Articles | Volume 19, issue 8
https://doi.org/10.5194/hess-19-3387-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-3387-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Relating seasonal dynamics of enhanced vegetation index to the recycling of water in two endorheic river basins in north-west China
M. A. Matin
Faculty of Forestry and Environmental Management, University of New Brunswick, New Brunswick, Canada
C. P.-A. Bourque
CORRESPONDING AUTHOR
Faculty of Forestry and Environmental Management, University of New Brunswick, New Brunswick, Canada
School of Soil and Water Conservation, Beijing Forestry University, Beijing, PR China
Related authors
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci., 25, 41–61, https://doi.org/10.5194/hess-25-41-2021, https://doi.org/10.5194/hess-25-41-2021, 2021
Short summary
Short summary
South and Southeast Asia face significant food insecurity and hydrological hazards. Here we introduce a South and Southeast Asia hydrological monitoring and sub-seasonal to seasonal forecasting system (SAHFS-S2S) to help local governments and decision-makers prepare for extreme hydroclimatic events. The monitoring system captures soil moisture variability well in most regions, and the forecasting system offers skillful prediction of soil moisture variability 2–3 months in advance, on average.
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci., 25, 41–61, https://doi.org/10.5194/hess-25-41-2021, https://doi.org/10.5194/hess-25-41-2021, 2021
Short summary
Short summary
South and Southeast Asia face significant food insecurity and hydrological hazards. Here we introduce a South and Southeast Asia hydrological monitoring and sub-seasonal to seasonal forecasting system (SAHFS-S2S) to help local governments and decision-makers prepare for extreme hydroclimatic events. The monitoring system captures soil moisture variability well in most regions, and the forecasting system offers skillful prediction of soil moisture variability 2–3 months in advance, on average.
Junyu Qi, Sheng Li, Charles P.-A. Bourque, Zisheng Xing, and Fan-Rui Meng
Hydrol. Earth Syst. Sci., 22, 3789–3806, https://doi.org/10.5194/hess-22-3789-2018, https://doi.org/10.5194/hess-22-3789-2018, 2018
Short summary
Short summary
The paper proposed an approach to develop a decision support tool to evaluate impacts of land use change and best management practices (BMPs) on water quantity and quality for large ungauged watersheds. It was developed based on statistical equations derived from Soil and Water Assessment Tool (SWAT) simulations in a small experimental watershed. The decision support tool reproduced annual stream discharge and sediment and nutrient loadings for another watershed fairly well.
Tianshan Zha, Duo Qian, Xin Jia, Yujie Bai, Yun Tian, Charles P.-A. Bourque, Jingyong Ma, Wei Feng, Bin Wu, and Heli Peltola
Biogeosciences, 14, 4533–4544, https://doi.org/10.5194/bg-14-4533-2017, https://doi.org/10.5194/bg-14-4533-2017, 2017
Short summary
Short summary
According to this study, Artemisia ordosica escaped water limitations by invoking a water-conservation strategy with the regulation of stomatal conductance and advancement of sap-flow peaking time, manifesting in a hysteresis effect. This study provides a significant contribution to the understanding of acclimation processes in desert-shrub species to drought-associated stress in dryland ecosystems.
Ben Wang, Tian Shan Zha, Xin Jia, Jin Nan Gong, Charles Bourque, Wei Feng, Yun Tian, Bin Wu, Yu Qing Zhang, and Heli Peltola
Biogeosciences, 14, 3899–3908, https://doi.org/10.5194/bg-14-3899-2017, https://doi.org/10.5194/bg-14-3899-2017, 2017
Short summary
Short summary
We examined the seasonal variation in diel hysteresis between soil respiration and temperature, and its controlling factors in a desert-shrub ecosystem. Our results indicated that soil water regulated the control of photosynthesis on diel soil respiration, causing seasonal variation in diel hysteresis. The results highlight the importance of biologically based mechanisms and the role of soil water in regulating diel hysteresis.
Jingyong Ma, Tianshan Zha, Xin Jia, Steve Sargent, Rex Burgon, Charles P.-A. Bourque, Xinhua Zhou, Peng Liu, Yujie Bai, and Yajuan Wu
Atmos. Meas. Tech., 10, 1259–1267, https://doi.org/10.5194/amt-10-1259-2017, https://doi.org/10.5194/amt-10-1259-2017, 2017
Short summary
Short summary
The vortex intake significantly reduced maintenance requirements and downtime for a closed-path eddy-covariance system compared to the original inline filter design. Vortex intake kept the sample cell windows cleaner, preserving the optical signal strength of CO2 longer. Its installation also avoided the need for an inline filter in the sample path, sustaining an acceptable sample cell differential pressure over a much longer period. There was no significant attenuation of high frequencies.
Yanying Shao, Yuqing Zhang, Xiuqin Wu, Charles P.-A. Bourque, Jutao Zhang, Shugao Qin, and Bin Wu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-376, https://doi.org/10.5194/bg-2016-376, 2016
Preprint retracted
Short summary
Short summary
Methods of aridity index, Mann–Kendall test and Convergent cross mapping were combined to quantify the spatiotemporal variations in precipitation, air temperature, aridity, and vegetation, and to assess plant growth with respect to climatic changes in dryland. Our results show a practically relevant in ecological restoration and implicate that future planning of new restoration projects should ideally take into account drying/wetting trends currently being observed in northern China.
