https://doi.org/10.5194/hess-22-5125-2018, https://doi.org/10.5194/hess-22-5125-2018, 2018
Short summary
Short summary
We present a framework for forecasting water storage requirements in the agricultural sector and an application of this framework to water risk assessment in India. Our framework involves defining a crop-specific water stress index and applying a particular statistical forecasting model to predict seasonal water stress for the crop of interest. The application focused on forecasting crop water stress for potatoes grown during the monsoon season in the Satara district of Maharashtra.
Adrian A. S. Barfod, Ingelise Møller, Anders V. Christiansen, Anne-Sophie Høyer, Júlio Hoffimann, Julien Straubhaar, and Jef Caers
Hydrol. Earth Syst. Sci., 22, 3351–3373, https://doi.org/10.5194/hess-22-3351-2018, https://doi.org/10.5194/hess-22-3351-2018, 2018
Short summary
Short summary
Three-dimensional geological models are important to securing and managing groundwater. Such models describe the geological architecture, which is used for modeling the flow of groundwater. Common geological modeling approaches result in one model, which does not quantify the architectural uncertainty of the geology.
We present a comparison of three different state-of-the-art stochastic multiple-point statistical methods for quantifying the geological uncertainty using real-world datasets.
Paula Rodríguez-Escales, Arnau Canelles, Xavier Sanchez-Vila, Albert Folch, Daniel Kurtzman, Rudy Rossetto, Enrique Fernández-Escalante, João-Paulo Lobo-Ferreira, Manuel Sapiano, Jon San-Sebastián, and Christoph Schüth
Hydrol. Earth Syst. Sci., 22, 3213–3227, https://doi.org/10.5194/hess-22-3213-2018, https://doi.org/10.5194/hess-22-3213-2018, 2018
Short summary
Short summary
In this work, we have developed a methodology to evaluate the failure risk of managed aquifer recharge, and we have applied it to six different facilities located in the Mediterranean Basin. The methodology was based on the development of a probabilistic risk assessment based on fault trees. We evaluated both technical and non-technical issues, the latter being more responsible for failure risk.
Minh Tu Pham, Hilde Vernieuwe, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 22, 1263–1283, https://doi.org/10.5194/hess-22-1263-2018, https://doi.org/10.5194/hess-22-1263-2018, 2018
Short summary
Short summary
In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Still, the developed model has great potential for hydrological impact analysis.
Cristina Aguilar, Alberto Montanari, and María-José Polo
Hydrol. Earth Syst. Sci., 21, 3687–3700, https://doi.org/10.5194/hess-21-3687-2017, https://doi.org/10.5194/hess-21-3687-2017, 2017
Short summary
Short summary
Assuming that floods are driven by both short- (meteorological forcing) and long-term perturbations (higher-than-usual moisture), we propose a technique for updating a season in advance the flood frequency distribution. Its application in the Po and Danube rivers helped to reduce the uncertainty in the estimation of floods and thus constitutes a promising tool for real-time management of flood risk mitigation. This study is the result of the stay of the first author at the University of Bologna.
Veit Blauhut, Kerstin Stahl, James Howard Stagge, Lena M. Tallaksen, Lucia De Stefano, and Jürgen Vogt
Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, https://doi.org/10.5194/hess-20-2779-2016, 2016
Claus Davidsen, Suxia Liu, Xingguo Mo, Dan Rosbjerg, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 20, 771–785, https://doi.org/10.5194/hess-20-771-2016, https://doi.org/10.5194/hess-20-771-2016, 2016
Short summary
Short summary
In northern China, rivers run dry and groundwater tables drop, causing economic losses for all water use sectors. We present a groundwater-surface water allocation decision support tool for cost-effective long-term recovery of an overpumped aquifer. The tool is demonstrated for a part of the North China Plain and can support the implementation of the recent China No. 1 Document in a rational and economically efficient way.
