Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-5399-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-5399-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The KULTURisk Regional Risk Assessment methodology for water-related natural hazards – Part 1: Physical–environmental assessment
P. Ronco
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
Euro-Mediterranean Center on Climate Change (CMCC), Impacts on Soil and Coast Division, Lecce, Italy
V. Gallina
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
S. Torresan
Euro-Mediterranean Center on Climate Change (CMCC), Impacts on Soil and Coast Division, Lecce, Italy
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
E. Semenzin
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
A. Critto
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
Euro-Mediterranean Center on Climate Change (CMCC), Impacts on Soil and Coast Division, Lecce, Italy
A. Marcomini
CORRESPONDING AUTHOR
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
Euro-Mediterranean Center on Climate Change (CMCC), Impacts on Soil and Coast Division, Lecce, Italy
Related authors
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Short summary
The aim of the paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying in the Sihl river valley including the city of Zurich, which represents a typical case of river flooding in an urban area, by means of a calibration process of the methodology to the site-specific context and features.
M. Nones, M. Guerrero, and P. Ronco
Earth Surf. Dynam., 2, 9–19, https://doi.org/10.5194/esurf-2-9-2014, https://doi.org/10.5194/esurf-2-9-2014, 2014
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Stefano Terzi, Janez Sušnik, Stefan Schneiderbauer, Silvia Torresan, and Andrea Critto
Nat. Hazards Earth Syst. Sci., 21, 3519–3537, https://doi.org/10.5194/nhess-21-3519-2021, https://doi.org/10.5194/nhess-21-3519-2021, 2021
Short summary
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Short summary
The aim of the paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying in the Sihl river valley including the city of Zurich, which represents a typical case of river flooding in an urban area, by means of a calibration process of the methodology to the site-specific context and features.
M. Nones, M. Guerrero, and P. Ronco
Earth Surf. Dynam., 2, 9–19, https://doi.org/10.5194/esurf-2-9-2014, https://doi.org/10.5194/esurf-2-9-2014, 2014
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Theory development
Impacts of science on society and policy in major river basins globally
Conceptualising surface water–groundwater exchange in braided river systems
Spatiotemporal variation of modern lake, stream, and soil water isotopes in Iceland
Evaporation and sublimation measurement and modeling of an alpine saline lake influenced by freeze–thaw on the Qinghai–Tibet Plateau
Rediscovering Robert E. Horton's lake evaporation formulae: new directions for evaporation physics
Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow
Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model
Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate
Freshwater pearl mussels from northern Sweden serve as long-term, high-resolution stream water isotope recorders
Integrating network topology metrics into studies of catchment-level effects on river characteristics
Estimating the effect of rainfall on the surface temperature of a tropical lake
Toward a conceptual framework of hyporheic exchange across spatial scales
HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists
River water quality changes in New Zealand over 26 years: response to land use intensity
A review of current and possible future human–water dynamics in Myanmar's river basins
A century-scale, human-induced ecohydrological evolution of wetlands of two large river basins in Australia (Murray) and China (Yangtze)
An index of floodplain surface complexity
Hydroclimatological influences on recently increased droughts in China's largest freshwater lake
Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake
Reconstruction of flood events based on documentary data and transnational flood risk analysis of the Upper Rhine and its French and German tributaries since AD 1480
A methodological approach of estimating resistance to flow under unsteady flow conditions
Quantitative historical hydrology in Europe
Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach
Variations in quantity, composition and grain size of Changjiang sediment discharging into the sea in response to human activities
The use of taxation records in assessing historical floods in South Moravia, Czech Republic
New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru
Dissolved and particulate nutrient transport dynamics of a small Irish catchment: the River Owenabue
Water balance of selected floodplain lake basins in the Middle Bug River valley
Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover
Inverse streamflow routing
A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage
Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden
A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota
Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden)
Physical and chemical consequences of artificially deepened thermocline in a small humic lake – a paired whole-lake climate change experiment
A flume experiment on the effect of constriction shape on the formation of forced pools
Shuanglei Wu and Yongping Wei
Hydrol. Earth Syst. Sci., 28, 3871–3895, https://doi.org/10.5194/hess-28-3871-2024, https://doi.org/10.5194/hess-28-3871-2024, 2024
Short summary
Short summary
This study developed a framework to understand the structures of knowledge development in 72 river basins globally from 1962–2017 using Web of Science. It was found that the knowledge systems were characterized by increasingly interconnected management issues addressed by limited disciplines and were linked more strongly to societal impacts than that to policy. Understanding the current state of knowledge casts a light on sustainable knowledge transformations for river basin management.
Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 28, 2721–2743, https://doi.org/10.5194/hess-28-2721-2024, https://doi.org/10.5194/hess-28-2721-2024, 2024
Short summary
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
David Harning, Jonathan Raberg, Jamie McFarlin, Yarrow Axford, Christopher Florian, Kristín Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-1, https://doi.org/10.5194/hess-2024-1, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Fangzhong Shi, Xiaoyan Li, Shaojie Zhao, Yujun Ma, Junqi Wei, Qiwen Liao, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 163–178, https://doi.org/10.5194/hess-28-163-2024, https://doi.org/10.5194/hess-28-163-2024, 2024
Short summary
Short summary
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing factors were first quantified based on 6 years of eddy covariance observations. (2) Night evaporation of Qinghai Lake accounts for more than 40 % of the daily evaporation. (3) Lake ice sublimation reaches 175.22 ± 45.98 mm, accounting for 23 % of the annual evaporation. (4) Wind speed weakening may have resulted in a 7.56 % decrease in lake evaporation during the ice-covered period from 2003 to 2017.
Solomon Vimal and Vijay P. Singh
Hydrol. Earth Syst. Sci., 26, 445–467, https://doi.org/10.5194/hess-26-445-2022, https://doi.org/10.5194/hess-26-445-2022, 2022
Short summary
Short summary
Evaporation from open water is a well-studied problem in hydrology. Robert E. Horton, unknown to most investigators on the subject, studied it in great detail by conducting experiments and relating them to physical laws. His work furthered known theories of lake evaporation but was not recognized. This is unfortunate because it performs better than five variously complex methods across scales (local to continental; 30 min–2 months) and seems quite relevant for climate-change-era problems.
Shannon M. Sterling, Sarah MacLeod, Lobke Rotteveel, Kristin Hart, Thomas A. Clair, Edmund A. Halfyard, and Nicole L. O'Brien
Hydrol. Earth Syst. Sci., 24, 4763–4775, https://doi.org/10.5194/hess-24-4763-2020, https://doi.org/10.5194/hess-24-4763-2020, 2020
Short summary
Short summary
Wild salmon numbers in Nova Scotia, Canada, have been plummeting in recent decades. In 2014, we launched an ionic aluminium monitoring program in Nova Scotia to see if this toxic element was a threat to salmon populations. We found that all 10 monitored rivers had ionic aluminium concentrations that exceeded the threshold for aquatic health. Our results demonstrate that elevated aluminium still threatens aquatic ecosystems and that delays in recovery from acid rain remains a critical issue.
Georgiy Kirillin, Ilya Aslamov, Vladimir Kozlov, Roman Zdorovennov, and Nikolai Granin
Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020, https://doi.org/10.5194/hess-24-1691-2020, 2020
Short summary
Short summary
We found that heat transported from Lake Baikal to its ice cover is up to 10 times higher than traditionally assumed and strongly affects the ice melting. The heat is transported by under-ice currents on the background of a strong temperature gradient between the ice base and warmer waters beneath. To parameterize this newly quantified transport mechanism, an original boundary layer model was developed. The results are crucial for understanding seasonal ice dynamics on lakes and marginal seas.
Jennifer C. Murphy
Hydrol. Earth Syst. Sci., 24, 991–1010, https://doi.org/10.5194/hess-24-991-2020, https://doi.org/10.5194/hess-24-991-2020, 2020
Short summary
Short summary
Between 1992 and 2012, concentrations of suspended sediment decreased at about 60 % of 137 US stream sites, with increases at only 17 % of sites. Sediment trends were primarily attributed to changes in land management, but streamflow changes also contributed to these trends at > 50 % of sites. At many sites, decreases in sediment occurred despite small-to-moderate increases in the amount of anthropogenic land use, suggesting sediment reduction activities across the US may be seeing some success.
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020, https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Short summary
We present the first annually resolved stable isotope record (1819–1998) from shells of Swedish river mussels. Data reflect hydrological processes in the catchment and changes in the isotope value of local precipitation. The latter is related to the origin of moisture from which precipitation formed (North Atlantic or the Arctic) and governed by large-scale atmospheric circulation patterns. Results help to better understand climate dynamics and constrain ecological changes in river ecosystems.