B. Wang, T. S. Zha, X. Jia, J. N. Gong, B. Wu, C. P. A. Bourque, Y. Zhang, S. G. Qin, G. P. Chen, and H. Peltola
Biogeosciences, 12, 5705–5714, https://doi.org/10.5194/bg-12-5705-2015, https://doi.org/10.5194/bg-12-5705-2015, 2015
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices
A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin
Monitoring surface water dynamics in the Prairie Pothole Region of North Dakota using dual-polarised Sentinel-1 synthetic aperture radar (SAR) time series
Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions
Climatic and anthropogenic drivers of a drying Himalayan river
On the selection of precipitation products for the regionalisation of hydrological model parameters
Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula
The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model
Systematic comparison of five machine-learning models in classification and interpolation of soil particle size fractions using different transformed data
Using hydrological and climatic catchment clusters to explore drivers of catchment behavior
Using MODIS estimates of fractional snow cover area to improve streamflow forecasts in interior Alaska
Informing a hydrological model of the Ogooué with multi-mission remote sensing data
Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India
Spatial pattern evaluation of a calibrated national hydrological model – a remote-sensing-based diagnostic approach
A method to employ the spatial organization of catchments into semi-distributed rainfall–runoff models
Multi-source hydrological soil moisture state estimation using data fusion optimisation
Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile
Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion
Using object-based geomorphometry for hydro-geomorphological analysis in a Mediterranean research catchment
Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model
Case-based knowledge formalization and reasoning method for digital terrain analysis – application to extracting drainage networks
Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations
Vegetative impacts upon bedload transport capacity and channel stability for differing alluvial planforms in the Yellow River source zone
Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations
Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes
Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling
Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China
GRACE storage-runoff hystereses reveal the dynamics of regional watersheds
Impacts of high inter-annual variability of rainfall on a century of extreme hydrologic regime of northwest Australia
Identification of catchment functional units by time series of thermal remote sensing images
Flow regime change in an endorheic basin in southern Ethiopia
Evaluating digital terrain indices for soil wetness mapping – a Swedish case study
The suitability of remotely sensed soil moisture for improving operational flood forecasting
Modelling stream flow and quantifying blue water using a modified STREAM model for a heterogeneous, highly utilized and data-scarce river basin in Africa
Operational reservoir inflow forecasting with radar altimetry: the Zambezi case study
Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances
Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt
Estimating water discharge from large radar altimetry datasets
Estimation of antecedent wetness conditions for flood modelling in northern Morocco
MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites
The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment
A soil moisture and temperature network for SMOS validation in Western Denmark
Classification and flow prediction in a data-scarce watershed of the equatorial Nile region
On the use of AMSU-based products for the description of soil water content at basin scale
Estimating flooded area and mean water level using active and passive microwaves: the example of Paraná River Delta floodplain
Assimilating SAR-derived water level data into a hydraulic model: a case study
Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index
Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER)
Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022, https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary
Short summary
Monitoring extreme flood events has long been a hot topic for hydrologists and decision makers around the world. In this study, we propose a new index incorporating satellite observations combined with meteorological data to monitor extreme flood events at sub-monthly timescales for the Yangtze River basin (YRB), China. The conclusions drawn from this study provide important implications for flood hazard prevention and water resource management over this region.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Benjamin Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Stephane Calmant, Ayan Santos Fleischmann, Frederic Frappart, Melanie Becker, Mohammad J. Tourian, Catherine Prigent, and Johary Andriambeloson
Hydrol. Earth Syst. Sci., 26, 1857–1882, https://doi.org/10.5194/hess-26-1857-2022, https://doi.org/10.5194/hess-26-1857-2022, 2022
Short summary
Short summary
This study presents a better characterization of surface hydrology variability in the Congo River basin, the second largest river system in the world. We jointly use a large record of in situ and satellite-derived observations to monitor the spatial distribution and different timings of the Congo River basin's annual flood dynamic, including its peculiar bimodal pattern.
Stefan Schlaffer, Marco Chini, Wouter Dorigo, and Simon Plank
Hydrol. Earth Syst. Sci., 26, 841–860, https://doi.org/10.5194/hess-26-841-2022, https://doi.org/10.5194/hess-26-841-2022, 2022
Short summary
Short summary
Prairie wetlands are important for biodiversity and water availability. Knowledge about their variability and spatial distribution is of great use in conservation and water resources management. In this study, we propose a novel approach for the classification of small water bodies from satellite radar images and apply it to our study area over 6 years. The retrieved dynamics show the different responses of small and large wetlands to dry and wet periods.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
Gopal Penny, Zubair A. Dar, and Marc F. Müller
Hydrol. Earth Syst. Sci., 26, 375–395, https://doi.org/10.5194/hess-26-375-2022, https://doi.org/10.5194/hess-26-375-2022, 2022
Short summary
Short summary
We develop an empirical approach to attribute declining streamflow in the Upper Jhelum watershed, a key subwatershed of the transboundary Indus basin. We find that a loss of streamflow since the year 2000 resulted primarily due to interactions among vegetation and groundwater in response to climate rather than local changes in land use, revealing the climate sensitivity of this Himalayan watershed.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021, https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Ulrike Falk and Adrián Silva-Busso
Hydrol. Earth Syst. Sci., 25, 3227–3244, https://doi.org/10.5194/hess-25-3227-2021, https://doi.org/10.5194/hess-25-3227-2021, 2021
Short summary
Short summary
This paper focuses on the groundwater flow aspects of a small hydrological catchment at the northern tip of the Antarctic Peninsula. This region has experienced drastic climatological changes in the recent past. The basin is representative for the rugged coastline of the peninsula. It is discussed as a case study for possible future evolution of similar basins further south. Results include a quantitative analysis of glacial and groundwater contribution to total discharge into coastal waters.
Rui Tong, Juraj Parajka, Andreas Salentinig, Isabella Pfeil, Jürgen Komma, Borbála Széles, Martin Kubáň, Peter Valent, Mariette Vreugdenhil, Wolfgang Wagner, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1389–1410, https://doi.org/10.5194/hess-25-1389-2021, https://doi.org/10.5194/hess-25-1389-2021, 2021
Short summary
Short summary
We used a new and experimental version of the Advanced Scatterometer (ASCAT) soil water index data set and Moderate Resolution Imaging Spectroradiometer (MODIS) C6 snow cover products for multiple objective calibrations of the TUWmodel in 213 catchments of Austria. Combined calibration to runoff, satellite soil moisture, and snow cover improves runoff (40 % catchments), soil moisture (80 % catchments), and snow (~ 100 % catchments) simulation compared to traditional calibration to runoff only.
Mo Zhang, Wenjiao Shi, and Ziwei Xu
Hydrol. Earth Syst. Sci., 24, 2505–2526, https://doi.org/10.5194/hess-24-2505-2020, https://doi.org/10.5194/hess-24-2505-2020, 2020
Short summary
Short summary
We systematically compared 45 models for direct and indirect soil texture classification and soil particle size fraction interpolation based on 5 machine-learning models and 3 log-ratio transformation methods. Random forest showed powerful performance in both classification of imbalanced data and regression assessment. Extreme gradient boosting is more meaningful and computationally efficient when dealing with large data sets. The indirect classification and log-ratio methods are recommended.
Florian U. Jehn, Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska
Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020, https://doi.org/10.5194/hess-24-1081-2020, 2020
Short summary
Short summary
We grouped 643 rivers from the United States into 10 behavioral groups based on their hydrological behavior (e.g., how much water they transport overall). Those groups are aligned with the ecoregions in the United States. Depending on the groups’ location and other characteristics, either snow, aridity or seasonality is most important for the behavior of the rivers in a group. We also find that very similar river behavior can be found in rivers far apart and with different characteristics.
Katrina E. Bennett, Jessica E. Cherry, Ben Balk, and Scott Lindsey
Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019, https://doi.org/10.5194/hess-23-2439-2019, 2019
Short summary
Short summary
Remotely sensed snow observations may improve operational streamflow forecasting in remote regions, such as Alaska. In this study, we insert remotely sensed observations of snow extent into the operational framework employed by the US National Weather Service’s Alaska Pacific River Forecast Center. Our work indicates that the snow observations can improve snow estimates and streamflow forecasting. This work provides direction for forecasters to implement remote sensing in their operations.
