Articles | Volume 19, issue 8
Hydrol. Earth Syst. Sci., 19, 3695–3714, 2015
Hydrol. Earth Syst. Sci., 19, 3695–3714, 2015

Research article 27 Aug 2015

Research article | 27 Aug 2015

Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework

A. S. Gragne et al.

Related authors

Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci., 26, 1203–1221,,, 2022
Short summary
Evaluating different machine learning methods to simulate runoff from extensive green roofs
Elhadi Mohsen Hassan Abdalla, Vincent Pons, Virginia Stovin, Simon De-Ville, Elizabeth Fassman-Beck, Knut Alfredsen, and Tone Merete Muthanna
Hydrol. Earth Syst. Sci., 25, 5917–5935,,, 2021
Short summary
Hydrological impacts of climate change on small ungauged catchments – results from a global climate model–regional climate model–hydrologic model chain
Aynalem T. Tsegaw, Marie Pontoppidan, Erle Kristvik, Knut Alfredsen, and Tone M. Muthanna
Nat. Hazards Earth Syst. Sci., 20, 2133–2155,,, 2020
Short summary
Estimating radar precipitation in cold climates: the role of air temperature within a non-parametric framework
Kuganesan Sivasubramaniam, Ashish Sharma, and Knut Alfredsen
Hydrol. Earth Syst. Sci., 22, 6533–6546,,, 2018
Short summary
Time-varying parameter models for catchments with land use change: the importance of model structure
Sahani Pathiraja, Daniela Anghileri, Paolo Burlando, Ashish Sharma, Lucy Marshall, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 22, 2903–2919,,, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Combined impacts of uncertainty in precipitation and air temperature on simulated mountain system recharge from an integrated hydrologic model
Adam P. Schreiner-McGraw and Hoori Ajami
Hydrol. Earth Syst. Sci., 26, 1145–1164,,, 2022
Short summary
Simultaneous assimilation of water levels from river gauges and satellite flood maps for near-real-time flood mapping
Antonio Annis, Fernando Nardi, and Fabio Castelli
Hydrol. Earth Syst. Sci., 26, 1019–1041,,, 2022
Short summary
Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica
Saúl Arciniega-Esparza, Christian Birkel, Andrés Chavarría-Palma, Berit Arheimer, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci., 26, 975–999,,, 2022
Short summary
Drivers of drought-induced shifts in the water balance through a Budyko approach
Tessa Maurer, Francesco Avanzi, Steven D. Glaser, and Roger C. Bales
Hydrol. Earth Syst. Sci., 26, 589–607,,, 2022
Short summary
Regionalization of hydrological model parameters using gradient boosting machine
Zhihong Song, Jun Xia, Gangsheng Wang, Dunxian She, Chen Hu, and Si Hong
Hydrol. Earth Syst. Sci., 26, 505–524,,, 2022
Short summary

Cited articles

Abebe, A. J. and Price, R. K.: Managing uncertainty in hydrological models using complementary models, Hydrolog. Sci. J., 48, 679–692, 2003.
Aronica, G. T., Candela, A., Viola, F., and Cannarozz, M.: Influence of rating curve uncertainty on daily rainfall–runoff model predictions, Predict. Ungau. Basins, 303, 116–124, 2006.
Bergström, S.: The HBV model, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, CO., 443–476, 1995.
Beven, K.: Environmental Modelling: An Uncertain Future?, Taylor and Francis Group, London, New York, 2009.
Beven, K.: Rainfall–runoff modelling: The primer, 2nd Edn., Wiley-Blackwell, Chichester, 2012.
Short summary
We present a forecasting system comprising additively set-up conceptual and simple error model. Parameters of the conceptual model were left unaltered, as are in most operational set-ups, and the data-driven model was arranged to forecast the corrective measures the conceptual model needs. We demonstrate that the present procedure could effectively improve forecast accuracy over extended lead times with a reliability degree varying inter-annually and inter-seasonally.