C. Dong, Q. Tan, G.-H. Huang, and Y.-P. Cai
Hydrol. Earth Syst. Sci., 18, 1793–1803, https://doi.org/10.5194/hess-18-1793-2014, https://doi.org/10.5194/hess-18-1793-2014, 2014
F. Lombardo, E. Volpi, D. Koutsoyiannis, and S. M. Papalexiou
Hydrol. Earth Syst. Sci., 18, 243–255, https://doi.org/10.5194/hess-18-243-2014, https://doi.org/10.5194/hess-18-243-2014, 2014
B. M. C. Fischer, M. L. Mul, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 2161–2170, https://doi.org/10.5194/hess-17-2161-2013, https://doi.org/10.5194/hess-17-2161-2013, 2013
J. Lorenzo-Lacruz, E. Morán-Tejeda, S. M. Vicente-Serrano, and J. I. López-Moreno
Hydrol. Earth Syst. Sci., 17, 119–134, https://doi.org/10.5194/hess-17-119-2013, https://doi.org/10.5194/hess-17-119-2013, 2013
E. Baratti, A. Montanari, A. Castellarin, J. L. Salinas, A. Viglione, and A. Bezzi
Hydrol. Earth Syst. Sci., 16, 4651–4660, https://doi.org/10.5194/hess-16-4651-2012, https://doi.org/10.5194/hess-16-4651-2012, 2012
J. E. Bremer and T. Harter
Hydrol. Earth Syst. Sci., 16, 2453–2467, https://doi.org/10.5194/hess-16-2453-2012, https://doi.org/10.5194/hess-16-2453-2012, 2012
B. Khalil and J. Adamowski
Hydrol. Earth Syst. Sci., 16, 2253–2266, https://doi.org/10.5194/hess-16-2253-2012, https://doi.org/10.5194/hess-16-2253-2012, 2012
W. J. Vanhaute, S. Vandenberghe, K. Scheerlinck, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 16, 873–891, https://doi.org/10.5194/hess-16-873-2012, https://doi.org/10.5194/hess-16-873-2012, 2012
H. Shang, J. Yan, M. Gebremichael, and S. M. Ayalew
Hydrol. Earth Syst. Sci., 15, 1937–1944, https://doi.org/10.5194/hess-15-1937-2011, https://doi.org/10.5194/hess-15-1937-2011, 2011
Cited articles
Alvarez-Mendiola, E.: Diseño de una política eficiente de precios del agua integrando costes de oportunidad del recurso a escala de cuenca, PhD dissertation, Universitat Politècnica de València, Valencia, Spain, 2012 (in Spanish).
Andreu, J., and Sahuquillo, A.: Efficient aquifer simulation in complex systems, J. Water Res. Pl.-ASCE, 113, 110–129, 1987.
CHJ: Esquema provisional de Temas Importantes, Ministerio de Medio Ambiente y Medio Rural y Marino, Confederación Hidrográfica del Júcar, Valencia, Spain, 2009 (in Spanish).
Dandy, G. C., McBean, E. A., and Hutchinson, B. G.: A model for constrained optimum water pricing and capacity expansion, Water Resour. Res., 20, 511–520, 1984.
Dinar, A., Rosegrant, M. W., and Meinzen-Dick, R.: Water Allocation Mechanisms – Principles and Examples, Agriculture and Natural Resources Department, World Bank, Washington, DC, USA, 2007.
European Commission: Directive 2000/60/Ec of the European Parliament and of the Council, of 23 October 2000, establishing a framework for community Action in the Field of Water Policy, Official Journal of the European Communities (OJL), 327, 1–73, 2000.
Fisher, F., Huber-Lee, A., and Amir, I.: Liquid Assets: An Economic Approach for Water Management and Conflict Resolution in the Middle East and Beyond, RFF Press, Washington, DC, USA, 2005.
Garrick, D., Siebentritt, M. A., Aylward, B., Bauer, C. J., and Purkey, A.: Water markets and freshwater ecosystem services: policy reform and implementation in the Columbia and Murray-Darling Basins, Ecol. Econ., 69, 366–379, 2009.
Griffin, R. C.: Effective water pricing, J. Am. Water Resour. As., 37, 1335–1347, 2001.
Griffin, R. C.: Water Resource Economics: The Analysis of Scarcity, Policies, and Projects, The MIT Press, Cambridge, USA, 402 pp., 2006.
Gysi, M. and Loucks, D. P.: Some long run effects of water-pricing policies, Water Resour. Res., 7, 1371–1382, 1971.
Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., and Howitt, R. E.: Hydro-economic models: concepts, design, applications, and future prospects, J. Hydrol., 375, 627–643, 2009.
Heinz, I., Pulido-Velazquez, M., Lund, J., and Andreu, J.: Hydro-economic modeling in river basin management: implications and applications for the European Water Framework Directive, Water Resour. Manag., 21, 1103–1125, 2007.
Howe, C. W., Schurmeier, D. R., and Shaw Jr., W. D.: Innovative approaches to water allocation: the potential for water markets, Water Resour. Res., 22, 439–445, 1986.
Johansson, R. C., Tsur, Y., Roe, T. L., Doukkali, R., and Dinar, A.: Pricing irrigation water: a review of theory and practice, Water Policy, 4, 173–199, 2002.
Karamouz, M., Houck, M. H., and Delleur, J. W.: Optimization and simulation of multiple reservoir systems, J. Water Res. Pl.-ASCE, 118, 71–81, 1992.
Kelman, K., Stedinger, J. R., Cooper, L. A., Hsu, E., and Yuan, S.-Q.: Sampling stochastic dynamic programming applied to reservoir operation, Water Resour. Res., 26, 447–454, 1990.
Labadie, J. W.: Optimal operation of multireservoir systems: state-of-the-art review, J. Water Res. Pl.-ASCE, 130, 93–111, 2004.
Lund, J. R. and Guzman, J.: Derived operating rules for reservoirs in series or in parallel, J. Water Res. Pl.-ASCE, 125, 143–153, 1999.
Macian-Sorribes, H.: Utilización de Lógica Difusa en la Gestión de Embalses, Master Thesis dissertation, Universitat Politècnica de València, Valencia, Spain, 2012 (in Spanish).