Cecile M. M. Kittel, Karina Nielsen, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 1453–1472, https://doi.org/10.5194/hess-22-1453-2018, https://doi.org/10.5194/hess-22-1453-2018, 2018
Short summary
Short summary
In this study, we integrate free, global Earth observations in a user-friendly and flexible model to reliably characterize an otherwise unmonitored river basin. The proposed model is the best baseline characterization of the Ogooué basin in light of available observations. Furthermore, the study shows the potential of using new, publicly available Earth observations and a suitable model structure to obtain new information in poorly monitored or remote areas and to support user requirements.
Gopal Penny, Veena Srinivasan, Iryna Dronova, Sharachchandra Lele, and Sally Thompson
Hydrol. Earth Syst. Sci., 22, 595–610, https://doi.org/10.5194/hess-22-595-2018, https://doi.org/10.5194/hess-22-595-2018, 2018
Short summary
Short summary
Water resources in the Arkavathy watershed in southern India are changing due to human modification of the landscape, including changing agricultural practices and urbanization. We analyze surface water resources in man-made lakes in satellite imagery over a period of 4 decades and find drying in the northern part of the watershed (characterized by heavy agriculture) and wetting downstream of urban areas. Drying in the watershed is associated with groundwater-irrigated agriculture.
Gorka Mendiguren, Julian Koch, and Simon Stisen
Hydrol. Earth Syst. Sci., 21, 5987–6005, https://doi.org/10.5194/hess-21-5987-2017, https://doi.org/10.5194/hess-21-5987-2017, 2017
Short summary
Short summary
The present study is focused on the spatial pattern evaluation of two models and describes the similarities and dissimilarities. It also discusses the factors that generate these patterns and proposes similar new approaches to minimize the differences. The study points towards a new approach in which the spatial component of the hydrological model is also calibrated and taken into account.
Henning Oppel and Andreas Schumann
Hydrol. Earth Syst. Sci., 21, 4259–4282, https://doi.org/10.5194/hess-21-4259-2017, https://doi.org/10.5194/hess-21-4259-2017, 2017
Short summary
Short summary
How can we evaluate the heterogeneity of natural watersheds and how can we assess its spatial organization? How can we make use of this information for hydrological models and is it beneficial to our models? We propose a method display and assess the interaction of catchment characteristics with the flow path which we defined as the ordering scheme within a basin. A newly implemented algorithm brings this information to the set-up of a model and our results show an increase in model performance.
Lu Zhuo and Dawei Han
Hydrol. Earth Syst. Sci., 21, 3267–3285, https://doi.org/10.5194/hess-21-3267-2017, https://doi.org/10.5194/hess-21-3267-2017, 2017
Short summary
Short summary
Reliable estimation of hydrological soil moisture state is of critical importance in operational hydrology to improve the flood prediction and hydrological cycle description. This paper attempts for the first time to build a soil moisture product directly applicable to hydrology using multiple data sources retrieved from remote sensing and land surface modelling. The result shows a significant improvement of the soil moisture state accuracy; the method can be easily applied in other catchments.
Mauricio Zambrano-Bigiarini, Alexandra Nauditt, Christian Birkel, Koen Verbist, and Lars Ribbe
Hydrol. Earth Syst. Sci., 21, 1295–1320, https://doi.org/10.5194/hess-21-1295-2017, https://doi.org/10.5194/hess-21-1295-2017, 2017
Short summary
Short summary
This work exhaustively evaluates – for the first time – the suitability of seven state-of-the-art satellite-based rainfall estimates (SREs) over the complex topography and diverse climatic gradients of Chile.
Several indices of performance are used for different timescales and elevation zones. Our analysis reveals what SREs are in closer agreement to ground-based observations and what indices allow for understanding mismatches in shape, magnitude, variability and intensity of precipitation.
Yun Yang, Martha C. Anderson, Feng Gao, Christopher R. Hain, Kathryn A. Semmens, William P. Kustas, Asko Noormets, Randolph H. Wynne, Valerie A. Thomas, and Ge Sun
Hydrol. Earth Syst. Sci., 21, 1017–1037, https://doi.org/10.5194/hess-21-1017-2017, https://doi.org/10.5194/hess-21-1017-2017, 2017
Short summary
Short summary
This work explores the utility of a thermal remote sensing based MODIS/Landsat ET data fusion procedure over a mixed forested/agricultural landscape in North Carolina, USA. The daily ET retrieved at 30 m resolution agreed well with measured fluxes in a clear-cut and a mature pine stand. An accounting of consumptive water use by land cover classes is presented, as well as relative partitioning of ET between evaporation (E) and transpiration (T) components.
Domenico Guida, Albina Cuomo, and Vincenzo Palmieri
Hydrol. Earth Syst. Sci., 20, 3493–3509, https://doi.org/10.5194/hess-20-3493-2016, https://doi.org/10.5194/hess-20-3493-2016, 2016
Short summary
Short summary
The authors apply an object-based geomorphometric procedure to define the runoff contribution areas. The results enabled us to identify the contribution area related to the different runoff components activated during the storm events through an advanced hydro-chemical analysis. This kind of approach could be useful applied to similar, rainfall-dominated, forested and no-karst Mediterranean catchments.
Nutchanart Sriwongsitanon, Hongkai Gao, Hubert H. G. Savenije, Ekkarin Maekan, Sirikanya Saengsawang, and Sansarith Thianpopirug
Hydrol. Earth Syst. Sci., 20, 3361–3377, https://doi.org/10.5194/hess-20-3361-2016, https://doi.org/10.5194/hess-20-3361-2016, 2016
Short summary
Short summary
We demonstrated that the readily available NDII remote sensing product is a very useful proxy for moisture storage in the root zone of vegetation. We compared the temporal variation of the NDII with the root zone storage in a hydrological model of eight catchments in the Upper Ping River in Thailand, yielding very good results. Having a reliable NDII product that can help us to estimate the actual moisture storage in catchments is a major contribution to prediction in ungauged basins.
Cheng-Zhi Qin, Xue-Wei Wu, Jing-Chao Jiang, and A-Xing Zhu
Hydrol. Earth Syst. Sci., 20, 3379–3392, https://doi.org/10.5194/hess-20-3379-2016, https://doi.org/10.5194/hess-20-3379-2016, 2016
Short summary
Short summary
Application of digital terrain analysis (DTA), which is typically a modeling process involving workflow building, relies heavily on DTA domain knowledge. However, the DTA knowledge has not been formalized well to be available for inference in automatic tools. We propose a case-based methodology to solve this problem. This methodology can also be applied to other domains of geographical modeling with a similar situation.