Eleanore L. Heasley, Nicholas J. Clifford, and James D. A. Millington
Hydrol. Earth Syst. Sci., 23, 2305–2319, https://doi.org/10.5194/hess-23-2305-2019, https://doi.org/10.5194/hess-23-2305-2019, 2019
Short summary
Short summary
River network structure is an overlooked feature of catchments. We demonstrate that network structure impacts broad spatial patterns of river characteristics in catchments using regulatory data. River habitat quality increased with network density, but other characteristics responded differently between study catchments. Network density was quantified using a method that can easily be applied to any catchment. We suggest that river network structure should be included in catchment-level studies.
Gabriel Gerard Rooney, Nicole van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 6357–6369, https://doi.org/10.5194/hess-22-6357-2018, https://doi.org/10.5194/hess-22-6357-2018, 2018
Short summary
Short summary
This paper uses a unique observational dataset of a tropical African lake (L. Kivu) to assess the effect of rain on lake surface temperature. Data from 4 years were categorised by daily rain amount and total net radiation to show that heavy rain may reduce the end-of-day lake temperature by about 0.3 K. This is important since lake surface temperature may influence local weather on short timescales, but the effect of rain on lake temperature has been little studied or parametrised previously.
Chiara Magliozzi, Robert C. Grabowski, Aaron I. Packman, and Stefan Krause
Hydrol. Earth Syst. Sci., 22, 6163–6185, https://doi.org/10.5194/hess-22-6163-2018, https://doi.org/10.5194/hess-22-6163-2018, 2018
Short summary
Short summary
The hyporheic zone is the area below riverbeds where surfacewater and groundwater mix. Hyporheic flow is linked to river processes and functions, but research to date has not sufficiently addressed how factors operating at different scales in time and space drive hyporheic flow variations at reach and larger scales. This review presents the scale-specific processes and interactions that control hyporheic flow, and a case study showing how valley factors affect its expression at the reach scale.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Jason P. Julian, Kirsten M. de Beurs, Braden Owsley, Robert J. Davies-Colley, and Anne-Gaelle E. Ausseil
Hydrol. Earth Syst. Sci., 21, 1149–1171, https://doi.org/10.5194/hess-21-1149-2017, https://doi.org/10.5194/hess-21-1149-2017, 2017
Short summary
Short summary
New Zealand is a natural laboratory for investigating water quality responses to land use intensity because it has one of the highest rates of agricultural intensification globally over recent decades. We interpreted water quality state and trends (1989–2014) of 77 river sites across NZ. We show that the greatest long-term negative impacts on river water quality have been increased cattle densities and legacy nutrients from intensively managed grasslands and plantation forests.
Linda Taft and Mariele Evers
Hydrol. Earth Syst. Sci., 20, 4913–4928, https://doi.org/10.5194/hess-20-4913-2016, https://doi.org/10.5194/hess-20-4913-2016, 2016
Short summary
Short summary
The country of Myanmar and its abundant water resources are facing major challenges due to political and economic reforms, massive investments from neighbouring countries and climate change impacts. Publications on current and future impacts from human activities and climate change on Myanmar's river basins have been reviewed in order to gain an overview of the key drivers in these human–water dynamics. The review reveals the relevance of this information with regard to human–water interactions.
Giri R. Kattel, Xuhui Dong, and Xiangdong Yang
Hydrol. Earth Syst. Sci., 20, 2151–2168, https://doi.org/10.5194/hess-20-2151-2016, https://doi.org/10.5194/hess-20-2151-2016, 2016
M. W. Scown, M. C. Thoms, and N. R. De Jager
Hydrol. Earth Syst. Sci., 20, 431–441, https://doi.org/10.5194/hess-20-431-2016, https://doi.org/10.5194/hess-20-431-2016, 2016
Short summary
Short summary
An index of floodplain surface complexity is developed in this paper and applied to eight floodplains from different geographic settings. Floodplain width and sediment yield were associated with the index or with sub-indicators, whereas hydrology was not. These findings suggest that valley and sediment conditions are important determinants of floodplain surface complexity, and these should complement hydrology as a focus of floodplain research and management.