Macian-Sorribes, H. and Pulido-Velazquez, M.: Hydro-economic optimization under inflow uncertainty using the SDP-GAMS generalized tool, in: Evoling Water Resources Systems: Understanding, Predicting and Managing Water-Society Interactions, IAHS Press, Wallingford, UK, 410–415, 2014.
Massarutto, A.: El precio de agua: herramienta básica para una política sostenible del agua?, Ingeniería del Agua, 10, 293–326, 2003 (in Spanish).
Meinzen-Dick, R. and Mendoza, M.: Alternative water allocation mechanisms indian and international experiences, Econ. Polit. Weekly, 31, A25–A30, 1996.
Mousavi, J. J., Ponnambalam, K., and Karray, F.: Reservoir operation using a dynamic programming fuzzy rule-based approach, Water Resour. Manag., 19, 655–672, 2005.
Nandalal, K. D. W. and Bogardi, J. J.: Dynamic Programming Based Operation of Reservoirs: Applicability and Limits, Cambridge University Press, Cambridge, UK, 144 pp., 2007.
Palomo-Hierro, S., Gomez-Limon, J. A., and Riesgo, L.: Water Markets in Spain: Performance and Challenges, Water 2015, 7, 652–678, 2015.
Pulido-Velazquez, M., Jenkins, M., and Lund, J. R.: Economic values for conjunctive use and water banking in southern California, Water Resour. Res., 40, W03401, https://doi.org/10.1029/2003WR002626, 2004.
Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., and Pulido-Velazquez, D.: Hydro-economic river basin modelling: the application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain, Ecol. Econ., 66, 51–65, 2008.
Pulido-Velazquez, M., Alvarez-Mendiola, E., and Andreu, J.: Design of efficient water pricing policies integrating basinwide resource opportunity costs, J. Water Res. Pl.-ASCE, 139, 583–592, 2013.
Riegels, N., Pulido-Velazquez, M., Doulgeris, C., Sturm, V., Jensen, R., Moller, F., and Bauer-Gottwein, P.: Systems analysis approach to the design of efficient water pricing policies under the EU Water Framework Directive, J. Water Res. Pl.-ASCE, 139, 574–582, 2013.
Rogers, P., de Silva, R., and Bhatia, R.: Water is an economic good: How to use prices to promote equity, efficiency and sustainability, Water Policy, 4, 1–17, 2002.
SCRM: Convenio de Bases para la Ordenación de las Aguas del río Mijares, Ministerio de Obras Públicas, Transportes y Medio Ambiente, Confederación Hidrográfica del Júcar, Valencia, Spain, 50 pp., 1974 (in Spanish).
Stedinger, J. R., Sule, B. F., and Loucks, D. P.: Stochastic dynamic programming models for reservoir operation optimization, Water Resour. Res., 20, 1499–1505, 1984.
Tejada-Guibert, J. A., Johnson, S. A., Stedinger, J. R.: Comparison of two approaches for implementing multireservoir operating policies derived using stochastic dynamic programming, Water Resour. Res., 29, 3969–3980, 1993.
Tilmant, A. and Kelman, R.: A stochastic approach to analyze trade-offs and risks associated with large-scale water resources systems, Water Resour. Res., 43, W06425, https://doi.org/10.1029/2006WR005094, 2007.
Tilmant, A., Pinte, D., and Goor, Q.: Assessing marginal water values in multipurpose multireservoir systems via stochastic programming, Water Resour. Res., 44, W12431, https://doi.org/10.1029/2008WR007024, 2008.
Tilmant, A., Goor, Q., and Pinte, D.: Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems, Hydrol. Earth Syst. Sci., 13, 1091–1101, https://doi.org/10.5194/hess-13-1091-2009, 2009.
Tilmant, A., Arjoon, D., and Fernandes Marques, G.: Economic value of storage in multireservoir systems, J. Water Res. Pl.-ASCE, 140, 375–383, 2014.
US Army Corps of Engineers (USACE) Hydrologic Engineering Center (HEC): Developing Seasonal and Long-Term Reservoir System Operation Plans Using HEC-PRM, US Army Corps of Engineers, Hydrologic Engineering Center, Davis, California, USA, 1996.
Ward, F. and Pulido-Velazquez, M.: Efficiency, equity and sustainability in a water quantity-quality optimization model in the Rio Grande basin, Ecol. Econ., 66, 23–37, 2008.
Wurbs, R. A.: Reservoir-system simulation and optimization models, J. Water Res. Pl.-ASCE, 119, 455–472, 1993.
Young, R. A.: Water economics, in: Water Resources Handbook, McGraw-Hill, New York, NY, USA, 3.1–3.57, 1996.
Young, R. A.: Determining the Economic Value of Water: Concepts and Methods, RFF Press, Washington, DC, USA, 375 pp., 2005.
Short summary
One of the most promising alternatives to improve the efficiency in water usage is the implementation of scarcity-based pricing policies based on the opportunity cost of water at the basin scale. Time series of the marginal value of water at selected locations (reservoirs) are obtained using a stochastic hydro-economic model and then post-processed to define step water pricing policies.
One of the most promising alternatives to improve the efficiency in water usage is the...