Patricia López López, Niko Wanders, Jaap Schellekens, Luigi J. Renzullo, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3059–3076, https://doi.org/10.5194/hess-20-3059-2016, https://doi.org/10.5194/hess-20-3059-2016, 2016
Short summary
Short summary
We perform a joint assimilation experiment of high-resolution satellite soil moisture and discharge observations in the Murrumbidgee River basin with a large-scale hydrological model. Additionally, we study the impact of high- and low-resolution meteorological forcing on the model performance. We show that the assimilation of high-resolution satellite soil moisture and discharge observations has a significant impact on discharge simulations and can bring them closer to locally calibrated models.
Zhi Wei Li, Guo An Yu, Gary Brierley, and Zhao Yin Wang
Hydrol. Earth Syst. Sci., 20, 3013–3025, https://doi.org/10.5194/hess-20-3013-2016, https://doi.org/10.5194/hess-20-3013-2016, 2016
Short summary
Short summary
Influence of vegetation upon bedload transport and channel morphodynamics is examined along a channel stability gradient ranging from meandering to anabranching to anabranching–braided to fully braided planform conditions along trunk and tributary reaches of the Yellow River source zone in western China. This innovative work reveals complex interactions between channel planform, bedload transport capacity, sediment supply in the flood season, and the hydraulic role of vegetation.
W. Qi, C. Zhang, G. Fu, C. Sweetapple, and H. Zhou
Hydrol. Earth Syst. Sci., 20, 903–920, https://doi.org/10.5194/hess-20-903-2016, https://doi.org/10.5194/hess-20-903-2016, 2016
Short summary
Short summary
Six precipitation products, including TRMM3B42, TRMM3B42RT, GLDAS/Noah, APHRODITE, PERSIANN, and GSMAP-MVK+, are investigated in the usually neglected area of NE China, and a framework is developed to quantify the contributions of uncertainties from precipitation products, hydrological models, and their interactions to uncertainty in simulated discharges. It is found that interactions between hydrological models and precipitation products contribute significantly to uncertainty in discharge.
A. Molina, V. Vanacker, E. Brisson, D. Mora, and V. Balthazar
Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, https://doi.org/10.5194/hess-19-4201-2015, 2015
Short summary
Short summary
Andean catchments play a key role in the provision of freshwater resources. The development of megacities in the inter-Andean valleys raises severe concerns about growing water scarcity. This study is one of the first long-term (1970s-now) analyses of the role of land cover and climate change on provision and regulation of streamflow in the tropical Andes. Forest conversion had the largest impact on streamflow, leading to a 10 % net decrease in streamflow over the last 40 years.
D. Shen, J. Wang, X. Cheng, Y. Rui, and S. Ye
Hydrol. Earth Syst. Sci., 19, 3605–3616, https://doi.org/10.5194/hess-19-3605-2015, https://doi.org/10.5194/hess-19-3605-2015, 2015
L. Hao, G. Sun, Y. Liu, J. Wan, M. Qin, H. Qian, C. Liu, J. Zheng, R. John, P. Fan, and J. Chen
Hydrol. Earth Syst. Sci., 19, 3319–3331, https://doi.org/10.5194/hess-19-3319-2015, https://doi.org/10.5194/hess-19-3319-2015, 2015
Short summary
Short summary
The role of land cover in affecting hydrologic and environmental changes in the humid region in southern China is not well studied. We found that high flows and low flows increased and evapotranspiration decreased due to urbanization in the Qinhuai River basin. Urbanization masked climate warming effects in a rice-paddy-dominated watershed in altering long-term hydrology. Flooding risks and heat island effects are expected to rise due to urbanization.
E. A. Sproles, S. G. Leibowitz, J. T. Reager, P. J. Wigington Jr, J. S. Famiglietti, and S. D. Patil
Hydrol. Earth Syst. Sci., 19, 3253–3272, https://doi.org/10.5194/hess-19-3253-2015, https://doi.org/10.5194/hess-19-3253-2015, 2015
Short summary
Short summary
The paper demonstrates how data from the Gravity Recovery and Climate Experiment (GRACE) can be used to describe the relationship between water stored at the regional scale and stream flow. Additionally, we employ GRACE as a regional-scale indicator to successfully predict stream flow later in the water year. Our work focuses on the Columbia River Basin (North America), but is widely applicable across the globe, and could prove to be particularly useful in regions with limited hydrological data.
A. Rouillard, G. Skrzypek, S. Dogramaci, C. Turney, and P. F. Grierson
Hydrol. Earth Syst. Sci., 19, 2057–2078, https://doi.org/10.5194/hess-19-2057-2015, https://doi.org/10.5194/hess-19-2057-2015, 2015
Short summary
Short summary
We reconstructed a 100-year monthly history of flooding and drought of a large wetland in arid northwest Australia, using hydroclimatic data calibrated against 25 years of satellite images. Severe and intense regional rainfall, as well as the sequence of events, determined surface water expression on the floodplain. While inter-annual variability was high, changes to the flood regime over the last 20 years suggest the wetland may become more persistent in response to the observed rainfall trend.
B. Müller, M. Bernhardt, and K. Schulz
Hydrol. Earth Syst. Sci., 18, 5345–5359, https://doi.org/10.5194/hess-18-5345-2014, https://doi.org/10.5194/hess-18-5345-2014, 2014
Short summary
Short summary
We present a method to define hydrological landscape units by a time series of thermal infrared satellite data. Land surface temperature is calculated for 28 images in 12 years for a catchment in Luxembourg. Pattern measures show spatio-temporal persistency; principle component analysis extracts relevant patterns. Functional units represent similar behaving entities based on a representative set of images. Resulting classification and patterns are discussed regarding potential applications.