Y. Liu and G. Wu
Hydrol. Earth Syst. Sci., 20, 93–107, https://doi.org/10.5194/hess-20-93-2016, https://doi.org/10.5194/hess-20-93-2016, 2016
Short summary
Short summary
Lake droughts result in significant hydrological, ecological and economic consequences. This study proposes approaches for quantifying the lake drought features and estimating the contributions from individual factors, taking China’s largest freshwater lake as a case examination. Our results showed that the recently increased lake droughts were due to hydroclimatic effects, with less important contributions from the water impoundments of the world’s largest dam affecting the lake outflows.
E. Nixdorf and B. Boehrer
Hydrol. Earth Syst. Sci., 19, 4505–4515, https://doi.org/10.5194/hess-19-4505-2015, https://doi.org/10.5194/hess-19-4505-2015, 2015
I. Himmelsbach, R. Glaser, J. Schoenbein, D. Riemann, and B. Martin
Hydrol. Earth Syst. Sci., 19, 4149–4164, https://doi.org/10.5194/hess-19-4149-2015, https://doi.org/10.5194/hess-19-4149-2015, 2015
Short summary
Short summary
The article presents a long-term analysis of flood occurrence along the southern part of the Upper Rhine River system and of 14 of its tributaries in France and Germany since 1480 BC. Special focus is given to temporal and spatial variations of flood events and their underlying meteorological causes over time, knowledge about the historical aspects of flood protection and flood vulnerability, while comparing selected historical and modern extreme events, establishing a common evaluation scheme.
M. M. Mrokowska, P. M. Rowiński, and M. B. Kalinowska
Hydrol. Earth Syst. Sci., 19, 4041–4053, https://doi.org/10.5194/hess-19-4041-2015, https://doi.org/10.5194/hess-19-4041-2015, 2015
Short summary
Short summary
This paper presents evaluation of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. Theoretical description is facilitated with the analysis of field data from artificial dam-break flood waves in a small lowland watercourse. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The study shows the Manning coefficient is less sensitive to simplified relations than other parameters.
G. Benito, R. Brázdil, J. Herget, and M. J. Machado
Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, https://doi.org/10.5194/hess-19-3517-2015, 2015
Short summary
Short summary
Historical hydrology combines documentary data with hydrological methods to lengthen flow records to the past centuries. We describe the methodological evolution of historical hydrology under the influence of developments in hydraulics and statistics. Analysis of 45 case studies in Europe show that present flood magnitudes are not unusual in the context of the past, whereas flood frequency has decreased, although some rivers show a reactivation of rare floods over the last two decades.
E. Isokangas, K. Rozanski, P. M. Rossi, A.-K. Ronkanen, and B. Kløve
Hydrol. Earth Syst. Sci., 19, 1247–1262, https://doi.org/10.5194/hess-19-1247-2015, https://doi.org/10.5194/hess-19-1247-2015, 2015
Short summary
Short summary
An iterative isotope mass balance approach was used to quantify the groundwater dependence of 67 kettle lakes and ponds. A quantitative measure for the dependence of a lake on groundwater (G index) introduced in this study revealed generally large groundwater dependency among the lakes. The isotope mass balance approach proved to be especially useful when the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions needs to be determined.