F. F. Worku, M. Werner, N. Wright, P. van der Zaag, and S. S. Demissie
Hydrol. Earth Syst. Sci., 18, 3837–3853, https://doi.org/10.5194/hess-18-3837-2014, https://doi.org/10.5194/hess-18-3837-2014, 2014
A. M. Ågren, W. Lidberg, M. Strömgren, J. Ogilvie, and P. A. Arp
Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, https://doi.org/10.5194/hess-18-3623-2014, 2014
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
J. K. Kiptala, M. L. Mul, Y. A. Mohamed, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 2287–2303, https://doi.org/10.5194/hess-18-2287-2014, https://doi.org/10.5194/hess-18-2287-2014, 2014
C. I. Michailovsky and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 18, 997–1007, https://doi.org/10.5194/hess-18-997-2014, https://doi.org/10.5194/hess-18-997-2014, 2014
T. Conradt, F. Wechsung, and A. Bronstert
Hydrol. Earth Syst. Sci., 17, 2947–2966, https://doi.org/10.5194/hess-17-2947-2013, https://doi.org/10.5194/hess-17-2947-2013, 2013
M. El Bastawesy, R. Ramadan Ali, A. Faid, and M. El Osta
Hydrol. Earth Syst. Sci., 17, 1493–1501, https://doi.org/10.5194/hess-17-1493-2013, https://doi.org/10.5194/hess-17-1493-2013, 2013
A. C. V. Getirana and C. Peters-Lidard
Hydrol. Earth Syst. Sci., 17, 923–933, https://doi.org/10.5194/hess-17-923-2013, https://doi.org/10.5194/hess-17-923-2013, 2013
Y. Tramblay, R. Bouaicha, L. Brocca, W. Dorigo, C. Bouvier, S. Camici, and E. Servat
Hydrol. Earth Syst. Sci., 16, 4375–4386, https://doi.org/10.5194/hess-16-4375-2012, https://doi.org/10.5194/hess-16-4375-2012, 2012
J. Parajka, L. Holko, Z. Kostka, and G. Blöschl
Hydrol. Earth Syst. Sci., 16, 2365–2377, https://doi.org/10.5194/hess-16-2365-2012, https://doi.org/10.5194/hess-16-2365-2012, 2012
S. Peischl, J. P. Walker, C. Rüdiger, N. Ye, Y. H. Kerr, E. Kim, R. Bandara, and M. Allahmoradi
Hydrol. Earth Syst. Sci., 16, 1697–1708, https://doi.org/10.5194/hess-16-1697-2012, https://doi.org/10.5194/hess-16-1697-2012, 2012
S. Bircher, N. Skou, K. H. Jensen, J. P. Walker, and L. Rasmussen
Hydrol. Earth Syst. Sci., 16, 1445–1463, https://doi.org/10.5194/hess-16-1445-2012, https://doi.org/10.5194/hess-16-1445-2012, 2012
J.-M. Kileshye Onema, A. E. Taigbenu, and J. Ndiritu
Hydrol. Earth Syst. Sci., 16, 1435–1443, https://doi.org/10.5194/hess-16-1435-2012, https://doi.org/10.5194/hess-16-1435-2012, 2012
S. Manfreda, T. Lacava, B. Onorati, N. Pergola, M. Di Leo, M. R. Margiotta, and V. Tramutoli
Hydrol. Earth Syst. Sci., 15, 2839–2852, https://doi.org/10.5194/hess-15-2839-2011, https://doi.org/10.5194/hess-15-2839-2011, 2011
M. Salvia, F. Grings, P. Ferrazzoli, V. Barraza, V. Douna, P. Perna, C. Bruscantini, and H. Karszenbaum
Hydrol. Earth Syst. Sci., 15, 2679–2692, https://doi.org/10.5194/hess-15-2679-2011, https://doi.org/10.5194/hess-15-2679-2011, 2011
L. Giustarini, P. Matgen, R. Hostache, M. Montanari, D. Plaza, V. R. N. Pauwels, G. J. M. De Lannoy, R. De Keyser, L. Pfister, L. Hoffmann, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 15, 2349–2365, https://doi.org/10.5194/hess-15-2349-2011, https://doi.org/10.5194/hess-15-2349-2011, 2011
W. Wang, D. Huang, X.-G. Wang, Y.-R. Liu, and F. Zhou
Hydrol. Earth Syst. Sci., 15, 1699–1712, https://doi.org/10.5194/hess-15-1699-2011, https://doi.org/10.5194/hess-15-1699-2011, 2011
S. G. Wang, X. Li, X. J. Han, and R. Jin
Hydrol. Earth Syst. Sci., 15, 1415–1426, https://doi.org/10.5194/hess-15-1415-2011, https://doi.org/10.5194/hess-15-1415-2011, 2011
M. M. Bitew and M. Gebremichael
Hydrol. Earth Syst. Sci., 15, 1147–1155, https://doi.org/10.5194/hess-15-1147-2011, https://doi.org/10.5194/hess-15-1147-2011, 2011
Cited articles
Aarnoudse, E., Bluemling, B., Wester, P., and Qu, W.: The role of collective groundwater institutions in the implementation of direct groundwater regulation measures in Minqin County, China, Hydrogeol. J., 20, 1213–1221, https://doi.org/10.1007/s10040-012-0873-z, 2012.
Adejuwon, J. O. and Odekunle, T. O.: Variability and the severity of the "Little Dry Season" in southwestern Nigeria, J. Climate, 19, 483–493, https://doi.org/10.1175/jcli3642.1, 2006.
Adejuwon, J. O., Balogun, E. E., and Adejuwon, S. A.: On the annual and seasonal patterns of rainfall fluctuations in sub-saharan West Africa, Int. J. Climatol., 10, 839–848, https://doi.org/10.1002/joc.3370100806, 1990.
Aguado, E. and Burt, J. E.: Undertstanding Weather and Climate, 6th Edn., Pearson Education Inc., NY, 552 pp., 2013.
Ahl, D. E., Gower, S. T., Burrows, S. N., Shabanov, N. V., Myneni, R. B., and Knyazikhin, Y.: Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS, Remote Sens. Environ., 104, 88–95, https://doi.org/10.1016/j.rse.2006.05.003, 2006.
Akiyama, T., Sakai, A., Yamazaki, Y., Wang, G., Fujita, K., Nakawo, M., Kubota, J., and Konagaya, Y.: Surfacewater-groundwater interaction in the Heihe River Basin, Northwest China, Bull. Glaciol. Res., 24, 87–94, 2007.
Benoit, P.: The start of the growing season in Northern Nigeria, Agr. Meteorol., 18, 91–99, https://doi.org/10.1016/0002-1571(77)90042-5, 1977.
Bourque, C. P.-A. and Hassan, Q. K.: Vegetation control in the long-term self-stabilization of the Liangzhou Oasis of the upper Shiyang River watershed of westcentral Gansu, Northwest China, Earth Interact., 13, 1–22, https://doi.org/10.1175/2009ei286.1, 2009.
Bourque, C. P.-A. and Matin, M. A.: Seasonal snow cover in the Qilian Mountains of Northwest China: Its dependence on oasis seasonal evolution and lowland production of water vapour, J. Hydrol., 454–455, 141–151, 2012.
Carpenter, C.: Montane grasslands and shrublands, available at: https://www.worldwildlife.org/ecoregions/pa1015 (last access: 26 July 2015), 2001.
CGIAR-CSI: SRTM 90-m digital elevation data, available at: http://srtm.csi.cgiar.org/ (last access: 26 July 2015), 2008.
Chu, P. C., Lu, S., and Chen, Y.: A numerical modeling study on desert oasis self-supporting mechanisms, J. Hydrol., 312, 256–276, 2005.
Clark, A. T., Ye, H., Isbell, F., Deyle, E. R., Cowles, J., Tilman, G. D., and Sugihara, G.: Spatial "convergent cross mapping" to detect causal relationships from short time-series, Ecology, 96, 1174–1181, https://doi.org/10.1890/14-1479.1, 2015.
Currell, M. J., Han, D. M., Chen, Z. Y., and Cartwright, I.: Sustainability of groundwater usage in northern China: dependence on palaeowaters and effects on water quality, quantity and ecosystem health, Hydrol. Process., 26, 4050–4066, https://doi.org/10.1002/Hyp.9208, 2012.
Davidson, A. and Wang, S. S.: Spatiotemporal variations in land surface albedo across Canada from MODIS observations, Can. J. Remote Sens., 31, 377–390, 2005.
Ding, H. and Zhang, J.: Relationships between sustainable development and water resources in arid oases area – an example of Hexi Corridor, J. Arid Land Resour. Environ., 18, 50–55, 2004.
Fischer, A.: A model for the seaonal-variations of vegetation indexes in coarse resolution data and its inversion to extract crop parameters, Remote Sens. Environ., 48, 220–230, https://doi.org/10.1016/0034-4257(94)90143-0, 1994.
Fisher, J. I. and Mustard, J. F.: Cross-scalar satellite phenology from ground, Landsat, and MODIS data, Remote Sens. Environ., 109, 261–273, \https://doi.org/10.1016/j.rse.2007.01.004, 2007.
Friedl, M. A. and Brodley, C. E.: Decision tree classification of land cover from remotely sensed data, Remote Sens. Environ., 61, 399–409, 1997.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X. M.: MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Gao, B. C. and Kaufman, Y. J.: Water vapor retrievals using moderate resolution imaging spectroradiometer (MODIS) near-infrared channels, J. Geophys. Res.-Atmos., 108, ACH4.1–ACH4.10, https://doi.org/10.1029/2002jd003023, 2003.
Gao, Y., Chen, Y., and Lu, S.: Numerical simulation of the critical scale of oasis maintenance and development in the arid regions of northwest China, Adv. Atmos. Sci., 21, 113–124, 2004.
Gao, Y., Wang, G., Liu, H., Liu, Z., Lin, W., and Wang, J.: Landform effects the distribution and circular mode on groundwater in Shiyang River basin, Beijing, China, available at: http://en.cgs.gov.cn/Achievement/The34thCongress/Evolutional/18050.htm (last access: 26 July 2015), 2006.
Gates, J. B., Edmunds, W. M., Darling, W. G., Ma, J. Z., Pang, Z. H., and Young, A. A.: Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers, Appl. Geochem., 23, 12, 3519–3534, https://doi.org/10.1016/j.apgeochem.2008.07.019, 2008a.
Gates, J. B., Edmunds, W. M., Ma, J. Z., and Scanlon, B. R.: Estimating groundwater recharge in a cold desert environment in northern China using chloride, Hydrogeol. J., 16, 893–910, 2008b.
Gotelli, N. J. and Ellison, A. M.: A Primer of Ecological Statistics, Sinauer Associates, Inc., Sunderland, MA, USA, 510 pp., 2013.
Granger, C. W. J. and Newbold, P.: Spurious regressions in econometrics, J. Econometrics, 2, 111–120, 1974.
Gu, J., Li, X., and Huang, C. L.: Land cover classification in Heihe River Basin with time series MODIS NDVI data. Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Vol. 2, Proceedings, 477–481, https://doi.org/10.1109/Fskd.2008.517, 2008.
Huang, L. J. and Wen, X. F.: Temporal variations of atmospheric water vapor δD and δ18O above an arid artificial oasis cropland in the Heihe River Basin, J. Geophys. Res.-Atmos., 119, 11456–11476, 2014.
Hudson, I. L., Keatley, M. R., Beurs, K., and Henebry, G.: Spatio-temporal statistical methods for modelling land surface phenology, in: Phenological Research, edited by: Hudson, I. L. and Keatley, M. R., Springer Netherlands, 177–208, 2010.
Huete, A. R., Litu, H. Q., Batchily, K., and Leeuwen, W. V.: A comparison of vegetation indices over a global set of TM images for EOS-MODIS, Remote Sens. Environ., 59, 440–451, https://doi.org/10.1016/S0034-4257(96)00112-5, 1997.
Huete, A. R., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Fereira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Huo, Z. L., Feng, S. Y., Kang, S. Z., Li, W. C., and Chen, S. J.: Effect of climate changes and water-related human activities on annual stream flows of the Shiyang river basin in and North-West China, Hydrol. Process., 22, 3155–3167, https://doi.org/10.1002/Hyp.6900, 2008.
Ilesanmi, O. O.: Empirical formulation of onset, advance, and retreat of rainfall in Nigeria, J. Trop. Geogr., 34, 17–24, 1972.
Ji, X. B., Kang, E. S., Chen, R. S., Zhao, W. Z., Zhang, Z. H., and Jin, B. W.: The impact of the development of water resources on environment in arid inland river basins of Hexi region, Northwestern China, Environ. Geol., 50, 793–801, https://doi.org/10.1007/s00254-006-0251-z, 2006.
Jia, L., Shang, H., Hu, G., and Menenti, M.: Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data, Hydrol. Earth Syst. Sci., 15, 1047–1064, https://doi.org/10.5194/hess-15-1047-2011, 2011.
Jin, X. M., Zhang, Y. K., Schaepman, M. E., Clevers, J. G. P. W., and Su, Z.: Impact of elevation and aspect on the spatial distribution of vegetation in the qilian mountain area with remote sensing data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII, Part B7, 2008.
Jonsson, P. and Eklundh, L.: Seasonality extraction by function fitting to time-series of satellite sensor data, IEEE T. Geosci. Remote, 40, 1824–1832, https://doi.org/10.1109/Tgrs.2002.802519, 2002.
Kang, E. S., Cheng, G. D., Lan, Y. C., and Jin, H. J.: A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes, Sci. China Ser. D, 42, 52–63, https://doi.org/10.1007/Bf02878853, 1999.
Kang, S. Z., Su, X. L., Tong, L., Shi, P. Z., Yang, X. Y., Abe, Y. K., Du, T. S., Shen, Q. L., and Zhang, J. H.: The impacts of human activities on the water-land environment of the Shiyang River basin, an arid region in northwest China, Hydrolog. Sci. J., 49, 413–427, https://doi.org/10.1623/hysj.49.3.413.54347, 2009.