J. H. Gao, J. Jia, Y. P. Wang, Y. Yang, J. Li, F. Bai, X. Zou, and S. Gao
Hydrol. Earth Syst. Sci., 19, 645–655, https://doi.org/10.5194/hess-19-645-2015, https://doi.org/10.5194/hess-19-645-2015, 2015
R. Brázdil, K. Chromá, L. Řezníčková, H. Valášek, L. Dolák, Z. Stachoň, E. Soukalová, and P. Dobrovolný
Hydrol. Earth Syst. Sci., 18, 3873–3889, https://doi.org/10.5194/hess-18-3873-2014, https://doi.org/10.5194/hess-18-3873-2014, 2014
A. Emmer and V. Vilímek
Hydrol. Earth Syst. Sci., 18, 3461–3479, https://doi.org/10.5194/hess-18-3461-2014, https://doi.org/10.5194/hess-18-3461-2014, 2014
S. T. Harrington and J. R. Harrington
Hydrol. Earth Syst. Sci., 18, 2191–2200, https://doi.org/10.5194/hess-18-2191-2014, https://doi.org/10.5194/hess-18-2191-2014, 2014
J. Dawidek and B. Ferencz
Hydrol. Earth Syst. Sci., 18, 1457–1465, https://doi.org/10.5194/hess-18-1457-2014, https://doi.org/10.5194/hess-18-1457-2014, 2014
J. A. Leach and R. D. Moore
Hydrol. Earth Syst. Sci., 18, 819–838, https://doi.org/10.5194/hess-18-819-2014, https://doi.org/10.5194/hess-18-819-2014, 2014
M. Pan and E. F. Wood
Hydrol. Earth Syst. Sci., 17, 4577–4588, https://doi.org/10.5194/hess-17-4577-2013, https://doi.org/10.5194/hess-17-4577-2013, 2013
T. R. Jackson, R. Haggerty, and S. V. Apte
Hydrol. Earth Syst. Sci., 17, 2747–2779, https://doi.org/10.5194/hess-17-2747-2013, https://doi.org/10.5194/hess-17-2747-2013, 2013
G. Göransson, M. Larson, and D. Bendz
Hydrol. Earth Syst. Sci., 17, 2529–2542, https://doi.org/10.5194/hess-17-2529-2013, https://doi.org/10.5194/hess-17-2529-2013, 2013
F. Gallart, N. Prat, E. M. García-Roger, J. Latron, M. Rieradevall, P. Llorens, G. G. Barberá, D. Brito, A. M. De Girolamo, A. Lo Porto, A. Buffagni, S. Erba, R. Neves, N. P. Nikolaidis, J. L. Perrin, E. P. Querner, J. M. Quiñonero, M. G. Tournoud, O. Tzoraki, N. Skoulikidis, R. Gómez, M. M. Sánchez-Montoya, and J. Froebrich
Hydrol. Earth Syst. Sci., 16, 3165–3182, https://doi.org/10.5194/hess-16-3165-2012, https://doi.org/10.5194/hess-16-3165-2012, 2012
G. Göransson, M. Larson, D. Bendz, and M. Åkesson
Hydrol. Earth Syst. Sci., 16, 1879–1893, https://doi.org/10.5194/hess-16-1879-2012, https://doi.org/10.5194/hess-16-1879-2012, 2012
M. Forsius, T. Saloranta, L. Arvola, S. Salo, M. Verta, P. Ala-Opas, M. Rask, and J. Vuorenmaa
Hydrol. Earth Syst. Sci., 14, 2629–2642, https://doi.org/10.5194/hess-14-2629-2010, https://doi.org/10.5194/hess-14-2629-2010, 2010
D. M. Thompson and C. R. McCarrick
Hydrol. Earth Syst. Sci., 14, 1321–1330, https://doi.org/10.5194/hess-14-1321-2010, https://doi.org/10.5194/hess-14-1321-2010, 2010
Cited articles
ADBI: Asian Development Bank Institute and The World Bank: Pakistan floods 2010: Preliminary damage and needs assessment, Asian Development Bank, Islamabad, 2010.
Annamo E. and Kristiansen, G.: Challenges in Flood Risk Management Planning. An example of a Flood Risk Management Plan for the Finnish-Norwegian River Tana, Norwegian Water Resources and Energy Directorate, Oslo, ISSN:1501-2832, Report no. 16, 2012.
ANSA: 54 mln danni da alluvione a agricoltura, available at: https://www.ansa.it/web/notizie/rubriche/cronaca/2014/02/03/54-mln-danni-alluvione-agricoltura_10008712.html (last access: 3 February 2014), 2014 (in Italian).
Balica, S. F., Douben, N., and Wright, N. G.: Flood vulnerability indices at varying spatial scales, Water Sci. Technol., 60, 2571–2580, 2009.
Barredo, J. I.: Major flood disasters in Europe: 1950–2005, Nat. Hazards, 42, 125–148, 2007.
Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P.: Climate Change and Water: IPCC Technical Paper IV, Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 2008.
Büchele, B., Kreibich, H., Kron, A., Thieken, A., Ihringer, J., Oberle, P., Merz, B., and Nestmann, F.: Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks, Nat. Hazards Earth Syst. Sci., 6, 485–503, https://doi.org/10.5194/nhess-6-485-2006, 2006.
Cirella, G. T., Semenzin, E., Critto, A., and Marcomini, A.: Natural hazard risk assessment and management methodologies review: Europe, in: Sustainable Cities and Military Installations: Climate Change Impacts on Energy and Environmental Security, edited by: Linkov, I., Springer, the Netherlands, 329–358, 2014
Citeau, J. M.: A New Control Concept in the Oise Catchment Area, Definition and Assessment of Flood Compatible Agricultural Activities, FIG working week, Paris, France, 2003.
Clausen, L. and Clark, P. B.: The development of criteria for predicting dam break flood damages using modelling of historical dam failures, in: International Conference on River Flood Hydraulics, edited by: White, W. R., Hydraulics Research Limited, John Wiley & Sons Ltd., Wallingford, UK, 369–380, 1990.
DEFRA: Flood Risk to People Phase 2, FD2321/TR2 Guidance Document, Department for Environment, Food and Rural Affairs, London, UK, March 2006.
Di Baldassarre G., Castellarin, A., Montanari, A., and Brath, A.: Probability weighted hazard maps for comparing different flood risk management strategies: a case study, Nat. Hazards, 50, 479–496, 2009.
Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J., and Beven, K.: Floodplain mapping: a critical discussion on deterministic and probabilistic approaches, Hydrol. Sci. J., 55, 364–376, 2010.
Directive 2007/60/EC: On the Assessment and Management of Flood Risks, The European Parliament and of the Council of 23 October 2007, Brussels, Belgium, 2007.
Drdácký, M.: Impact of floods on heritage structures, J. Perform. Facil. 24, 430–431, 2010.
Dutta, D., Herath, S., and Musiake, K.: A mathematical model for flood loss estimation, J. Hydrol., 277, 24–49, 2003.
EEA: European Environment Agency: CLC2006 technical guidelines, Publications Office of the European Union, Luxembourg, 2007.
EEA: European Environment Agency: Mapping the impacts of natural hazards and technological accidents in Europe – an overview of the last decade, Luxembourg: Publications Office of the European Union, 2010.
EEA: European Environment Agency: Water resources in Europe in the context of vulnerability" Luxembourg: Publications Office of the European Union, 2012.
Förster, S., Kuhlmann, B., Lindenschmidt, K.-E., and Bronstert, A.: Assessing flood risk for a rural detention area, Nat. Hazards Earth Syst. Sci., 8, 311–322, https://doi.org/10.5194/nhess-8-311-2008, 2008.
Forte, F., Pennetta, L., and Strobl, R. O.: Historic records and GIS applications for flood risk analysis in the Salento peninsula (southern Italy), Nat. Hazards Earth Syst. Sci., 5, 833–844, https://doi.org/10.5194/nhess-5-833-2005, 2005.
Fuchs, S., Birkmann J., and Glade, T.: Vulnerability assessment in natural hazards and risk analysis: current approaches and future challenges, Nat. Hazards, 64, 1969–1975, 2012.
Giove, S., Brancia, A., Satterstrom, F. K., and Linkov, I.: Decision Support Systems and Environment: Role of MCDA. In Decision Support Systems for Risk Based Management of Contaminated Sites, Springer Verlag, New York, 2009.
Giupponi, C., Mojtahed, V., Gain, A. K., Biscaro, C., and Balbi, S.: Integrated Risk Assessment of Water Related Disasters, in: Paron, P. and Di Baldassarre, G., Hydro-Meteorological Hazards, Risks, and Disasters, Elsevier, 163–200, 2014.
Hewitt, K.: Regions of risk. A geographical introduction to disasters, Longman, Ltd. Essex, UK, 1997.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate, Nat. Clim. Change, 3, 816–831, 2013.
Hunsaker, C. T., Graham, R. L., Suter II, G. W., O'Neill, R. V., Barnthouse, L. W., and Gardner R. H.: Assessing ecological risk on a regional scale, Environ. Manage., 14, 325–332, 2010.
Hufschmidt, G. and Glade, T.: Vulnerability analysis in geomorphic risk assessment, edited by: Alcantara-Ayala, I. and Goudie, A., Geomorphological hazards and disaster prevention, Cambridge University Press, Cambridge, 233–243, 2010.
IPCC: Intergovernmental Panel on Climate Change: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp. 2012.
IPCC: Intergovernmental Panel on Climate Change: Synthesis Report (SYR) of the IPCC Fifth Assessment Report (AR5), 116 pp., released online in unedited form, 2014.