Karlsen, S. R., Elvebakk, A., Hogda, K. A., and Johansen, B.: Satellite-based mapping of the growing season and bioclimatic zones in Fennoscandia, Glob. Ecol. Biogeogr., 15, 416–430, https://doi.org/10.1111/j.1466-822x.2006.00234.x, 2006.
Kimmins, J. P.: Forest Ecology: A Foundation for Sustainable Management, Prentice Hall, NJ, 596 pp., 1997.
Kaufman, Y. J. and Gao, B. C.: Remote sensing of water vapor in the near IR from EOS/MODIS, IEEE T. Geosci. Remote, 30, 871–884, https://doi.org/10.1109/36.175321, 1992.
Kent-Corson, M. L., Ritts, B. D., Zhuang, G. S., Bovet, P. M., Graham, S. A., and Chamberlain, C. P.: Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau, Earth Planet. Sc. Lett., 282, 158–166, 2009.
Li, F., Zhu, G., and Guo, C.: Shiyang River ecosystem problems and countermeasures, Agr. Sci., 4, 72–78, https://doi.org/10.4236/as.2013.42012, 2013.
Li, X., Cheng, G., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., Liu, Q., Wang, W., Qi, Y., Wen, J., Li, H., Zhu, G., Guo, J., Ran, Y., Wang, S., Zhu, Z., Zhou, J., Hu, X., and Xu, Z.: Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design, B. Am. Meteorol. Soc., 94, 1145–1160, https://doi.org/10.1175/BAMS-D-12-00154.1, 2013.
Li, X. Y., Xiao, D. N., He, X. Y., Chen, W., and Song, D. M.: Factors associated with farmland area changes in arid regions: a case study of the Shiyang River Basin, Northwestern China, Front. Ecol. Environ., 5, 139–144, https://doi.org/10.1890/1540-9295(2007)5[139:Fawfac]2.0.Co;2, 2007.
Li, Z. L., Xu, Z. X., Li, J. Y., and Li, Z. J.: Shift trend and step changes for runoff time series in the Shiyang River Basin, Northwest China, Hydrol. Process., 22, 4639–4646, https://doi.org/10.1002/Hyp.7127, 2008.
Liang, L. and Gong, P.: An assessment of MODIS collection 5 global land cover product for biological conservation studies. Eighteen International Conference on Geoinformatics, 2010.
Lloyd, D.: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery, Int. J. Remote Sens., 11, 2269–2279, 1990.
Lopes, A. M. G.: WindStation – a software for the simulation of atmospheric flows over complex topography, Environ. Model. Softw., 18, 81–96, https://doi.org/10.1016/s1364-8152(02)00024-5, 2003.
Lu, A., Ding, Y., Pang, H., Yuan, L., and He, Y.: Impact of global warming on water resource in arid area of northwest China, J. Mt. Sci., 2, 313–318, 2005.
Ma, J. Z., Ding, Z. Y., Gates, J. B., and Su, Y.: Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, northwest China, Environ. Geol., 55, 1407–1419, 2008.
Ma, J. Z., Ding, Z. Y., Edmunds, W. M., Gates, J. B., and Huang, T. M.: Limits to recharge of groundwater from Tibetan plateau to the Gobi desert, implications for water management in the mountain front, J. Hydrol., 364, 128–141, 2009.
Ma, J. Z., Zhang, P., Zhu, G. F., Wang, Y. Q., Edmunds, W. M., Ding, Z. Y., and He, J. H.: The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China, J. Hydrol., 436–437, 92–101, 2012.
Ma, J. Z., Chen, L. H., He, J. H., Zhang, Y. R., Li, X. H., and Edmunds, W. M.: Trends and periodicities in observed temperature, precipitation and runoff in a desert catchment: case study for the Shiyang River Basin in Northwestern China, Water Environ. J., 27, 86–98, https://doi.org/10.1111/j.1747-6593.2012.00329.x, 2013.
Maher, M. C. and Hernandez, R. D.: CauseMap: fast inference of causality from complex time series, Peer J, 3, e824, https://doi.org/10.7717/peerj.824, 2015.
Markon, C. J., Fleming, M. D., and Binnian, E. F.: Characteristics of vegetation phenology over the Alaskan landscape using time-series data, Polar Rec., 31, 179–190, 1995.
Matin, M. A. and Bourque, C. P.-A.: Intra- and inter-annual variations in snow-water storage in data sparse desert-mountain regions assessed from remote sensing, Remote Sens. Environ., 139, 18–34, https://doi.org/10.1016/j.rse.2013.07.033, 2013a.
Matin, M. A. and Bourque, C. P.-A.: Assessing spatiotemporal variation in actual evapotranspiration for semi-arid watersheds in northwest China: Evaluation of two complementary-based methods, J. Hydrol., 486, 455–465, \https://doi.org/10.1016/j.jhydrol.2013.02.014, 2013b.
Matin, M. A. and Bourque, C. P.-A.: Mountain-river runoff components and their role in the seasonal development of desert-oases in northwest China, J. Arid Environ., 122, 1–15, https://doi.org/10.1016/j.jaridenv.2015.05.011, 2015.
Martinez, B. and Gilabert, M. A.: Vegetation dynamics from NDVI time series analysis using the wavelet transform, Remote Sens. Environ., 113, 1823–1842, https://doi.org/10.1016/j.rse.2009.04.016, 2009.
Meng, X., Lu, S., Zhang, T., Ao, Y., Li, S., Bao, Y., Wen, L., and Luo, S.: Impacts of inhomogeneous landscapes in oasis interior on the oasis self-maintenance mechanism by integrating numerical model with satellite data, Hydrol. Earth Syst. Sci., 16, 3729–3738, https://doi.org/10.5194/hess-16-3729-2012, 2012.
Meng, X., Lu, S., Gao, Y., and Guo, J.: Simulated effects of soil moisture on oasis self-maintenance in a surrounding desert environment in Northwest China, Int. J. Climatol., https://doi.org/10.1002/joc.4271, 2015.
Meng, X. H., Lu, S. H., Zhang, T. T., Guo, J. X., Gao, Y. H., Bao, Y., Wen, L. J., Luo, S. Q., and Liu, Y. P.: Numerical simulations of the atmospheric and land conditions over the Jinta oasis in northwestern China with satellite-derived land surface parameters, J. Geophys. Res., 114, D06114, https://doi.org/10.1029/2008JD010360, 2009.
Meybeck, M.: Global analysis of river systems: from Earth system controls to anthropocene syndromes, Philos. T. R. Soc. B, 358, 1935–1955, https://doi.org/10.1098/rstb.2003.1379, 2003.