ISPRA: Istituto Superiore per la Protezione e la Ricerca Ambientale: Proposta metodologica per l'aggiornamento delle mappe di pericolosità e di rischio. Attuazione della Direttiva 2007/60/EC relativa alla valutazione e alla gestione dei rischi da alluvioni Decreto Legislativo n. 49/2010, Rome, Italy, 2012.
Jakubicka, T., Vos, F., Phalkey, R., and Marx, M.: Health impacts of floods in Europe: data gaps and information needs from a spatial perspective, a MICRODIS report, Brussels, Centre for Research on the Epidemiology of Disasters, 2010.
Jonkman, S. N., Vrijling, J. K., and Vrouwenvelder, A. C. W. M.: Methods for the estimation of loss of life due to floods: a literature review and a proposal for a new method, Nat. Hazards, 46, 353–389, 2008.
Kalbfleisch, J. G.: Probability and Statistical Inference: Volume 1: Probability, Springer Texts in Statistics, the Netherlands, 1985.
Kubal, C., Haase, D., Meyer, V., and Scheuer, S.: Integrated urban flood risk assessment – adapting a multicriteria approach to a city, Nat. Hazards Earth Syst. Sci., 9, 1881–1895, https://doi.org/10.5194/nhess-9-1881-2009, 2009.
Landis, W. G. (Ed.): Regional Scale Ecological Risk Assessment, Using the Relative Risk Model, CRC Press, Boca Raton, FL, USA, 2005.
Landis, W. G. and Wiegers, J. A. : Design Considerations and a Suggested Approach for Regional and Comparative Ecological Risk Assessment, Human Ecol. Risk Assess., 3, 287–297, 1997.
Mazzorana, B., Hübl, J., and Fuchs, S.: Improving risk assessment by defining consistent and reliable system scenarios, Nat. Hazards Earth Syst. Sci., 9, 145–159, https://doi.org/10.5194/nhess-9-145-2009, 2009.
Mazzorana, B., Levaggi, L., Keiler, M., and Fuchs, S.: Towards dynamics in flood risk assessment, Nat. Hazards Earth Syst. Sci., 12, 3571–3587, https://doi.org/10.5194/nhess-12-3571-2012, 2012.
Mebarki, A., Valencia, N., Salagnac, J. L., and Barroca, B.: Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale, Nat. Hazards Earth Syst. Sci., 12, 1799–1809, https://doi.org/10.5194/nhess-12-1799-2012, 2012.
Menne, B. and Murray, V.: Floods in the WHO European Region: Health Effects and Their Prevention, World Health Organization, Regional Office for Europe (WHO), edited by: Menne, B. and Murray, V., Copenhagen, Denmark, 2013.
Meyer, V., Scheuer, S., and Haase, D.: A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany, Nat. Hazards, 48, 17–39, 2009
Mitchell, J. K.: European river floods in a changing world, Risk Anal., 23, 567–574, 2003.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Bloschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: "Panta Rhei-Everything Flows": Change in hydrology and society-The IAHS Scientific Decade 2013–2022, Hydrol. Sci. J., 58, 1256- 1275, 2013.
Nedvedová, K. and Pergl, R.: Cultural heritage and flood, CESB 2013 PRAGUE – Central Europe Towards Sustainable Building 2013: Sustainable Building and Refurbishment for Next Generations, Prague, Czech Republic, 2013.
Papathoma-Kohle M., Kappes M., Keiler M., and Glade T.: Physical vulnerability assessment for alpine hazards: State of the art and future needs, Nat. Hazards, 58, 645–680, 2011.
Pappenberger, F., Stephens, E., Thielen, J., Salamon, P., Demeritt, D., van Andel, S. J., Wetterhall, F., and Alfieri, L.: Visualising probabilistic flood forecast information: expert preferences and perceptions of best practice in uncertainty communication, Hydrol. Process., 27, 132–146, 2013.
Pasini, S., Torresan, S., Rizzi, J., Zabeo, A., Critto, A., and Marcomini, A.: Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: A spatially resolved regional risk assessment, Sci. Total Environ., 440, 219–235, 2012.
Penning-Rowsell, E., Floyd, P., and Ramsbottom D.and Surendran, S.: Estimating injury and loss of life in floods: a deterministic framework, Nat. Hazards, 36, 43–64, 2005.