Meybeck, M., Green, P., and Vorosmarty, C.: A new typology for mountains and other relief classes: An application to global continental water resources and population distribution, Mt. Res. Dev., 21, 34–45, https://doi.org/10.1659/0276-4741(2001)021[0034:Antfma]2.0.Co;2, 2001.
Monteith, J. L.: Evaporation and environment, Sym. Soc. Exp. Biol., 19, 205–234, 1965.
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 386, 698–702, https://doi.org/10.1038/386698a0, 1997.
Odekunle, T. O.: Determining rainy season onset and retreat over Nigeria from precipitation amount and number of rainy days, Theor. Appl. Clim., 83, 193–201, https://doi.org/10.1007/s00704-005-0166-8, 2006.
Odekunle, T. O., Balogun, E. E., and Ogunkoya, O. O.: On the prediction of rainfall onset and retreat dates in Nigeria, Theor. Appl. Clim., 81, 101–112, https://doi.org/10.1007/s00704-004-0108-x, 2005.
Pang, Z. H., Kong, Y. L., Froehlich, K., Huang, T. M., Yuan, L. J., Li, Z. Q., and Wang, F. T.: Processes affecting isotopes in precipitation of an arid region, Tellus, 63B, 352–359, 2011.
Petitcolin, F. and Vermote, E.: Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data, Remote Sens. Environ., 83, 112–134, https://doi.org/10.1016/S0034-4257(02)00094-9, 2002.
Pilgrim, D. H., Chapman, T. G., and Doran, D. G.: Problems of rainfall-runoff modeling in arid and semiarid regions, Hydrolog. Sci. J., 33, 379–400, https://doi.org/10.1080/02626668809491261, 1988.
Reuter, H. I., Nelson, A., and Jarvis, A.: An evaluation of void-filling interpolation methods for SRTM data, Int. J. Geogr. Inf. Sci., 21, 983–1008, 2007.
Roe, G. H.: Orographic precipitation, Ann. Rev. Earth Planet. Sc., 33, 645–671, 2005.
Seeman, S. W., Borbas, E. E., Li, J., Menzel, W. P., and Gumley, L. E.: MODIS atmospheric profile retrieval, algorithm theoritical basis document, ver. 6, Reference Number ATBD-MOD07, Cooperative Institute for Meteorological Satellite Studies, Madison, WI, available at: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod07.pdf (last access: 26 July 2015), 2006.
Shiklomanov, I. A.: World water resources: A new appraisal and assessment for the 21st Century, UNESCO, available at: http://www.ce.utexas.edu/prof/mckinney/ce385d/Papers/Shiklomanov.pdf (last access: 26 July 2015), 1998.
Sugihara, G., May, R., Ye, H., Hsieh, C. H., Deyle, E., Fogarty, M., and Munch, S.: Detecting causality in complex ecosystems, Science, 338, 496–500, 2012.
van der Ent, R. J., Savenjie, H. H. G., Schaefli, B., and Steele-Dunne, S. C.: Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
Wan, Z., Zhang, Y., Zhang, Q., and Li, Z. L.: Quality assessment and validation of the MODIS global land surface temperature, Int. J. Remote Sens., 25, 261–274, https://doi.org/10.1080/0143116031000116417, 2004.
Wang, J. S., Feng, J. Y., Yang, L. F., Guo, J. Y., and Pu, Z. X.: Runoff-denoted drought index and its relationship to the yields of spring wheat in the arid area of Hexi Corridor, Northwest China, Agr. Water Manage., 96, 666–676, https://doi.org/10.1016/j.agwat.2008.10.008, 2009.
Wang, X. and Zhao, C.: Analysis of temporal trends in potential evapotranspiration over Heihe River basin. Presented at the 2011 International Symposium on Water Resource and Environmental Protection (ISWREP), Xi'an, 20–22 May 2011, https://doi.org/10.1109/iswrep.2011.5893130, 2011.
Warner, T. T.: Desert Meteorology. Cambridge University Press, Cambridge, NY, 595 pp., 2004.
Wen, X. H., Lu, S. H., and Jin, J. M.: Integrating remote sensing data with WRF for improved simulations of oasis effects on local weather processes over an arid region in northwestern China, J. Hydrometeorol., 13, 573–587, 2012.
Wonderen, J. V., Moore, D., Wardlaw, R., Zhongjing, W., Litang, H., and Qingling, S.: Water resources and modelling in the Shiyang River Basin, Presented at the BHS Third International Symposium, Managing Consequences of a Changing Global Environment, Newcastle, 2010.
Zang, C. F., Liu, J., van der Velde, M., and Kraxner, F.: Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China, Hydrol. Earth Syst. Sci., 16, 2859–2870, https://doi.org/10.5194/hess-16-2859-2012, 2012.
Zhang, B. Z., Kang, S. Z., Li, F., and Zhang, L.: Comparison of three evapotranspiration models to Bowen ratio energy balance method for a vineyard in an arid desert region of northwest China, Agr. Forest Meteorol., 148, 1629–1640, 2008.
Zhang, C. J., Bourque, C. P.-A., Sun, L. D., and Hassan, Q. K.: Spatiotemporal modeling of monthly precipitation in the upper Shiyang River watershed in west central Gansu, northwest China, Adv. Atmos. Sci., 27, 185–194, 2010.
Zhao, C., Nan, Z., and Cheng, G.: Methods for estimating irrigation needs of spring wheat in the middle Heihe Basin, China, Agr. Water Manage., 75, 54–70, https://doi.org/10.1016/j.agwat.2004.12.003, 2005.
Zhu, Y. H., Wu, Y. Q., and Drake, S.: A survey: obstacles and strategies for the development of ground-water resources in arid inland river basins of Western China, J. Arid Environ., 59, 351–367, https://doi.org/10.1016/j.jaridenv.2003.12.006, 2004.
Zhuang, G. S., Hourigan, J. K., Koch, P. L., Ritts, B. D., and Kent-Corson, M. L.: Isotopic constraints on intensified aridity in Central Asia around 12 Ma, Earth Planet. Sc. Lett., 312, 152–163, 2011.
Zong, L., Tedeschi, A., Xue, X., Wang, T., Menenti, M., and Huang, C. H.: Effect of different irrigation water salinities on some yield and quality components of two field-grown Cucurbit species, Turk. J. Agr. Forest, 35, 297–307, https://doi.org/10.3906/Tar-0908-5, 2011.
Short summary
This paper describes a methodology in analysing the interdependencies between components of the hydrological cycle and vegetation characteristics at different elevation zones of two endorheic river basins in an arid-mountainous region of NW China. The analysis shows that oasis vegetation has an important function in sustaining the water cycle in the river basins and oasis vegetation is dependent on surface and shallow subsurface water flow from mountain sources.
This paper describes a methodology in analysing the interdependencies between components of the...