Preston, B. L., Smith, T. F., Brooke, C., Gorddard, R., Measham, T. G., Withycombe, G., Mcinnes, K., Abbs, D., Beveridge, B., and Morrison, C.: Mapping Climate Change Vulnerability in the Sydney Coastal Councils Group, prepared for the Sydney Coastal Councils Group and the Commonwealth Department of Climate Change by the CSIRO Climate Adaptation Flagship, Canberra, 2008.
Ronco, P., Bullo, M., Torresan, S., Critto, A., Olschewski, R., Zappa, M., and Marcomini, A.: The KULTURisk Regional Risk Assessment methodology for water-related natural hazards – Part 2: Application to the Zurich case study, Hydrol. Earth Syst. Sci. Discuss., 11, 7875–7933, https://doi.org/10.5194/hessd-11-7875-2014, 2014.
Rotach, M. W., Arpagaus, M., Dorninger, M., Hegg, C., Montani, A., and Ranzi, R.: Uncertainty propagation for flood forecasting in the Alps: different views and impacts from MAP D-PHASE, Nat. Hazards Earth Syst. Sci., 12, 2439–2448, https://doi.org/10.5194/nhess-12-2439-2012, 2012.
Scholz, R. and Tietje, O.: Formative scenario analysis, in: Embedded case study methods, edited by: Scholz, R. and Tienje, O., Sage, Thousand Oaks, 79–116, 2002.
Schwarz, J. and Maiwald, H.: Damage and loss prediction model based on the vulnerability of building types, 4th International Symposium on Flood Defence: Managing Flood Risk, Reliability and Vulnerability. Toronto, Ontario, Canada, 6–8 May, 74-1 to 74-9, 2008.
Torresan, S., Critto, A., Rizzi, J., and Marcomini, A.: Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea, Nat. Hazards Earth Syst. Sci., 12, 2347–2368, https://doi.org/10.5194/nhess-12-2347-2012, 2012.
Totschnig R. and Fuchs, S.: Mountain torrents: quantifying vulnerability and assessing uncertainties, Eng. Geol., 155, 31-44, 2013.
UNESCO: Convention concerning the protection of the world cultural and natural heritage, Adopted by the General Conference at its seventeenth session Paris, 16 November 1972.
Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J. L., Scolobig, A., and Bloschl, G.: Insights from socio-hydrology modelling on dealing with flood risk – Roles of collective memory, risk-taking attitude and trust, J. Hydrol., 518, 71–82, 2014.
Vincke, P.: Multi-criteria decision aid. John Wiley and Sons, UK, SBN: 978-0-471-93184-3, 174 pp., 1992.
WMO: World Meteorological Organization: Integrated Flood Management as an Adaptation Tool for Climate Change: Case Studies, APFM Technical Document No. 15, Flood Management Tools Series, Associated Programme on Flood Management, Geneva, 2011.
Yahaya, S., Ahmad, N., and Abdalla, R. F.: Multicriteria analysis for flood vulnerable areas in Hadejia-Jama'are River basin, Nigeria, Eur. J. Sci. Res., 42, 71–83, 2010.
Yosie, T. F. and Herbst, T. D.: Using Stakeholder Processes in Environmental Decision making. An Evaluation of Lessons Learned, Key Issues, and Future Challenges, American Industrial Health Council, Ruder Finn, Washington, 1998.
Zabeo, A., Pizzol, L., Agostini, P., Critto, A., Giove, S., and Marcomini, A.: Regional risk assessment for contaminated sites Part 1: Vulnerability assessment by multicriteria decision analysis, Environ. Int., 37, 1295–1306, 2011.
Zald, A. E., Summer, S., and Wade, T.: A to Z GIS: An Illustrated Dictionary of Geographic Information Systems, Information Bulletin, 38, 118 pp., 2006.
Short summary
This paper proposes a methodology, shaped by the EU Flood Directive, for the integrated assessment of flood risk at the regional scale for multiple receptors (i.e. people, economic activities, natural and semi-natural systems and cultural heritage) based on the subsequent assessment of hazards, exposure and vulnerability. By means of MCDA and GIS tools, it supports the ranking of the area, sub-areas and hotspots at risk, in order to evaluate the benefits of different risk prevention scenarios.
This paper proposes a methodology, shaped by the EU Flood Directive, for the integrated...